Zeitschrift: Helvetica Physica Acta

Band: 50 (1977)

Heft: 4

Artikel: Ferromagnetismus von Nd_3S_4

Autor: Schobinger-Papamantellos, P. / Fischer, P. / Kaldis, E.

DOI: https://doi.org/10.5169/seals-114873

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Ferromagnetismus von Nd₃S₄

von P. Schobinger-Papamantellos

Institut für Kristallographie und Petrographie ETHZ, CH-8092 Zürich

P. Fischer

Institut für Reaktortechnik ETHZ, CH-5303 Würenlingen

und E. Kaldis

Laboratorium für Festkörperphysik ETHZ, CH-8093 Zürich

(5. V. 1977)

Abstract. Chemical and magnetic structures of metallic Nd_3S_4 were determined by means of neutron diffraction. Ferromagnetic long-range order exists in Nd_3S_4 with Th_3P_4 structure at temperatures below $T_C = 47$ K (ordered Nd-moment $\mu_{4.2K} = 2.08 \mu_B$).

1. Einleitung

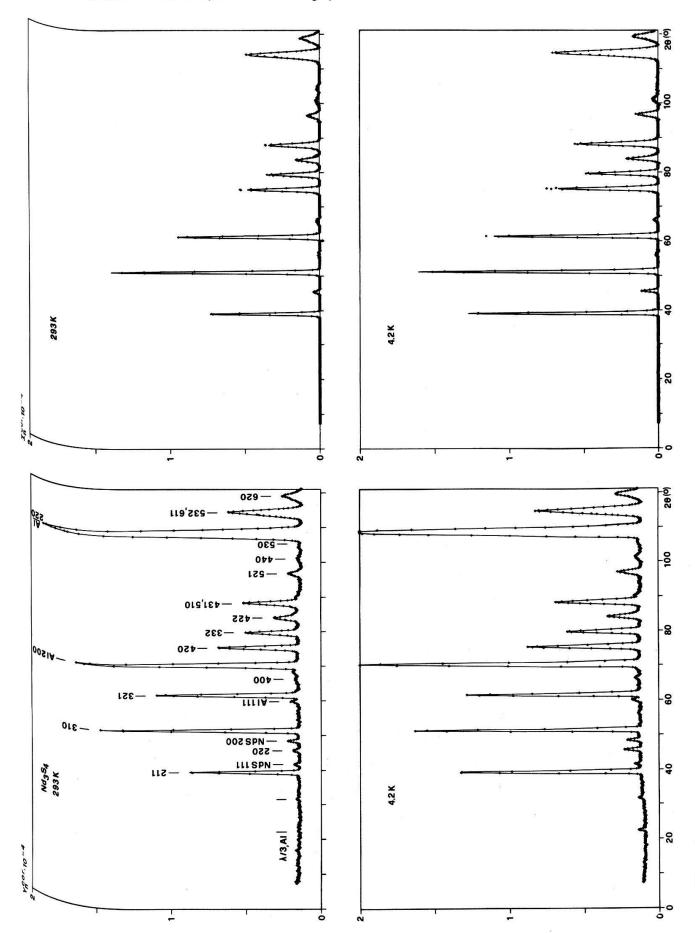
Chalkogenide Seltener Erden mit kubischer Th_3P_4 -Struktur [1] sind hinsichtlich Magnetismus, Supraleitung und als Systeme mit Metall-Isolator-Uebergang von besonderem Interesse [2, 3]. Bis zu hohen Leerstellenkonzentrationen im Th-Untergitter (Th_2P_3 resp. $3Th_{8/3}P_4$) bleibt diese Struktur stabil, wobei Nichtstöchiometrie wesentliche Aenderungen der elektrischen Leitfähigkeit bedingt. So ist z.B. Gd_2Se_3 ein antiferromagnetischer Isolator (Néel-Temperatur $T_N = 6$ K), $Gd_{2.1}Se_{2.9}$ ein ferromagnetisches Metall (Curie-Temperatur $T_C = 80$ K), und La_3S_4 sowie La_3Se_4 sind Supraleiter ($T_c < 9$ K).

