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Extension of the final state theorem and the analysis of
accurate low energy pion—nucleon scattering and pion
photoproduction experiments

by G. Rasche
Institut fiir Theoretische Physik der Universitit, Schonberggasse 9, CH-8001 Ziirich, Switzerland

and W. S. Woolcock

Research School of Physical Sciences, The Australian National University, Canberra, Australia

(7. 1L 1977)

Abstract. The final state theorem, originally formulated by Watson, is studied for the case of m + n
coupled two-body channels, m of which are coupled together ‘strongly’ with ‘weak’ perturbations, while
the other n channels are coupled only ‘weakly’ to the ‘strong’ channels. The results are applied to expose
the difficulties in a useful analysis of new, more accurate experiments at low energies on pion—nucleon
scattering and pion photoproduction from nucleons, which will be performed at SIN, TRIUMF and
LAMPF and at several medium energy electron accelerators.

1. Introduction

In a paper reviewing and comparing work on electromagnetic effects in pion—
nucleon scattering [ 1] we discussed our earlier work on the analysis of n~ p experi-
ments [2], and pointed out that, once electromagnetic effects on pion—nucleon
scattering are being considered consistently to first order in the fine structure constant
a, it 1s essential to take account of the competing two-body photon—nucleon channel.
Thus, for coupled channels with total charge zero, we need to consider =~ p, n°n
and both electric and magnetic multipoles for yn. For each (JP) with J > 3, this gives
a 4 x 4 unitary, symmetric S-matrix. Similarly, for coupled channels with total
charge +e, we need to consider n°p, n*n and both electric and magnetic multipoles
for yp, again giving a 4 x 4 unitary, symmetric S-matrix for each (JP) with J > 3.
In this paper we propose to study these coupled channel situations carefully and to
consider the analysis of experiments on pion-nucleon scattering and pion photo-
production from nucleons at low and medium energies.

To this end, since two of the channels may be characterized as ‘strong’ and two
as ‘weak’, it is clear that we need to consider the well known final state theorem first
formulated in zeroth order by Watson [3] in connection with this very problem.
Roughly put, Watson showed that suitably chosen multipole amplitudes for photo-
production of pions from nucleons have phases which are just the phase shifts for
pion—nucleon scattering for a definite set of values of JJ, P and total isospin /. Once
Coulomb and mass difference effects are taken into account in analysing experiments
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on pion—nucleon scattering, complications arise. There is the question of which
phase shifts are to be used in the analysis of photoproduction experiments, strictly
nuclear phases or phases modified by the addition of electromagnetic corrections of
order a. One also needs to ask whether the electromagnetic correction to the charge
independent mixing angle needs to be taken into account. We shall answer these
questions in Section 2, in the course of a study of the final state theorem for the case
of m ‘strong’ and n ‘weak’ two-body channels which are coupled together. In this
study we shall investigate the consequences of the approximation that the S-matrix

for a particular (JP), S,,, ,, be unitary only to first order in «:
S,.+.S

S m+n 1m+n = O(az)' (1)
In writing equation (1) time-reversal invariance has been assumed to hold, so that
S, + 18 symmetric. In the usual zeroth order form of the final state theorem, the right
side of equation (1) is of order « only. Our study is therefore the extension of the final
state theorem to the next highest order in a. The results of Section 2 will then be
applied in Section 3, to show that it is difficult to make a consistent analysis of the
new generation of more accurate experiments at low and medium energies on pion—
nucleon scattering and pion—photoproduction from nucleons, which takes proper
account of electromagnetic effects.

m+n

2. The Final State Theorem

The matrix S of equation (1) is partitioned as follows:

m+n
Sm Smn
Sm+»va = (S;m Sn ) (2)

In view of the application we have in mind, we think of the relative strengths of the
‘strong’ and ‘weak’ channels as being measured by a number o « 1 (in our application
the fine structure constant). More specifically, using the usual mathematical notation,
we assume that

Spw — 1, =0(), S, =00, §,—1,=0(@). €)

We need however to look more closely at S,,. If the ‘weak’ channels were absent al-
together, S,, would be a symmetric unitary matrix. It is therefore convenient to decom-
pose S, in the following way:

Sm =Sy + (Sm — S, “
with

SO =89, SPsY =1, ©

S — 1. = 0(), S, — S = O(w). (6)

This decomposition of S,, is not unique, because S{’ may include ‘weak’ effects of
~order « other than those which arise from the presence of the ‘weak’ channels. We
shall return to this point later. Finally we write

