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Elementary particles as representations
of the covariance group in the presence
of an external electromagnetic field

by N. Giovannini

Institute for Theoretical Physics, University of Nijmegen, the Netherlands

(26. X1. 1976)

Abstract. A complete description of the projective unitary/antiunitary representations of the general
covariance group for a charged (relativistic) particle moving in an external (classical), e.m. field is given. This
group was derived in a previous paper, independently of any equation of motion, on the basis of some simple
physical assumptions. The physical consequences of these results are then discussed and it is shown how they
open some new perspectives.

0. Introduction

In a previous paper [1], we have derived, independently of any equation of
motion, a general covariance group for a charged relativistic particle moving in an
(almost) arbitrary external electromagnetic field, essentially on the simple basis of the
invariance of the Maxwell equations under Poincaré transformations. Let us briefly
remind here how this group was constructed. The usual procedure, when one considers
the problem of a charged particle moving in such a field is to modify the free equation of
motion (Klein-Gordon, Dirac etc.) by so-called minimal coupling, introducing thus a
potential. Since potentials are not observables as fields are, there is in fact a certain
arbitrariness in the equation of motion, as for example the transformation law of a
potential under a Poincaré group element is not unique and as there does not
correspond one but an infinite set of potentials to a given field. One could on the other
side try to avoid potentials and to construct a pure field dependent formalism [2].

In [1] we had chosen a compromise, using potentials, but getting rid of the
arbitrariness mentioned above by defining group elements which, as acting on a
potential, did not change the (arbitrary but fixed) gauge of the chosen potential and
consisted then of coupled gauge and Poincaré transformations. The resulting group
was shown to be independent of the reference frame and of the gauge chosen and also to
contain the Poincaré group only as a (non-trivial) factor group (i.e. not as a subgroup).

In this paper we deduce systematically all projective unitary/antiunitary irreduc-
ible representations (short PUAIR) of this group and discuss their physical in-
terpretation and some of the physical consequences of the results. In particular we
show how our approach leads to a possible solution of the so-called a-causality
troubles, for particles of spin equal to or larger than 1 [3-4]. The Klein-Gordon and
Dirac equations, however, minimally coupled to the external field, are shown to
correspond to representations of this group, i.e. to transform covariantly.

This paper will be organized as follows: in the first part we briefly remind the



350 N. Giovannini H. P. A.

structure of our general covariance group and analyse it in some more detail. In part
two we derive all irreducible unitary representations of a nilpotent normal subgroup of
this group and, in part three, we induce these representations to the connected
component to one of the whole group. In part four we include the so-called discrete
transformations (related to space and time-reversals), too, and finally in part five we
discuss some physical aspects and consequences of our results.

1. The structure of the general covariance group M

Before we determine the PUAIR of M, let us first recall its definition, as found in
[1], and indicate in some more detail its structure. We write the elements m € M in the
form

m=<{B,a, A\ (1.1)

with Be T A T, the (antisymmetric) external Kronecker product of the Minkovski
space M(4) with itself (B = B"'E,,, B"e #,Yu,v=0,1,2,3,E,,=¢,ne, {e,}a
basis of M(4), (e,)’ = 0;, and (a, A) = geIO(3, 1), an element of the Poincaré group,
a € U, a space-time-translation, A € 0(3, 1), an element of the homogeneous Lorentz
group '). The product in M is then given by

m-m' ={B+{(g)B + A(g,qg),a + Aa', AN (1.2)
with ({(g)B)* = A7SAT1(B')*? and A(g, ¢') a factor system, defined by

A(g, 9)°° = H(Ad) A a°) = i(Aa')’a” — (Ad')a”). (1.3)

The inverse of (1.1) is then easily found from (1.2) and (1.3) to be equal to

m ' ={={g "B, —A"'a, A7) (1.4)

because it follows from (1.3) that 4(g, g~ ') = 0.