Die magnetischen Eigenschaften von R_3S_4 -Verbindungen leichter Seltener Erden sind entsprechend makroskopischen magnetischen Messungen $[4 \div 6]$ teilweise ungenügend erforscht. Starovoĭtov et al. schliessen aus Magnetisierungsmessungen [4] auf Ferromagnetismus von Nd_3S_4 (spontanes Moment 1.27 μ_B) in Magnetfeldern > 10 kOe bei 4.2 K ($T_C = 50$ K, paramagnetische Curie-Temperatur $\theta = 40$ K), während Pr_3S_4 vermutlich infolge eines Singulett-Grundzustandes magnetisch nicht ordnet ($\theta = 0$ K). Der Magnetismus von Nd_3S_4 entspricht dem $4f^3$ ($^4I_{9/2}$)-Grundzustand von Nd^{3+} . Trotz negativer paramagnetischer Curie-Temperatur $\theta = -46.6$ K könnte Ce_3S_4 nach Logunov und Sergeeva [5] bei Temperaturen unterhalb von 10 K ferromagnetisch sein ($\theta_{Pr_3S_4} = 0.57$ K, $\theta_{Nd_3S_4} = 32.7$ K). Schliesslich vermuten Novikov und Shalyt aufgrund gemessener Transporteigenschaften [6] Antiferromagnetismus von Nd_3S_4 bei 45 K und Ferromagnetismus im Temperaturbereich 4.2 < T < 45 K.

Diese Sachlage veranlasste uns zu Neutronenbeugungsmessungen an polykristallinem Nd₃S₄, um die Art der magnetischen Ordnung sowie die Kristallstruktur zu bestimmen. Einen weiteren interessanten Aspekt bildet die mögliche Stöchiometrieabhängigkeit der magnetischen Eigenschaften in diesem metallischen [6] System.

2. Kristallstruktur und magnetische Ordnung

Nd₃S₄ kristallisiert [4 ÷ 6] entsprechend der kubisch raumzentrierten Th₃P₄-Struktur (Raumgruppe I $\overline{4}$ 3d) mit der Gitterkonstanten a=8.524 Å [7] und 4 Formeleinheiten pro Einheitszelle. Nd besetzt die Positionen 12a ($\frac{3}{8}$ 0 $\frac{1}{4}$) und S die Punktlagen 16c ($x_Sx_Sx_S$) mit dem einzigen Parameter $x_S\sim 1/12$. Dies entspricht 8 nächsten S-Nachbarn eines Nd-Ions (Punktsymmetrie $\overline{4}$).


Neutronenbeugungsmessungen wurden an pulverförmigem $\mathrm{Nd_3S_4}$ (zylindrischer Aluminiumbehälter von 1 cm Durchmesser) in Abhängigkeit von der Temperatur mittels Neutronenspektrometern am Reaktor Diorit durchgeführt. Diagramme sind bei Zimmertemperatur (paramagnetischer Zustand) und 4.2 K (Heliumbad-Kryostat, magnetische Fernordnung) in Figur 1 dargestellt (Neutronenwellenlänge $\lambda=2.319$ Å). Messungen als Funktion der Temperatur (vgl. Fig. 2) wurden hauptsächlich mittels eines Helium-Kryostaten vom Verdampfertyp ($\lambda=2.344$ Å) durchgeführt. Entsprechend der gemessenen Transmission wurden die Intensitäten betr. Absorption korrigiert. Die Auswertung erfolgte durch Profilanalyse [8]. Die Neutronenstreuamplituden $b_{\mathrm{Nd}}=7.5$ F und $b_{\mathrm{S}}=2.8$ F wurden hierzu verwendet.

Die Ergebnisse sind aus Tabelle 1 und Figur 1 ersichtlich. Die nuklearen Intensitäten entsprechen stöchiometrischem Nd_3S_4 (abgesehen von schwachen Linien infolge von NdS mit NaCl-Struktur). Der Strukturparameter $x_S = 0.075$ stimmt mit dem von La_3Se_4 und La_2Te_3 [7] überein.

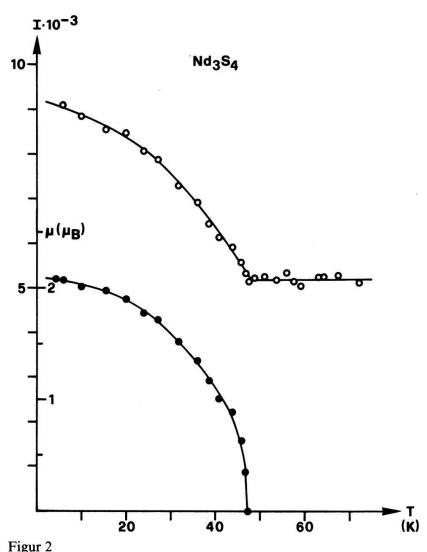

Wie aus Figur 1 ersichtlich ist, ordnet Nd_3S_4 bei 4.2 K ferromagnetisch, ähnlich U_3P_4 [9]. Aus der Temperaturabhängigkeit des 211-Reflexes (Fig. 2) wurde

Tabelle 1 Kristallstruktur-Parameter und geordnetes magnetisches Moment μ von Nd₃S₄. B = Debye-Waller-Parameter (Intensität $\sim e^{-2W}$, $W = B(\sin \lambda/\theta)^2$), R_n , R_m , RW_p = Uebereinstimmungswerte betr. integrierter nuklearer, magnetischer bzw. Profil-Intensitäten [8].

