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Onsager’s symmetry in higher order fluid dynamics

By Miroslav Grmela

Centre de recherches mathématiques, Université de Montréal, Montréal, Québec H3C 3J7, Canada
(1. I1. 1977)

Abstract. Example of the higher order fluid dynamics that possesses the properties of the family of
dissipative dynamical systems of macroscopic physics, thus in particular the Onsager symmetry, is con-
structed. The non-equilibrium extension of the thermodynamic entropy depends on gradients of the fluid
dynamic state variables.

I. Introduction

The abstract concept of the family of dissipative dynamical systems of macro-
scopic physics (hereafter called DDS) that has been developed in References [1], [2],
provides a unified mathematical setting for a large class of dynamical systems phenom-
enologically introduced in macroscopic physics (e.g., kinetic equations of the
Boltzmann and Enskog—Vlasov type, Navier—Stokes—Fourier fluid dynamics, non-
equilibrium thermodynamics etc. [2]).

In this paper, we construct an example of the higher order fluid dynamics that
possesses the properties of DDS. In Section II the Navier—Stokes—Fourier fluid
dynamics and the concept of DDS are reviewed. The higher order fluid dynamics
generalizing the Navier-Stokes—Fourier fluid dynamics and satisfying the properties
of DDS is constructed in Section II1. In Section IV a brief review of other approaches
to higher order fluid dynamics is presented. '

The state of a one component physical system is completely described in fluid
mechanics (completely with respect to the fluid mechanics observations and measure-
ments) by the triple (E, N, U) = f, where E:Q— R,, (r — E@)); N:Q— R,
(r — N(r)); U: Q — R3-(r — U(r)); the physical system is confined in Q = R3, we
shall assume that volume of Q equals to one. R, denotes the positive real line. Let
H be the set of all admissible (again with respect to the fluid mechanic observations
and measurements) states. We shall assume that # is a smooth (infinite dimensional)
manifold. We define in # the involution J: # — #; (E, N, U) > (E, N, —U).
The subset of # that consists of elements f of s# that are invariant with respect to J
(i.e., the elements of the type (E, N, 0)) is denoted #*), its elements f{*). We can
also say that # is a bundle # = (#, n'*), #V), where #'")is the base space,
n*) is the projection # — #*) and # is the total space. In terms of fluid mechanics
observations and measurements N(r) is the local density of mass E(r) is the local
density of inner energy and U(r) is the local density of velocity of the fluid considered.
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The time evolution of f is governed by the following equations:

o
a-

in components
oE
ot

ON

Yo v

/LA m
oU,
ot

The symbol V, = 6/dr,, the summation convention is used. The tensor P,; is
symmetric P, = Pg,. If the quantities P,; and Q, are specified as functions of
(E, N, U), or by using the terminology used in fluid mechanics, if the constitutive
laws are specified, then (1) represents a self-contained system of the time evolution
equations. The parameters introduced in the constitutive laws are the phenomeno-
logical quantities entering fluid dynamics (through these phenomenological quantities
the individuality of the particular physical system is expressed) and (1) is a family of
the time evolution equations parametrized by the phenomenological quantities.
Boundary conditions for (E, N, U) have to enter into the specification of J#. The
class of the boundary conditions used in this paper (BC1)-(BC5) in Section II and
(GBC1)«(GBCS5) in Section III) reflects our interest in the thermodynamic equi-
librium states and the time approach to these states.

Let # be the set of all constitutive laws. We shall assume that the physical
- system considered is isotropic and thus we require that the functional dependence
of P,;, Q, on f is invariant with respect to the orthogonal transformations in Q.
This requirement determines the subset £, of .Z. (See, e.g., Reference [3] pp. 135.)
Physical considerations of constitutive laws are based on the physical interpretation
of P and Q (P, is the pressure tensor, Q, is the heat flow). From the mathematical
point of view, one can look for % ., such that (1) will be mathematically well
defined (e.g., the flow generated by (1) will exist etc.). It has been shown in Reference [ 1]
that the Navier—Stokes—Fourier constitutive laws transform (2) into an example of
DDS. According to the general theory of DDS it means in particular that (i) the
study of the solutions of R™)f =0 and R | gcvr;=o = 0 gives rise to thermo-
dynamics (R = L{(R + JRJ)); (ii) the flow exists, at least locally, in the vicinity
of the solutions of the problem (i) that moreover correspond to the thermodynamically
stable equilibrium states. In this paper we shall find a generalization of the Navier—
Stokes—Fourier constitutive laws that transform (1) again into an example of DDS
and the resulting system of partial differential equations is of order higher than two.