We also recall here that the physical representations of M were defined on a
(separable) Hilbert space of (here scalar) functions { of x and F(x) (the external field)
by (see [1] sections 1 and 4)

V({B, a, A)W(x, F(x)) = O(x, (gF)(x))
= exp {— i Ciﬁ (B-gF® + y,(n(gF), x))}w(g‘ 'x, F(g~'x)) (1.5)

with B-gF© = B°*(gF'"),,€®, y,(gF), x) the compensating gauge and F” the c.u.
part of the field as defined in [1]. The generalization to more components wave
functions is then similar as in [1] (see also section 5 of the present paper).

Denoting now by B the subgroup of M consisting of all elements of the form
{B,0, 1> (B = #£°) and by K the subgroup of M generated by all {B, a, 1), ae U the
following relations are easily verified:

(1) B< K, (Bnormalin K)and K/B = U, i.e. Kappears as an extension of Bby U;
this extension is characterized by a factor set A(a, a’), given by the restrictionto U x U
of (1.3).

1) For elements of the Poincaré group /0(3, 1), we use the same conventions as in [1], i.e. (@, A)x =
Ax +a for x a 4-vector, with then (a, A)(a’, A) = (a + Ad’, AN'); further (Ax), = Aix, for
covariant, and (Ax)* = A~ '“x* for contravariant vector components.
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(i) B<JM, M/B = I0(3, 1), with as corresponding factor set A(g, ¢') as in (1.3).

(i) K<JM, M/K = O(3, 1), giving rise to a semidirect product.

(iv) U<]IO@3,1), I0(3, 1)/U = 0(3, 1), corresponding also to a semidirect pro-
duct.

These properties are resumed in the following diagram of exact sequences.

U \
< 10(3,)

K
M — | (1.6)

B / \ 0(31)

>———> denotes a monomorphism and ————>> an epimorphism

We note further that, as can also easily be seen

(v) B and U are Abelian.
(vi) K is nilpotent, with a lower central series of length 2.

We are, because a physical state will be described by a ray in a separable Hilbert
space #°[ 1], not interested in the proper representations of M but in the projective (up
to a factor) ones. These can be obtained, since M is separable and locally compact, by
considering the ordinary representations of a larger group M?, by the procedure of
lifting [5, 6], where ¢ is a multiplier over M with respect to the U4 decomposition
MTUM! (M' being the subgroup of M corresponding to orthochronous Poincaré
transformations only). This multiplier satisfies thus the relations

o(my, mymy)a™i(m,, my) = a(m;,my)a(mym,,m3), Vm,,m,, myeM (1.7)
with
o = {7 ™M G the complex conjugate of o)
= &, m; € MT g the complex conjugate ol o).

Such a multiplier is sometimes also called a co-multiplier; we keep however the same
nomenclature as in [6]. Because of the special role played by discrete elements, and in
particular because of the (assumed) anti-unitary character of transformations
containing time-inversion we consider in a first step the connected component M{ of M?
only (the remaining discrete transformations will be reintroduced later on). The group
MG depends of course on ¢ and it is more useful, whenever possible, to consider a larger
group Mg which is an extension of the multiplier group Z (the group of all inequivalent
possible ) by M,, the connected component to one of M, and whose ordinary
representations describe all projective inequivalent representations of M. It follows
from theorems 3.2 and 4.1 of Bargmann [7] and from the fact that the second
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cohomology group H*(M, #) = 02), where M is the Lie algebra of M,, that all
projective inequivalent representations of M, can be obtained from the ordinary ones
of the covering group M, of M,, which has the following structure: it has elements
(B, a, A) with A € SL(2, C), B and a as before, K being its own covering group. In an
analogous way as in (1.6) we can illustrate the structure of M, with the following
diagram of exact sequences:

K ~ 10(3,1) (1.8)

M: \
8 / \ SL(2.0)

As we can see from this diagram, a possible way for obtaining all irreducible unitary
representations of M will be by inducing, in the sense of Mackey [5], from the ones of
K. The latter ones can be obtained following the theory of Kirillov [9, 10], since K is
nilpotent.