S, = 1, + 2ig, (7)
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where
g, = O(a), )

by (3).
To proceed further we note that since S!’ is unitary and symmetric it may be
written as

S = 0,, exp (2i®)0;,, 9
where O,, is a real orthogonal matrix,

00, =1, (10)
and @ is a diagonal matrix with real elements 6,,

0, =06,5, -—n2<86,<mn2 (11)
We now write the matrix S, , of equation (2) as

S, = ((())m exp (i®) (lln) s . (gxp (i®)0!, (lhn)’ 12)
with S, ., having the form

Shpin = Lyin + 2z‘(§:" ’“’"")- (13)
Then, from equations (2), (4) and (9), we have

S, — S© = 2i0,, exp (i®)s,, exp (i®)0',, (14)

S,.. = 2i0,, exp (i@)A,,,, (15)
while (12) and (13) incorporate (7). From (3) and (6),

6, = O(@), A, = O('?). (16)

One checks easily that S, , , is symmetric and unitary; furthermore equation (1)
requires

SiraDiss = Latn = O(a?). 17)
Now from equation (13) we have

*:n+n ;n+n = Lt

_d (—Im G, + ©,0, + A,T,,lj,m —Ima,, +_Em).m,,_+ lms,,)' (18)

—ImA\,, + M,6, + A, —Imeg, + &,¢, + A, Apn

Thus we see that for the off-diagonal submatrices in (18) to vanish to lowest order
(e'”? by (16)) we must have

ImA9 =0, A9 real (19)

We use the superscript (0) on A,,, to denote that this is the lowest order non-vanishing
approximation to A,,. Equation (19) is in fact the generalization to our (m + n)
channel situation of the usual statement of the final state theorem. Taken together
with (9) and (15), it says that the mn complex S-matrix elements connecting ‘strong’
and ‘weak’ channels can be expressed in terms of the mmn real elements of the matrix



410 G. Rasche and W. S. Woolcock H.P. A

A9 once the approximate unitary symmetric matrix S{” for the ‘strong’ channels
is known.

However, if it is possible to perform experiments on ‘strong’ channel « ‘weak’
channel processes with an accuracy of around a or better, one will need for the
purposes of analysis of these experiments to take into account the terms of order >/
in the off-diagonal submatrices in (18). That is why we prescribed the condition (1)
on S, . ,, from which condition (17) on S,,, , follows. This condition in effect means
that in the matrix on the right side of (18) the off-diagonal submatrices are to be of
order «*? and the diagonal submatrices of order «*. To this order A, acquires an

imaginary part and we have, from (18),
Im A = Re aVA9 + ALY Re &l?. (20)

Equation (20) is true because, in order that the diagonal submatrices in (18) be of
order a?, we must have

Im ¢ = A2A0)N Im el? = 3979 (21)

mn ““mn ° mn ?*
giving
0)9 (0) 0) 0 _
—Im 6!VAQ) + A9 Im &? = 0.

In equation (20) we have used the superscript (1) to denote the approximation to

A,,, correct to order «*2. Thus, to analyse the results of sufficiently accurate experi-
ments on ‘strong’ channel «— ‘weak’ channel processes it is necessary to include the

non-zero imaginary part of A,,,,. From (15) and (20) the expression for S,,,, correct
to order o>/2, is
S,» = 2i0,, exp (i®) [Re A, + i(Re o, Re A, + Red,, Reg,)]. (22)

In (22) we have written Re A, in place of A9 in giving Im A{}), since the difference
does not affect the result to order «*2. Similarly, Re o,, and Re ¢, in (22) are required
just to lowest order (x by (8) and (16)). If these latter quantities are known to this
order, then analysis of the experiments will yield the elements of Re A,,,, provided
S is also known.

At this point we can answer the questions posed in Section 1. We shall show that
it does not matter whether one uses the ‘strictly strong’ S-matrix or a modified S-
matrix for the strong channels which already includes corrections of order « for any
‘weak’ (in our case electromagnetic) effects which can be calculated in some approxi-
mate theory (in our case Coulomb and mass difference effects) which neglects the
presence of the ‘weak’ channels. To see this, suppose that two different unitary
symmetric matrices S{”’ are given, which differ by a matrix whose elements are of
order a. We require at the same time that the matrix ¢, is to be modified in such a
way that S,, given by (9) and (14) is unaltered to first order in a. Dropping the sub-
script m for convenience, given AO and A® we wish to determine Ao so that