For later use, we shall write (1) also in the following form:

1
= _Uava(E) - Kf(PaBVaUﬂ + V“Q“)

1 |
~UpVy(U,) = ~ (Y Pyp).

T~ RS + RO, (1.1)
in components
oFE

> = REU) + RHU)
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ON
E = R}E))(f)

ou,
3 R§U)L(f) =+ R%l(f),
R® = 3(R + JRJ), thus RV(Jf) = RD(f); ROIf) = —R7(S). If we write
Py = PP + Py
Q,= 0" + 9 ()
(PG (Jf) = £ PSU(F), similarly Q,), then

1 1
RgE_))(f) = - UatvatE Y, PL;)VaUB - N VtzQi—)

N
ng))(f) = aElvaUﬂ - VaQ(+)
R%h_f))(f) = _Vrz(NUa) 4 (3)
_ 1
ng?z(f) = - U,HV,BUa - N VﬂPr(zzi-)
. { )
R{J)?x(f) = _]_V VpP;ﬁ )-

II. Navier—Stokes—Fourier fluid dynamics
The Navier-Stokes—Fourier constitutive laws are the following:

(+) _—
Pdﬂ = N* 5aﬁ
Py’ =p7 6 + Pl

(*) = —JV, E* (4)
0f) =0
P(—) = _rlvvaUa*
pig’ = =2n(V,U¥).

If T,, is a second order tensor, then T,; = 3(T,; + T4,) — 37T, 0,5- Thus pl is a
symmetric tensor with zero trace. E*, N* and U* are functions (E, N, U)(r) — E*(r),
(E, N, U)(r) > N*(r), (E, N, U) — U*(r) of class C2. Thus, the values of E*, N*, U*
at r € Q depend only on the values of E, N, U at the same re Q. #,, n and 4 are
functions (E, N)(r) — {,(r) etc. The values of n,, 5, 4 at r € Q depend also only on
the values of E, N at the same r € Q. We shall assume moreover that E*(Jf) = E*(f),
N*(Jf) = N*(f) and U*(Jf) = —U*(f). The phenomenological quantities Qnsr
introduced by the Navier-Stokes—Fourier constitutive laws are thus QOngr =

{E*, N* U* n,, n, A and the relations (4.1), (4.2), (4.3) introduced later in this
Section}.

We shall review the general definition of DDS.

(DDS1) The simultaneous solutions of R = 0and R)f | gc+);—o = 0, denoted
F, are physically interpreted as thermodynamically equilibrium states.
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(DDS2) The states F found in (DDS1) are identical with the extremal points of a
smooth function V: s# x E — R, where E is a two dimensional (in the case of one-
component system) space, its elements are physically interpreted as thermodynamical
fields. In the process of the solution of (DDSI1), the components o, gy of 6 € E
appear as integration constants. The requirement that V is invariant with respect to
the orthogonal transformations in Q (the systems considered are isotropic) implies
V(Jf) = V(f). The function V evaluated at its extremal points (extremal with
respect to f € ), denoted p, is in general a multivalued function E € R. For 6 € E
for which y is single-valued the function y is identified with the thermodynamic
potential.

(DDS3) Let F be a solution of (DDS1). Thermodynamic stability of F is equivalent
to the local dynamic stability of F. This point is explained later in this Section.

One particular consequence of (DDS1), (DDS2) and (DDS3) is Onsager’s
symmetry of the vector field R linearized at F.