Let us now determine the Lie algebra of M. We use the following notation for the
generators: let M, generate a rotation in the yu—v plane of space-time (M ,, € 4/(2, ©)),
I1, a translation and, for B, let IF,, be the infinitesimal generator of the group element
E,,. The Lie algebra is then easily obtained, using the results concerning the group as
obtained so far, as given by

[M,uv’ Mpo:l = g,uvaa = gvaM,up - gva‘ua' - gua'Mvp
[M,uv, ]Fpa] = gup]Fva F gvomup - gvp]F,ua' - g,uan:vp

(1.9)
[Hua Hv] = IFuv
[M,uvs Ha] = guanv - gva'n,u
where the metric g,, is given by goo = —g; = —1, i = 1, 2, 3. All other commutators

vanish.

This 16-dimensional Lie algebra is actually not unknown and has even a (very
adapted) name, as proposed first by S. L. Glashow (see Stein [11]): the Maxwell Lie
algebra. It has been quoted by Bacry et al. [12] and studied in some more detail by
Schrader [8] in an actually quite different or, better said, much more specific context.
First, all these authors consider only constant uniform (c.u.) e.m. fields whereas we are
dealing with a very large class of (also inhomogeneous) fields (see [1]). Second the
generators IF,, are identified by them with the eigenvalues they take in the presence of a
given c.u. field (namely with the field components, as we shall see later on), and for
representations generated from a given equation of motion (Klein-Gordon or Dirac

?)  Weomit here the proof since this result was already obtained by Schrader [8]. Since other results of this
paper overlap some of the results to follow, we shall discuss it more in detail later on.
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with minimal coupling). This indicates incidentally, since we have made no use of such
an equation, that these equations will characterize representations of our group, i.e. are
covariant under M, as we shall see more in detail in section 5.

Our derivation and interpretation are clearly different and our goals somehow
more ambitious. We shall discuss later on some interesting remarks made in [12]. More
interesting at the moment are the results of Schrader: in his paper the irreducible
unitary representations of the subgroup K of M are derived. Unfortunately, only the
case of a c.u. magnetic field (and its Poincaré transforms) is then considered and only in
two representations (as obtained in fact from the Klein-Gordon and Dirac equations).

Because we want to derive al/l PUAIR of M, we shall, for completeness, calculate
them from the beginning, including (in a somehow different and simpler way) those
results obtained by Schrader concerning K that we shall need in the sequel, too.

2. The irreducible representations of the subgroup K of M

These representations can be completely determined using the theory of Kirillov
[9, 10] for connected (here simply connected) nilpotent Lie groups. Let us therefore
first briefly recall the general procedure.

Let k be the Lie algebra of K, k' the dual space of k and coAd,.(K) the coadjoint
representation of K on &’ (the contragradient of the adjoint representation), which for
w € k' (i.e. for a linear form on k) is defined by

(coAd, (k)w)(&) & (Ady(k)™*¢) 2.1)

with k € K, ¢ e k. Let then 0, denote the orbit of an element w € k', i.e. the set of all
images of w under the action of K as defined by (2.1). Since (2.1) is a representation of K,
the set {0,} is a partition of k". Consider now in each orbit one arbitrary (but fixed)
element o and consider a subalgebra / < k satisfying

[L/] < Kerw (2.2)

such a subalgebra [ is called subordinate to w. The following map T, on the Lie-
subgroup L of K generated by / (L = exp /)

T, (expx) & expio(x), xel (2.3)

is then clearly a one dimensional unitary representation of L. This representation can
then be induced, in the canonical way, to a representation V,, , of K by

Vo, d()e(A) = (T, T K)(K)p(4) = T,(2k(X)™ 'p(X) (2.4)

where 4, A" are (fixed) representatives of the (right) coset decomposition K/L, with A’
determined by the condition Ak(A)"'e L, and (/) is a measurable, quadratic
integrable function on this coset space, with respect to some (quasi-)invariant (under
the action of K) ergodic measure p, and with values in the carrier space of T,,. This
measure is then unique, as a class. Since the coset space and a set of coset
representatives are in one-to-one Borel correspondence with each other we use, or

better said we abuse, as is usual, the parameter 4 to describe both spaces. The following
then holds
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Theorem 2.1. (Kirillov [10]).

(1) V., is irreducible if and only if dim [ is maximal.

(ii) any irreducible representation of K can be obtained in this way, up to
equivalence

(1) V, ,and V. -, both irreducible are equivalent, if and only if 0, =0,

(iv) K the dual Qf K is always of Type I.