A[O exp (i®) (1 + 2io) exp (I@)0O'] = 0.
To first order in « this gives

AO exp (2I0)O + O exp (2I@)AO*
+ 2i0 exp (2i0@) AGO' + 2i0 exp (i®)Ac exp (iI@)O' = 0.
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Further, O is assumed to remain orthogonal so that, again to first order in o,

(AOH)O + O'AO = 0. (23)
Combining these expressions, we have
Ae = —AO@ — Im [exp (—i®@)O'AO exp (i®)], (24)

a real matrix as required, since Im o is fixed to first order in a by (21). Turning to (22),
we now show that it is possible to modify Re A, in such a way that S,,, is unaltered
to order a*/? by the changes in O,,, ® and o,,. We need not worry about the final
term in (22), which is of order «*/? and is not altered to that order by the changes in
0O,.. ® and Re A,,,, provided Re ¢, is known to order a. Thus, again dropping sub-
scripts, we want

0 = A[Oexp (i@)(1 + i Re 6) Re A]
= AO exp (i®) Re L + iO exp (i®) A® Re A
+ 10 exp (i®) A(Re 6) Re A + O exp (i®) A(Re A);
on substituting Ae from (24), this gives
A(Re ) = —Re [exp (—i®@)O'AO exp (i@)] Re A,

which is real as required. Thus which ‘strong’ matrix S{’ is used in this approximation
depends only on practical considerations.

In fact there is a practical consideration which leads to a particular choice. We
want expressions for S,,, S,,, which include electromagnetic corrections to charge in-
dependence correct to order a, a*/* respectively, and which can be conveniently used
for the analysis of sufficiently accurate experiments. We have, from (9) and (14)

S, = 0, exp (i®)(1,, — 2Imo, + 2i Reo,)exp (iO)0,. (25)

In this expression we have im(m + 1) real quantities of zeroth order needed to specify
0,,and O, and 3m(m + 1) real quantities of first order in « needed to specify Re o,,.
Im o, is of course given by (21). Is it possible to write an expression for S,, in terms of
justzm(m + 1) real quantities which include first order corrections to the zeroth order
quantities which specify O, and @ ? By giving a twist to the argument of the previous
paragraph, we can show that the answer is yes. For suppose that S,, is expressed as in
(25) in terms of O,,,, @ and Re o,,. Then, using (24), we can choose AO,, and A® so that

Ac,, = —Reg,,. (26)

This is done in the following way. Noting from (23) that O;,AQ,, is antisymmetric,
it follows from (24) and (26) that, provided all the 0,(i = 1,..., m) are different
(which we take to be the case),

Aei — (Re O'M)l-,-, i — 1,..., m, (27)
(0.A0,). =0, i=1,...,m, (28)
(O:n AOm)tj = __(Re o'm)ij [Siﬂ (91 - H})]_ 1: [ 7 .] (29)

If then we write
0, =0, + AO,,, O =0 + AO,
with AOQ,,, A® given by (27)—(29), it follows that O, is orthogonal and that
S,, = 0, exp (i0)(1,, — 2A200) exp (100, (30)

mn "~ "mn
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since Re ¢, = Re 6,, + As,, = 0, by (26). In (30) we have used (21) to give Im ¢/
explicitly. Further, from the argument in the previous paragraph, Re A,, may be
modified in such a way that S, , is not altered to order «*? by the changes in O,,, ®
and Re ¢,,. Thus, by (22), S,,, may be written in the convenient form

S,.. = 2i0;, exp (i®) Re A,,(1, + Reg,). (31)

Equations (30) and (31) are the expressions we need for the analysis of experiments.