T(K)	293	4.2
a (Å)	8.524 ±0.005	8.496 ±0.005
x_{s}	$0.0749 \\ \pm 0.0006$	$0.0747 \\ \pm 0.0007$
$B(Å^2)$	1.44 ± 0.08	$0.49 \\ \pm 0.08$
$\mu (\mu_3)$		$\frac{2.08}{\pm 0.06}$
R_n	0.078	0.078
R_m		0.096
RW_p	0.111	0.107

Gemessene, absorptionskorrigierte Neutronenbeugungsdiagramme $Y_n^{\rm cor}$ von pulverförmigem ${\rm Nd}_3{\rm S}_4$. Rechts $(I_n^{\rm cor})$ sind gemessene (Punkte, absorptionskorrigiert. Untergrund subtrahiert) und berechnete Profilintensitäten (Linie) verglichen.

Temperaturabhängigkeit der integrierten Neutronenintensität I_n des 211-Reflexes (o) sowie des geordneten magnetischen Nd-Momentes μ (•) von Nd₃S₄.

die Curie-Temperatur $T_{\rm C} = (47 \pm 1)$ K bestimmt, ähnlich den aus makroskopischen magnetischen Messungen bestimmten Werten [4 ÷ 6]. Die Messungen ergaben im gesamten Temperaturbereich keinerlei Anzeichen für antiferromagnetische Reflexe. Das geordnete magnetische Nd-Moment $\mu_{4.2K} = (2.08 \pm 0.06) \mu_B$ ist wahrscheinlich infolge von Kristallfeldeffekten unter den Wert (gJ = 3.27) μ_R von Nd³⁺ reduziert, ähnlich wie bei NdS [10]. Andererseits ist es wesentlich grösser als das aus Magnetisierungsmessungen bestimmte spontane Moment von 1.27 μ_R [4]. Der Temperaturverlauf des geordneten magnetischen Momentes deutet einen Phasenübergang zweiter Art bei $T_{\rm C}$ an. Somit lässt sich aus den gegenwärtigen Neutronenmessungen eindeutig schliessen, dass Nd₃S₄ im gesamten Temperaturbereich $T \leq T_{\rm C}$ einfache ferromagnetische Ordnung besitzt.

Verdankungen

Wir danken vor allem Prof. W. Hälg sowie Prof. G. Busch und Prof. A. Niggli, ETHZ, für die Unterstützung und ihr Interesse an dieser Arbeit.

Ferromagnetismus von Nd₃S₄

LITERATUR

- [1] K. Meisel, Z. Anorg. Allg. Chem. 240, 300 (1939).
- [2] F. HOLTZBERG und S. METHFESSEL, J. Appl. Phys. 37, 1433 (1966).
- [3] F. HOLTZBERG, T. R. McGuire, S. Methfessel und J. C. Suits, J. Appl. Phys. 35, 1033 (1964).
- [4] A. T. STAROVOĬTOV, V. I. OZHOGIN, G. M. LOGINOV und V. M. SERGEEVA, Sov. Phys. JETP 30, 433 (1970).
- [5] G. M. LOGUNOV und V. M. SERGEEVA, Sov. Phys.—Solid State 11, 3061 (1970).
- [6] V. I. Novikov und S. S. Shalyt, Sov. Phys.—Solid State 12, 2628 (1971).
- [7] J. FLAHAUT und P. LARUELLE, Progress in the Science and Technology of the Rare Earths Vol. 3 (Ed. Le Roy Eyring), (Pergamon Press, London, 1968), p. 149.
- [8] H. M. RIETVELD, RCN Bericht (Petten, Holland) 104, (1969); W. VON WARTBURG, AF-SSP-46 (IRT, Würenlingen) (1970).
- [9] R. Ciszewski, A. Murasik und R. Troć, Phys. Stat. Sol. 10, K85 (1965).
- [10] P. SCHOBINGER-PAPAMANTELLOS, P. FISCHER, A. NIGGLI, E. KALDIS und V. HILDEBRANDT, J. Phys. C: Solid State Phys. 7, 2023 (1974).