A subalgebra /subordinate to a linear form o and of maximal dimension is also called a
real polarization at . From now on only such subordinate subalgebras will be
considered.

In the sequel, the following result will also be helpful:

Theorem 2.2. [13]. Whenever [, real polarization at w, can be chosen ideal, then the
following holds:

(1) [ is his own centralizator with respect to w, i.e. if { €k,

o[l E]) =0<=Cel

(i1) the coset space K/L is Borel isomorphic with the orbit of T,, under K and is 1-to-1
characterized by the classes @ of elements w in 0, which coincide with each other when
restricted to l.

Let us now apply this theory to our group K: an element w € k' can be characterized by
an antisymmetric tensor f#v and a vector p, (u, v=0, 1, 2, 3), and W111 be denoted
by (f, p). Its action on k is defined by

(f, p)(B"F,, + a'I1,) € B*f,, + a"p,, u,v=0,1,2,3. (2.5)

Using the commutation relations (1.9) one obtains after a short calculation that the
adjoint representation is given, for k = (B, a, 1) € K, by

Ady({B, a, ID)(B)F,, + (a)’I1,) = (B* + (a A a)yV)F,, + a1, (2.6)
so that, by (2.1) and (2.5)
coAd ({B,a, D)(f,p)=(f,p+a-f) (2.7

with (a-f), = af,, = < ( f(a)),, f being in this last expression considered as a linear
map from U to M*(4), the dual Minkovski space. The orbits are thus given by 0, ,, =
{(f,p + a-f)|Vae U} and are characterized by a tensor fand a manifold of vectors p
modulo Im(f). The explicit form of Imf depends of course on f and needs to be
investigated in more details, as we shall do now: because fis antisymmetric, it has, as a
bilinear form, necessarily an image of even dimension. We may thus distinguish the
following three cases, in turn:

() dim (Im(f)) = 0, then necessarily /= 0 and the corresponding orbits are
completely characterized by a 4-vector p € M *(4) and will therefore be denoted 0,,. This
case will correspond of course also to free particles and will give rise to the well known
PUA representations of the Poincaré group. It will thus only be shortly mentioned for
completeness in the sequel. _

(B) dim (Im(f)) = 4, then necessarily det /' #+ 0. As a consequence, for any p, there
exists an a € U such that p = —a - f'so that each such orbit goes through each point in
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M*(4) and the orbit is thus completely characterized by the tensor f (with det f # 0).
These orbits are denoted 0.

(y) dim (Im(f)) = 2,thendet f = 0, f + 0, then there exists, because dim (Ker(f))
= 4-dim(Im(f)) = 2, a 2-dimensional subspace of U generated by two linear
independent (but of course not unique) translations a*’ and a'® such that Vu,, p, € Z

a(py s o) - f = (a'V + pa®)-f=0. (2.8)

These orbits are thus completely characterized by an antisymmetric tensor f with det f
= 0, f # 0 and an element g of the 2-dimensional factor space M *(4)/Im(f). They will
be denoted 0, ,.

Let us now calculate subalgebras /, subordinate to w ek’ and of maximal
dimensions with w an (arbitrary but ﬁxed) representant of each of these orbits. We first

have, because of (2.2) to calculate the commutator algebra of k. It follows readily from
(1.9) that

[k, k] = {a"a"F,,, Va,a e U}. (2.9)
Considering again the different cases in turn, we find then:
(o) /=0 so that trivially /, , = k, using (2.9).

(B) Because det f # 0, there exist two, and no more (see [8, 14]), vectors a*) and

a? such that (a‘“)“(a(z))‘fm =0, with a® arbitrary and a'® determined by this

condition. Denoting by a(4;, 4,) an element A,;a™" + 1,a® in the subspace generated
by a''’ and a'® we have then VA, ;e &, i = 1 2

a’(41, A2)a*(Ay, A3) f = 0. (2.10)

Choosing now as representative of each orbit 0, the element (f, 0) we have Ker /' = 0,
thus Ker (£, 0) = {a"I1, |Vae U } so that, usmg (2.9) and (2.10), we obtain

Lip ooy =1{a"(Ay, A0, + BYF,|VB* and A, A,€R} (2.11)