3. The analysis of experiments on pion—nucleon scattering' and pion photoproduction

In this section we discuss in detail the analysis of experiments on pion—nucleon
scattering and pion photoproduction from nucleons at low and medium energies,
emphasizing the difficulties arising from the increased accuracy of recent experiments.
Much of the background to our discussion is contained in Reference [1] and
equations from that paper are distinguished by the prefix 1-. Until recently the analysis
of these experiments was carried out at what we might call ‘zeroth order’ (in «) level.
For the analysis of differential cross-sections and polarizations for pion—-nucleon
scattering the full amplitudes &# and % of (1-1) are used. Even a zeroth order analysis
included the full Coulomb amplitudes, computed in the way described in Section 2
of [1]. Truncated partial wave expansions of the ‘modified nuclear’ parts of # and
% are used. The partial wave amplitudes Z ,(/, J; q) for n*p — n*p are written in
(1-3) and the amplitudes & _(I, J; q), F,_(I,J;q) for i p—>n"p, n°p— nn
respectively are written in (1-18). In the zeroth order analysis, kinematical effects of
mass differences (resulting in different channel momenta) were included, as were
modifying Coulomb phases, again calculated as discussed in Section 2 of [1]. How-
ever, at this level of accuracy the electromagnetic corrections ¢, in(1-3)and ¢,, ¢5, Cs,
in (1-18) and (1-19) were neglected completely. The analysis then yielded, for each
partial wave included, approximate nuclear phase shifts 4, and é;, no distinction
being made between strictly nuclear quantities and quantities modified by the
presence of electromagnetic corrections. At energies where pion production becomes
important, inelasticity parameters 5, and 55 were included in the analysis, but no
account was taken of the effect of the competing radiative capture channel yn on the
analysis of =~ p experiments at low energies. This sort of zeroth order analysis worked
pretty well up to about 2GeV pion laboratory kinetic energy for experiments per-
formed up to about 1971; a comprehensive analysis of this type is that of Almehed
and Lovelace [4].

Equipped with these approximate nuclear phase shifts for the lower partial
waves, the next step was a ‘zeroth order’ analysis of experiments on pion photo-
production from nucleons. There are four processes, namely yp— n°, yp— n'*n,
yn — n°nand yn — n~p. Data on the last two processes is extracted from experiments
with deuterons, and is thus less accurate than that for the first two processes. The
zeroth order photoproduction analysis uses the final state theorem in the simple form
given in Equation (19). By about 1970 the photoproduction data was of sufficient
accuracy for energy independent analyses to be performed across the first resonance,
from threshold to about 450 MeV lab photon energy; the main analyses are listed in
[5-8]. These analyses rely on the predictions of dispersion relations for partial waves
with / > 1 and determine the multipole amplitudes E, ,(J, P = 3, —1), M, _(J, P =
3, +1),and M, , and E, . (J, P = 2, +1). The analysis of Berends and Donnachie
[8], which uses phase shifts from Carter et al. [9], has difficulties with the choice of
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resonant phase. For the analysis of the neutron data they use the resonant phase
d,_ obtained in [9] from the analysis of n~p — n~p, n°n, though they remark that
the neutron data is not sufficiently accurate to test the reliability of this phase. For
the analysis of the proton data they use the so-called nuclear resonant phase of [9],
but need to modify it in the neighbourhood of the resonance position in order to obtain
the best possible fit to the data. The analyses in [5-7] use approximate nuclear phase
shifts from zeroth order pion—nucleon phase shift analyses. All the analyses use a
strictly charge independent mixing angle in calculating O, in (15). For the analysis
of yp — n°p, n* n the data is good enough for eight real parameters to be determined,
one for each of the four multipole amplitudes given above and for each of the two
processes. However, the data for yn — n°%:, n~p can determine only four real para-
meters, the other four being taken from the analysis of proton experiments, by
making assumptions about SU(2) invariance. If A denotes a multipole amplitude,
then, denoting the relevant process by its final state, we have

A(ﬂop) = pAl/z &5 %pAs/za A(7r+n) :\/2 (pAUZ - %pA3/2)’

A(n'n) = — A2 1 2 A32 A(nTp) = /2 (,A'? + §,A%3), (32)
A3/2 — A3/2 7

p n :

The amplitude yA'(1 = 3,3, N = p, n) is for yN going to a pion—nucleon state with
total isospin 7/, and the crucial assumption is the last line of (32). In a ‘first order’
photoproduction analysis one could no longer assume that ,A*? = A*?, so that
analysis of the neutron data would also require the determination of eight real
parameters.

Since 1970 data for n*p and n ™ p scattering experiments has been obtained for
which a zeroth order analysis fails. The first attempt to go beyond such an analysis
was that of Carter et al. [9], who analysed the accurate data taken across the first
resonance by their group. Their analysis is discussed in detail in [1]. They include
the correction —2A'”A%" in the central factor on the right side of (30) in analysing
7~ p experiments, employing for this purpose the results of zeroth order photo-
production analyses; this is clearly essential in performing a proper first order
analysis. Focussing on the resonant wave, where the failure of the zeroth order analysis
shows up, we find an awkward ‘in between’ situation. Analysis of the # " p experiments
yields a modified nuclear phase which differs from the strictly nuclear I = 2 phase
by a correction of order . A proper first order analysis of experiments on 7~ p —
n~p, n°n should use the expression (30). However, as we pointed out already in [2],
there are three parameters to be obtained for each partial wave, two eigenphases 0,
which differ from the strictly nuclear I = 3, 3 phases by corrections of order «, and
a mixing angle which differs from the charge independent one by a correction of
order a. Borrowing the notation of (1-18) and (1-19) and writing O, correct to order
o, we have, using 6, and 6, for the eigenphases,