In the case of the time evolution equations (1) and (4) the equation R‘")f = 0
takes the form

Va(']uvﬁ Up) + 2Vﬁ('lV,3U:) =0 (5)
3nv(VﬁU?;)(VaUa) o Zn(VﬁU:)(VaUﬂ) 3 Va(’lvaE*) = 0 (6)

If we multiply (5) by U™ sum over «, integrate over Q and integrate per parts, we
have

Jdi’r[(vav:)m(vﬂv;) + 2V,UDn(V,UN] + sy = 0. 5.1)

)

We shall consider the boundary conditions that will guarantee that the surface
integrals s, equal to zero

sy = 0. (BC1)

We shall moreover assume that

n >0

4, >0 4.1)
for all E, N considered.

As a consequence of (5.1), (BCl1) and (4.1), we have

V,Uy =0

V.U* =0, )
If we assume moreover that U on the boundary 0Q of Q equals to zero

U* |0 =0, (BC2)

then (7) implies
U¥ = 0. - ®
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From (8) we then have
U,=0 8.1)

since U, — U?¥* preserves the bundle structure (#, n'*’, #*)). By inserting (7) into
(6), one obtains

V.(AV,E*) = 0. 6.1)
If (6.1) is multiplied by E*, integrated over Q and integrated per parts, one obtains

J Pr(V,E¥)AV,E*) + 5, = 0. (6.2)
Q

The boundary conditions that we assume will guarantee that the surface integral s
equals to zero

sg = 0. (BC3)
Moreover, we assume that

A>0. 4.2)
Then (6.2) implies

V.E* =0 )
and thus

E* = g, (10)

where o is a constant.
The equation R'™)f = 0 restricted to the solutions of R'*)f = 0 takes the form

Vall™ | apesy, = B (11)
and thus
N* = Gy, (12)

where Gy is a function of E*. By g we shall denote &, restricted to E* = 0.
Following the general theory of DDS, we look for a function V: # x & — R
(the elements of E are o and o, introduced in (10) and (12)) such that the solutions
of (8), (10), (12) will be identical with extremal points of V. There are, of course,
many such functions. First of all we restrict ourselves to isotropic systems and thus
V(Jf) = V(f). The property (DDS3) defining the families of the dynamical systems
DDS will restrict considerably the class of the functions V that may be considered.
Let 0, = (0, Oxo) € E be such that the equations (8), (10), (12) have a unique
solution (denoted F,). We assume that if ¢ € U,,, where U, is a neighbourhood of g,
in E, then the corresponding unique solutions of (8), (10), (12) form a submanifold
Z o in A . The equilibrium state F,, is called thermodynamically stable if the thermo-
dynamic potential y is a convex function of ¢ € (o, o)) at g,. According to (DDS2)
F, 1s an extremal point of the function V and the thermodynamic potential y defined
on U, is identical with the function V evaluated at F,. One can show [1] that the
function y is convex at g, if and only if V, as a function of f € J#, is concave at o,.
Thus F, is thermodynamically stable if and only if 4, = —D®V | (the second
derivative of V with respect to fe # evaluated at F,) is a positive definite linear
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operator on H, = Ty, H © Ty, F o, where Ty i resp. Ty F, is the tangent space
to # resp. 7, at F,,.
Let P, denote the Hessian of the vector field R evaluated at F,. We say that F|,

is locally dynamically stable if there exists a unique solution to the initial value
problem

of

5 = Pof, (13)
feD(Py) =« Hy = Hy, f(t =0) = f,e D(P,), for all t > 0. If || f,|, < oo then
also | f;llo < o0; f, = T,f,, where {T,, ¢ > 0} is a strongly continuous semigroup
of contraction operators. H, is an appropriate Hilbert space, its inner product is
denoted (.,.), its norm || |,.

We recall the Hille-Yoshida—Phillips [4] theorem. A necessary and sufficient
condition for an operator P, to generate a strongly continuous semigroup of contrac-
tion operator on H, to itself is that P is closed and both P and its adjoint P' are
dissipative operators. A linear operator P, with dense domain 2(P) = H,, is said to
be dissipative if

(Pofs [lo+ (f, Pof)o <0

for all /¥ (P,).

We want to satisfy the necessary and sufficient condition in the Hille-Yoshida—

Phillips theorem by
(i) assuming (4.1), (4.2) already used in the solution of R)f = 0 and
R(_)f | R+ f=0 = 0,

(i) choosing appropriately the Hilbert space H,.