(y) Because of (2.8) and because f # 0, it is always possible to choose one (and no
more, see again [8, 14]) additional vector a®® such that with ' and a® as in (2.8) we
have (a”)"(@?)'f,, = 0, i, j€ 1, 2, 3. Denoting by a(u, , u,, 13) an arbitrary element of
the form p,a't + p,a® + p3a'®, u; € # we have then, Vy;, p. € #

au(ﬂl » U s ﬂ'3) : av(nu,]. s H’Z’ M’B) 'fuv =0 (212)

so that, for any representant 0, , of each of these orbits, we obtain, using once more
(2.9),

g = 1@" (e, po, ua)IL, + BYF, |VB* and y; € Z). (2.13)
The corresponding subgroups L, of K are thus given, for the three cases separately

() Lo, p = {(B,a,1)} =K
(B) Lis 0= {<B9 a(iy, Az), 1>} <K (2.14)
0 Ly p={<B, aluy, pa, u3), 15} <K

and are, by construction, of maximal dimension and normal in K.
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The corresponding representations T, of these groups L, are then, using (2.3),
given by
(d) T(O,p)(<B9 a, 1>) = €Xp I(Oa p)(Bﬂv]F,uv + a#H,u)
=expi(p-a)
(B) T(s,0(<B,a, 1)) =expi(f, 0)(BF,, + a*(4y, 1,)I1,)
=expiB-f) (2.15)
(Y) T(fsp)(<Bﬂ as 1>) = exp l(f; p)(Bquuv + au(tula p’Z ] #3)1-[;1)
=expi(B-f+ a(py, p2, #3) - P)-
These representations can now be explicitly induced to K as described in (2.4). We again
consider the different cases in turn
(#) Ly, , = K so that the coset space consists of a single point and trivially
Vio,p({B,a, 1)) =expi(p-a), (2.16)

i.e. we get a 4-dimensional family of one-dimensional representations of K parametrized
by a vector pe M*(4).

(B) The coset space K/L is two dimensional and can be identified with the
translation subspace generated by two vectors a® and a¥, chosen so to complete a'V
and a® in (2.10) to a basis of U. We decompose thus any translation aeU as
a=a(Ay,..., ) =i 4a® and we parametrize the coset space by the same 4; and
4. The function @ of (2.4) is then a quadratic integrable measurable function on %?
with respect to the invariant ergodic (here Lebesgue) measure yu. Denoting then an
element k€ K by (B, a(4,, A,, 45, 44), 1) the coset condition reads

0, a(iy, 44), 1) <B, a(dy, ..., 44), 1>€0,a(d3, 4%), 1>~ € L, o,
i.e. using the group product (1.2) and the result (2.14)

a(Z3, Ay) = a(ds, A4) + a(d3, 4y) = a(A; + 43, 44 + 43).

We then obtain for the induced representations, using (2.4)

V(f, 0)(<B, a(Ay,.... Ag), 12)e(A5, 1)

= Ts,0(KB + A(ay, a3, a3), az, 1))p(A; + 43, 44 + 43) (2.17)
where a;, = a(l}, 4,), a, = a(14, 4,), a3 = a(4;, 4,). Furthermore A(a,,a,,as;) is
given, using the group product rule and the linearity and antisymmetry properties of
the factor set A(a, a’), the restriction to U x U of the factor set in (1.3), by

A(ay, a,,as) = A(a,, a, + a;) + A(a, + as, a,). ' (2.18)

With (2.17) we have now found a 6-dimensional family of infinite dimensional
representations of K parametrized by the 6-dimensional linear space of functions f,,,
where the hypersurface characterized by det /= 0 is left out.

(y) The coset space K/L is 1-dimensional and can be identified, completely
analogously as in the previous case, with the subspace generated by a fourth
translation a¥ completing a'* a'? a® of (2.12) to a basis. The functions ¢ are now
(quadratic integrable and measurable) functions on # with respect to the invariant
ergodic (Lebesgue) measure. We obtain similarly to (2.17), withnow a = a(u, , ..., #s)

— 54 (i) .
=2i=1ha":



Vol. 50, 1977 Elementary particles in the presence of an external electromagnetic field 357

V(f, D)(<B’ a(lul PRRRE Ju4)s 1>)§D(H’4)
= Ti5,p(KB + Alay, ay, as), a5, 1))p(ps + 1) (2.19)

where A(a, , a,, a;)isformally asin (2.18) with but now a, = a(u}y), a, = a(u,, ty, 13),
az = a(py).