B, =94, + ¢y, 03 =063 + 3

_ (V3 -Gy A +2GC) |

0, = X > . (33)
V3 +/26C) V3 - Cul/2)

It is clear from the analysis of Carter et al. [9] that at this stage only two parameters

can be found; it is possible to look at their analysis in the following way. Their
potential theory model for the electromagnetic corrections is used to fix C;,; the
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n~p experiments are then able to determine the two eigenphases 8, and 6. Their
model also gives the corrections ¢, and c¢; and the correction ¢, for n™p scattering,
but the corrections are such that the values of the strictly nuclear phase d,, obtained
separately from the n*p and the =~ p experiments, do not agree.

The fact that a zeroth order analysis fails, but an analysis of ©~p experiments
can determine the two eigenphases 0, and 0, after C,, has been fixed from a model,
poses great difficulties for a proper first order analysis of 7~ p experiments. In par-
ticular, we see from the discussion in Sect. 2 that, in addition to the electromagnetic
effects (Coulomb and mass difference) which one might hope to calculate from some
approximate potential theory model, there are in principle further first order correc-
tions (the components of Re ¢,) which arise from the presence of the yn channel; it
is not clear how these could be calculated in any model theory.!) The analysis of
Zimmerman [ 11], which was discussed in [ 1], shows that it is possible to assume that
these corrections due to the yn channel are zero and still compute Coulomb and mass
difference corrections from a ‘charge independent’ potential theory model which
enable the present experimental data to be acceptably fitted. This is probably all that
can be done until experiments on n~p — n~p, n°n are performed which are of
sufficient accuracy to determine 6,, 85 and C;, reliably for the resonant wave.

We consider now the possibilities for a first order analysis of pion photoproduc-
tion experiments across the first resonance. As a general remark, we note that the
multipole amplitudes with / > 1 will still need to be fed into the analysis from calcula-
tions with partial wave dispersion relations. The proton and neutron experiments
need to be considered separately, since the difficulties encountered are quite different
in the two cases. For the processes yp — n™n, n° we note first that they should not
be analysed without analysing data on yp — yp at the same time. This is the conclusion
of Pfeil etal. [12], who point out that the imaginary parts of the Compton amplitudes,
given by (21) in terms of the results of a zeroth order photoproduction analysis, may
very easily give too large contributions to the differential cross-sections for yp — yp,
thus leaving no room for the real parts required by partial wave dispersion relations.
It follows that it is essential to analyse simultaneously data on yp — n*n, n°, yp, as
was done in [12]. For a proper first order analysis, equation (31) has to be used for
the photoproduction data, with m = 2, n = 1 for each of the multipole amplitudes
with J = 3 and n = 2 for the amplitudes with J > 3. The unitary connection of (21)
will be used, with ,A%) replaced by Re ,\,, obtained from the photoproduction
analysis without affecting Im pg, to lowest order.

The great difficulty in carrying out the analysis just outlined is in the choice of
the matrix 02 and of the elgenphases 0, and 93, the problem being that there is
no data for = % — 1%, ntn— ntn and n°p < n*n. All one can do therefore is to
use the strictly nuclear phases obtained from an analysis like that of Zimmerman
[11], and to modify these phases and the charge independent mixing angle by cal-
culating mass difference corrections using the nuclear potentials employed in the
analysis of n*p experiments. There are no Coulomb corrections in this case, and it
would be necessary to assume that corrections due to the presence of the yp channel
can be neglected. This strategy might run into trouble for two reasons. As noted by
Berends and Donnachie [8], the analysis of the photoproduction data near the

resonance position is very sensitive to the eigenphase ,0; for the resonant wave

') The same situation occurs in threshold 7~ p scattering and was commented on at the beginning of
Section 4 of [10].
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(J/ = 3, P = +1). The value of 05 for the resonant wave, obtained from a potential
theory model as just described, might therefore not give the best fit to the photo-
production data. In other words, this data could be used to give a value of 0, in
the neighbourhood of the resonance, but only after the mixing angle has been fixed
from a model. This is the same awkward situation as we noted earlier for the analysis
of n”p experiments. The second possible trouble is noted by Pfeil et al. [12]; the
real parts of the yp — yp multipole amplitudes f,,,, and fy,z, for J = 3, P = +1,
obtained from the analysis may differ substantially from the real parts calculated
from the imaginary parts by means of partial wave dispersion relations.