Let A, be a fixed Hilbert space, say L, space, its inner product is denoted by
(-,-). We shall find, by using (4.1), (4.2), an operator A4 such that the necessary and
sufficient condition in the Hille-Yoshida—Phillips theorem will be satisfied for
AP, in H,. The boundary condition that will guarantee that AP, is closed will be
formally denoted (BC4) (see, e.g., Reference [5]).

(AP, is closed). (BC4)

Let us suppose that such an operator 4 has been found. The operator A will be identi-
fied with 4, = —D®V | . The assumption of thermodynamic stability of F,
becomes equivalent to the assumption that 4 defines an inner product (-, 4.) =
()0 In Z2(A) = H, and subsequently in the Hilbert space H, < H,. We shall see
that the identification of 4 with 4, = —D®V | that is equivalent to (DDS3),
restricts considerably the class of the functions V that can be considered in the
context of DDS.

Now, we shall find the operator 4. Since V(Jf) = V(f), we look for A4 in the
form

a, a, 0
a, a, 0 0

A=10 0 a3 0 0]} (14)
0 0 0 a; O




Vol. 50, 1977 Onsager’s symmetry in higher order fluid dynamics 399

where a,, a,, as, a,, are real numbers (in the next Section (see (25) they will be differ-
ential operators). Thus, in this Section, H, and H , are identical (2(4) = H,) except
the difference in the deﬁnition of the inner product. The inequalities (4.1) and (4.2)
enter only in P*) (P‘*) is the Hessian of R*) evaluated at F,). Thus, we look for 4
such that (4P,)'*) is selfadjoint (more generally, essentially selfadjoint) and dissi-
pative and (AP,)” is skewadjoint (more generally essentially skewadjoint). We
assume the boundary conditions, denoted (BC5) that will guarantee the identity of
the domains of AP and its adjoint (or a weaker requirement in the case of essential
selfadjointness—see Reference [5]). By using the termmology introduced in [1], [2],
we look for A4 such that AP, is an Onsager operator in H, or in other words P, is an
Onsager operator in H,. [The Hilbert space H|, is equipped with the inner product
(.,.), and with the fundamental decomposition H, = H\" @ H{ ) that reflects
locally the bundle structure of #. If II'*) resp. I1'™’ are projection operators to the
complete subspaces HSY) resp. H., then the operator J = I1'") — I1*"). One can
define in H, an indefinite inner product (., J.), and H, becomes a Krein space [6].
We say that P, is an Onsager operator in H, if P, is selfadjoint with respect to the
indefinite inner product (.,J.), and P0 is dissipative with respect to the inner
product (.,.) -]
From (1), (3), (4), we have (the notat1on E% = 0E*/0E | g, etc. is used);

WA 0 0 0 EY E} 0 0
0 0 0 O 0 a, a, 0 0 0
PE)H =10 0 ugy 0 (VI R (15)
0 0 PE)? 0 0 0 ug 0
0 0 0 0 0 Uug
where
(P21 (P62 (P63
P})? = (P(OJE )12 (P(+))zz (P(+))23
(P62)1s (P62)2s (PGR)ss
(P(+))u Ho (SijA + (0 + %nO)ViVj’
A=VV, lozllpos o =’7U|F0= Mo =’7|F0-
Thus, if we make the identifications
a; = —EE, a;, = —E}
ay= ~Uf, = ~Ul, = —Us, = ~ U}, e

then (4Py)"* (using (4, 1), (4, 2) and the boundary conditions (BC5)) is selfadjoint
and dissipative.
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From (1), (3), (4), we obtain also

0 0 *ﬁlg NV, _1\170 NV, —NLO N3‘V3\
0 0 —NoV, « —=N,V, —N,V,
Py :L —LN;V1 _L NV, 0 0 0 (17)
N, N,
_ 1 NV, _L NV, 0 0 0
NO NO
\—L NEV, — A3y, 0 0 0 /
N, N,
where
* *
No = N|g,, N§ = N*|p,, Nt = a;; FO,N;:; = agv Fo-

By multiplying (17) from the left by A4, taking into account (16), one obtains the
following conditions which have to be satisfied for AP}’ to be skewadjoint:

1 1

N} USN%E = FO-EEN;'; + NoEF;