In (2.19) we have found a 7-dimensional family of infinite dimensional repre-
sentations of K, characterized by the 5-dimensional hypersurface in the f,, space with
det f = 0 (where the point f = 0 is obviously left out), and the 2-dimensional factor
space M*(4)/Im(f).

The fact that K is of Type I (from theorem 2.1) and thus smooth [15], allows us to
apply the general theory of Mackey [ 5] concerning the representations by induction of
group extensions. This is what we shall do in the next section.

3. Induction to the connected part M, of M
(a) Representations of group extensions

The theory of Mackey for the induction of representations is a well known
procedure, at least when applied to a (regular) semi-direct product G = NA H, with G
separable locally compact and N abelian [16]. Less known is the more general case
where G, separable locally compact, is any (regular) extension of a group N, not
necessarily abelian, by a group H, i.e. appears in the following exact sequence of groups

l—>N—>G—H—1,m,¢ (3.1)

characterized by a factor set m:H x H - N with m(h,, hyh3) + @(h)m(h,, hs)
=m(hy, hy) + m(hh,, hy) and a map ¢:H — Aut N satisfying the condition
@(hy)o(hy) = u(m(hy, hy))e(hh,), pubeing the canonical epimorphism from NtoIn N,
the group of inner automorphisms of N. The essential difference, in this more general
case is that, as shown by Mackey [ 5], whether Nis not abelian or whether the extension
(3.1) does not split, no longer ordinary representations of the adequate subgroups of H
have to be considered but certain projective ones. Since we shall need in the sequel the
explicit formulas of the general theory, and in particular an explicit expression for the
factor sets involved, we first indicate briefly and in a way convenient for our purposes,
the general construction procedure. As, however, in our problem m = 0, we shall
restrict ourselves here to this more special case. .

Let therefore N be the dual of N in (3.1), [A]l € N, 7 a representant of the
corresponding class [#] of irreducible representations. One defines from ¢ a map ¢ on
H with

oh):N— N,  ¢h[A] = [A,]
in the canonical way, i.e. by
Ay(n) = A(p(h) ™t - n). (3.2)

The set of all classes {[7,]} generated by p(H) from a class [7] is called the orbit of [#]
and will be denoted 0;;; = N. The action in (3.2) defines at the same time an
homogeneous little group H; = H by the invariance condition

he H, < [#,] = [A] (3.3)
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i.e. h € H,if and only if there exists a unitary operator S(h) in # (n), the representation
space of 7, such that

Ay(n) = S(h) ™ Ya(n)S(h), VneN. (3.4)

The map S: 4 — S(h) is in general not a homomorphism, but can easily be shown from
(3.4) (because of the irreducibility of # and Schur’s Lemma) to be a projective map,
satisfying thus

S(hy)S(hy) = t(hy, hy)S(hyhy) (3.5)
for some factor set 7(4,, h,) € U(1), the unit circle of the complex plane. The isotropy
(or little) group of [A] G, = G is defined as the subgroup of G that leaves [#] invariant
under the action

g:fi(n) — #i(g ™~ 'ng)

N being identified with its image as a subgroup of G. This group G; appears then as an
extension (here trivial because so is G) of N by H, as is shown in the following
commutative diagram of exact sequences

1 » N—— G,—=—H. >1, 0, ¢

(3.6)
] @y
| —5 s , ’1, 0, @

(1) and (1)’ denoting the natural injection monomorphisms and 7, ©' the canonical
epimorphisms. One can now construct, in a first step, a (projective) representation of G,
as follows: let L be a projective representation of H, with factor set w and carrier space
(L) and let (sigL) be defined on (n, 4,) € G, as follows

(As-L)(n, hy) S A(n)S(hy) ® L(h,). (3.7)