Ideally one would like to be able to calculate O’ and 0, 0, as described in

the last paragraphforJ = 1, P = 4+ 1andforJ = 3, P = +1, and to fit all the data
on yp — n*n, 7%, yp across the first resonance with eight real quantities at each
energy, namely

Re pA’ZI(J = %’ P = - 1)9 Re p;\'Zl(J = %u P = + 1)7
Re h,(J = 3, P = +1).

One would hope that the Compton scattering data could be fitted using (21) to obtain
the imaginary parts of the relevant multipole amplitudes, and partial wave dispersion
relations to obtain the real parts. If this programme broke down, as it well might
for the reasons just described, it would be necessary to explore whether a modification
of ,0; for J = 3, P = +1 was sufficient to give a good fit to the photoproduction
data w1th the Compton scattering data being satisfactorily fitted by means of multi-
pole amplitudes calculated from (21) and partial wave dispersion relations as before.

For reasons which will appear below, we conclude this discussion of the analysm
of yp experlments by writing the 2 x 2 matrix of amplitudes for yp — n*n, 7%,
withJ = 3, P = +1, in two forms:

pS+1 pS+2
pSOI pSOZ

N E exp (i,0,) O
= 2 3 p-31 p-1 1
’( L /2 )( g 1 )(o exp (i ,05) Re phaalls +

+ i Re ,¢&;)
; Ja. 0 )(% —\/%)<\/3 0 )(Ei’f Mi’f)
— 2 , p P
- j(o o) Vi V30 BIGEY M)
(_ V3 ) (34)
-1 -3

The amphtude S;; refers to the process in ' which P in the state j(j = 1, 2) goes to
the plon—nucleon statez wherei = +, 0 denotes n* n, n°% respectlvely The photon—
nucleon states 1, 2 are defined in Reference [2] and the results in (34) come from
Appendix B of [2] (with an extra factor i included, as noted in footnote %) of Reference
[10]), and from (31), (32) and the equivalent of (33) for n*n, n°p.

For the analysis of data on yn — n~p, n°n, though a full first order analysis
cannot be performed at present, it is desirable to use the framework of such an
analysis by employing (31) for each J, P. This means that the modified nuclear phases
and mixing angle obtained from an analysis of #~p — n~ p, n°x like that of Zimmer-
man [11] should be used. Further the final factor (1 + i Re ,&) should be included.
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To compute Re &, one will first use (21) to obtain Im _g, correct to lowest order, from
a zeroth order analysis of pion photoproduction from neutrons. Partial wave dis-
persion relations will then be used to obtain Re g, though in this case there is no data
on Compton scattering from neutrons to provide a check on the results. However,
after all this, there are still eight real parameters to be obtained at each energy from
experiments on yn — n~p, n°n and the data at present cannot determine them all
with reasonable accuracy.
To see what to do, we write the equations analogous to (34) forJ = 3, P = +1,

the notation being obvious:

nS—l nS—2
nSOI nSOZ -

2 /Y1 C exp (i,0,) 0 |
(—\/% V3/\-.Cs 1 0 exp (i,03) 22

+ i Re ,&;)

e )0 D S)EE )

(5 %) - o

Now the usual expression of charge independence, which is a zeroth order statement
for pion photoproduction from nucleons is, from (32),

32 __ 3/2 3/2 __ 3/2
pE1/+ - nEll-l-’ pM1/+ _nM1/+'

From (34) and (35) we see that, keeping always to zeroth order, this may be replaced
by the statement that the second rows of the matrlces Re ,A,, and Re ,A,, are the
same. Similarly, for the partial waves withJ = 5, P = + 1 we have equahty of the
second elements of Re ,A,; and Re ,A,; in each case, to zeroth order. This zeroth
order approximation, at this stage of experimental accuracy, gives values of four of
the eight real quantities to be determined which are more accurate than those given
by the full analysis. Analysis of the data for photoproduction from neutrons will then
give the other four real quantities with reasonable accuracy.

One of us (G.R.) wishes to thank Prof. K. J. Le Couteur and the Research School
of Physical Sciences, Australian National University, for their kind hospitality during
an 8 months stay as Visiting Fellow.
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