1 1 (18)

If we choose the function V such that the following relations

A%
s = B

3B E Ok

oV 1
— = ——— (N*E* — 19
& = =5 o5) (19)
oV

= —E*U,
ou,

are satisfied then (18) is satisfied and also the solutions of (8), (10), (12) are identical
with the extremal points of V. The equations (19) imply that the functions E*, N*
entering the Navier—Stokes—Fourier constitutive laws are not independent. The

relation between them (the generalized Maxwell’s relation) is implied by the symmetry
of D@V

(DPV is symmetric) (4.3)

The general solution of (19) is

V(E, N,U; 0, 0y) = J\

Q

d3r [S(E(r), N(), U(r)) — o E— ]%]‘TN} (20)
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where
oS oS oS
22— E* - — E*N* — _F*
3 G A A= e

This function V is identical with the non-equilibrium extension of the thermodynamic
potential postulated in non-equilibrium thermodynamics [7]. We have obtained this
function V as the consequence of the postulated Navier—Stokes—Fourier constitutive
laws and the requirement that the resulting family of the time evolution equations
possesses the formal structure of DDS.

ITI. Higher order Navier—Stokes—Fourier fluid dynamics

We shall consider the following generalization of the Navier—Stokes—Fourier
constitutive laws:

P(+) e '/V*éﬁ +p(+)

P = pt” )5ap + pip’

O = —AV,8*

Qc(z_) = Mvva(vﬂ UE) + MAU: (21)
P’ = 3 VJ(AV,E®)

P ="V, U}

Py’ = -2V, U;.

Let (E, N) = (AE, AN, V,EV_E,V_NV N, V,EV_N). The functions &* and A4"*
are defined as follows: &*: (E N j(E N), U)(r)y-—>é” *(r) and £*(r) | KE,N =0 = E*(r)
introduced in (4). Similarly 4" *: (E, N, j(E, N), U)x) — A" *(r) and N *(¥) | jz. =0 =
N*(r) introduced in (4). We assume moreover that &*(Jf) = §*(f) and JV *(Jf =
A *(f). U* is assumed to be the same as in (4). A, u,, i, 4, n,, n are real valued
functions of (E, N, j(E, N)) (e.g., A: (E, N, j(E, N))(r) — A(r) etc.). The phenom-
enological quantities Qgnsr introduced by the Generalized Navier-Stokes—Fourier
constitutive laws are thus Qgnsg = (6%, A%, U*, A, u,, 1, 4, 11,,  and the relations
(21.1), (21.2), (21.3) introduced later in this Section}.

If (21) is inserted into (1) then clearly the system of partial differential equations
of the order higher than two is obtained. In the constitutive laws (21) the assumption,
used in (4), that P,; and Q, atr depend only on the values of E, N, U at the same r
has been relaxed. The non-locality of the dependence of P,; and Q, on (E, N, U) is
expressed in (21) by letting the quantities entering (4) to depend also on the gradients
of Fand N.

The discussion of (1), (21) follows closely the discussion of (1) (4) in Section II.
The equation R*)f = 0 remains the same as in (5)-(10). We assume again that

n>0nx>0 (21.1)
A>0 (21.2)

for all (E, N, j(E, N)) considered and the boundary conditions (GBC1)-(GBC3)
corresponding to (BC1)~(BC3) in Section II. The equation (10) reads now

&* = oy (22)
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The equation R‘™)f = 0 restricted to the solutions of R‘*)f = 0 takes the form

NF gregp = 0 (23)
and thus
N* = 6y (24)

where G is a function of £*. By oy we shall denote again & restricted to £* = o5.
The problem is now to find the function ¥": (E, N, U, J(E, N); o, oy) —
v (E, N,U,J(E, N); o, o) such that (i) the solutions of (8), (22), (24) will be identical
with the extremal points of ¥~, (ii) thermodynamic stability of a thermodynamically
equilibrium state will be equivalent to its local dynamic stability, (iii) if j(E, N) = 0
then ¥~ reduces to V that has been introduced in (20). We shall indeed find an example
of such a function 7. It will become evident however that the requirement (DDS3) -
the equivalence of thermodynamic and local dynamic stability — is not strong enough
to single out the function ¥~. A systematic study of the higher order fluid dynamic
requires a generalization of (DDS3). The local dynamic stability has to be replaced
by a type of global dynamic stability (the requirement that ¥~ is a Liapunov function).

Let F, be a solution of (8), (22), (24) (thus also an extremal point of the function
¥") and let moreover F, does not depend on r. Similarly as in Section II, we shall
find the operator A4 such that AP is an Onsager operator. The operator 4 will be then
identified with —D®¥" | . Since F,, is independent of r and ¥~ can depend only on
(E, N, U, jJ(E, N)) the operator A has to have the form

A=A® + ADA, (25)

where 4 isa 5 x 5 matrix of real numbers identical with (14) and

b, b, 0 0 0
b, b, 0 0 0

AV =lo 0 b 0 0 (26)
0 0 0 b, 0
0 0 0 b,

where by, b,, by,, b; are real numbers. Since the operator 4 is a differential operator,
1.e., A is unbounded operator in A,, (2(4) # H,) the Hilbert space H, # H0
Constructlon of H, ¢ H, in which the given operator A4 defined in Z(4) < H, is
bounded and can thus be used, if moreover A is positive definite, to define an inner
product in H, is explained for example in Reference [8].

From (1), (3), (21), we have

A 00 0 o0 o [/Ex Ex 0 0o o

0o 000 0 0||[la,, a O 0 0
PO =o o 0o 0 Ur o o0 |+

0 0 P 0 0 0 UX O

0 0 0o 0 0 U
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6% €% 0 0 0

by, by 0 0 0

0 0 00 0}A 27)
0 0 000

0 0 00 0 |

where Py is the same as in (15), 4, = 4| g, E}, E¥, ay,, a, are the same as in (15)
and &% is the part of the d6*/0E (i r, that is proportional to A. Thus if a,, a,, a;,
are the same as in (16),

by = —&6%
by, = —&%k, (28)
b3 = O.

and appropriate boundary conditions (GBC4), (GBCS) that correspond to (BC4),
(BC5) are assumed, then (4P,) "’ is selfadjoint and dissipative.
From (1), (3), (21), we obtain also

1 1 1
/0 0 0 _N_ON*V _N;N*V _FON*V
0 0 0 —N,V, —N,V, —N,V,3
P — —FON*V —NLON,",;V1 0 0 0 s
~LN§V2 1 NV, 0 0 0
N, Ny
\lN’ng —LN*V 0 0 0 }
Ny N
(29)
0 0 piVe P.Vay piV;
0 0 0 0 0
P2Ve psVy 0O 0 0 A,
P2V, PV, 0 0 0
pVy p3V; 0 0 0
where
Pr= U+ pa= —pn (T + ABD)
(30)
D3 = ——(./V + AEY).

The first term on the rlght hand side of (29) is identical with (17) since, accordmg
to our assumption, F, is independent of r and thus j(E, N) | r, = 0. By multiplying
(27) from the left by 4 (see (25), (26)), taking into account the boundary conditions
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(GBC4), (GBC5), and considering only the derivatives up to and including the fourth
order, one obtains the following conditions that have to be satisfied for (AP
to be skewadjoint:

1

a,p, + b, (‘F N’S) + by,(—Ny) = asp,

) G

a;,py + by, (_N— N*) + by(— Ny) = a;p;.
0

By inserting (28), (16) and (30) into (31), we have

1 1 1
3 EE, + o) + 7 E5NE + Nob%y = +-- ES(N3; + AEY)

T No 0 (32)
1 E* 1 * * 1 *
A ey + o) + — N E4yN§ + Nob, = —FEO(,/V + AE¥).
0 0 0
If the function ¥ satisfies the following relations:
8,¥ _gt_ g
0,E
o8,V | . A -
= — EN* A VAVE®) £ (4, + WAE* — o) (33)
d, v
*
5.T. —&*U,,

then (32) is satisfied, the extremal points of ¥~ are identical with the solutions of
(8),(22), (24) and ¥ reduces to V introduced in (20) if j(E, N) = 0. The differentiation

0, oV oY oA oY
5,  O¢ oV qb OAP
is the variational differentiation, ¢ = E or ¢ = N. The quantities &*, /™*, u , pu, A

are not independent. The relation among them is implied by the generalized Maxwell’s
relations

(D®¥" is symmetric). (21.3)
A function ¥~ satisfying (33) is

¥ (E, N, U, j(E, N); 0, 0y) = J i

Q

r [V(E(r), N(r), U(r), j(E, N)(T))
' —ogE — %O—N:ls (34)

| wg.ny—0 = S introduced in (20),
8,5
3.E
5,

a

— —&*U,.

— &*,

— E*N* + V (AV,E*) + (4, + WAE*

oy

A\

n
e =
S
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The thermodynamic potential y,. constructed from ¥ is in general different from the
thermodynamic potential y, constructed from V. In particular, a thermodynamic
equilibrium state F,, can be thermodynamically stable with respect to y, but thermo-
dynamically unstable with respect to y,. There is a possibility of relating these
different notions of thermodynamic stability to the appearance of the metastable
states known from experience with fluids. This problem will be hopefully discussed
in detail in a subsequent paper.

We have found that if the constitutive laws (21) are postulated and the non-
equilibrium extension of the thermodynamic potential is given by (34) then the
linearized infinitesimal generator of the time evolution possesses the Onsager
symmetry. The non-equilibrium thermodynamic potential ¥~ is not however deter-
mined uniquely by studying the equivalence of the thermodynamic and local dynamic
stability. We cannot decide for example if in (34) should be the term V,(AV,E*) or
the term AAE*. A systematic study of higher order fluid dynamics will require the
study of a type of global dynamic stability where the function ¥~ will play the role
of a Liapunov function.

IV. Discussion

An example of the higher order fluid dynamics possessing the structure of the
family of dissipative dynamical systems of macroscopic physics [1], [2] has been
constructed.

The non-equilibrium extension of the thermodynamic potential cannot be
obtained in higher order fluid dynamics by using the method used in non-equilibrium
thermodynamics [7] (i.e., S(E, N) is extended to [, d>rS(E(r), N(r)), where E, N are
the thermodynamical conjugates of the thermodynamic fields 6 and o, E(r) and N(r)
are the fluid mechanics state variables, called the assumption of the local thermo-
dynamic equilibrium). The situation in higher order fluid mechanics is similar, as
for example in the Boltzmann kinetic theory. The non-equilibrium extension of the
thermodynamic potential, so called Boltzmann’s H-function, cannot be also obtained
by using the method used in non-equilibrium thermodynamics. We have seen that
the method associated with the theory of DDS applies in the Navier—Stokes—Fourier
fluid dynamics (Section IT) kinetic theory [ 1] and higher order fluid dynamics (Section
III). The higher order fluid dynamics indicates however the necessity of generalizing
the point (DDS3) in the definition of the formal structure of DDS. A type of global-
Liapunov-dynamic stability has to replace the local, Hille-Yoshida—Phillips—
dynamic stability.

Several different approaches to higher order fluid dynamics have been developed
in fluid mechanics. We mention three of them.

In the point of view advocated by Coleman [3] the inequality 6S/0t + J = 0 is
added to the system of equations (1). J is a known function of P,;, Q,; S is another,
in addition to P,; and Q,, unknown function of fluid mechanics state variables.
The higher order fluid dynamics in the framework of Coleman’s point of view has
been discussed recently by de Sobrino [9].

Reduction of the Boltzmann kinetic theory to fluid dynamics inspired the
Burnett [10] [11] and the Waldmann [12] [13] approach to higher order fluid
dynamics. The Burnett approach has been inspired by the iterations of the Chapman-—
Enskog method, the Waldmann approach by Grad’s thirteen moment method of
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solution of Boltzmann’s equation. The linearized Burnett equations together with
the non-equilibrium thermodynamic potential used in non-equilibrium thermo-
dynamics do not possess the Onsager symmetry [11]. Waldmann has suggested the
generalization of the entropy production and the entropy flux that are appropriate
for the constitutive laws he used (e.g., the entropy production is evidently positive
definite) but the generalization of the non-equilibrium entropy itself, that has to
depend on gradients, has not been discussed.
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