One obtains in this way a projective representation of G, with factor set o, where o is
obtained from (3.4), (3.5) and (3.7) to be equal to

a(g1, g2) = 1(ng,, ng,)a(ng,, ng,) (3.8)

so that by choosing w = t~! (as we shall do in the sequel) one obtains an ordinary
representation of G, with carrier space #(n) ® #(L). The last step is now the
following: one decomposes H in (right) cosets with respect to H,, with coset
representatives {4;|i € I}, where I is some index set (Borel) isomorphic to H/H, and
similarly G with respect to G;, choosing now as coset representatives the images of {4;}
under a fixed section r.H — G. This set of representatives is thus given by
{(0, h,)|i € I}. Let now p, be the (unique, as a class) invariant ergodic measure on H/H,,,
and let us also assume that his measure is right and left invariant (since M, is
unimodular, we assume thus G to be such). It follows then from the assumed regularity
of (3.1) that this measure is also transitive (i.e. concentrated on the orbit). We may then
identify the coset spaces H/H; and G/G, with 0, via the 1-to-1 Borel isomorphism
[7,] < h;, and (0, A;) respectively, so that we may use the same parametrization {4;} to
describe all these spaces. Let us then consider a vector valued function ¢:{h;} —
H(H) ® A (L) satisfying the 2 conditions

(i) (e(h;), ') is p;-measurable, V¢’ € #() ® #(L) (3.9)
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(ii) llell® EJ‘”(P(hi)llz dp(h;) < 0. (3.9)

These vector-valued functions span a separable Hilbert space [5] on which the induced
representation is defined as follows, V(n, h) e G

A1 G, () = (hg-L)(0, h)(n, 1) (0, )™ Vep(h;) (3.10)

where 4 is the (unique) coset representative satisfying the condition h; A hy'e H,. The
following then holds, and is a consequence of [5] for this special case:

Theorem 3.1. (Mackey [5]). Consider an orbit O and a transitive ergodic measure
U; concentrated on it as described above. Then the representation (3.10) is unitary and
irreducible if and only if L is. Two such representations (i, T G)** and (i, 1 G)"*? are
equivalent if and only if n, and n, are in the same orbit and L, ~ L,. Moreover all
irreducible unitary representations of G are obtained in this way, up to equivalence, when
one induces once per orbit and for each orbit one considers all inequivalent projective w-
representations L of the corresponding homogeneous little groups, with w satisfying (3.8),
for ¢ =1, and t determined by n through (3.4) and (3.5).

Let now N be nilpotent. It follows from theorem 2.1 and from (2.14) that in each class
[7] we may choose as representative V, ,, defined as in (2.4) with / now ideal. Let L

v,l2

= exp /, then L <] N and we may construct the following exact sequence of groups:
1 > L » N—"> N/L—1, P, . (3.11)

We have shown elsewhere [ 13] that in this case, the operators S(%) and the factor set w
can be calculated explicitly and are respectively given by

S(h) =V, (n(h))
a(hy, hy) = p(an(hy), nnh,)) (3.12)

where p is defined by (3.11) and n(#) is the unique (up to L) element of N satisfying the
condition

(coAd(h) - v)(E) = (coAd(n(h))-v)(&), VEeL (3.13)

(b) Induction to M,

Let us now apply the general theory just mentioned to our group M, which can, as seen
1in section 1, be written as a semi-direct product of K by SL(2, €). The action (3.2) of
M,, resp. M,/K on K is obtained from (2.5) and (2.7) by the coadjoint action on the dual
algebra k' of K, as shown in [13]. We obtain, for 7 = (B, a, A>eM,

¢(m)(f;p) = (A" £, A7 (p + a-f)) (3.14)

where the action of A € SL(2, ) on p and fis given, via the covering map, by the
action of the corresponding Lorentz transformation on covariant vectors and
tensors respectively. For the homogeneous part we obtain thus with A e SL(2, €)

$A(f;p) = (AT'f, A7 p). (3.15)

Since a class of irreducible representations of K was characterized by an orbit 0, 5.0
= {(f,p + a-f))|Va e U} the corresponding homogeneous little group is then given
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by the subgroup of SL(2, €) which leaves the orbit invariant under (3.15), i.e. whose
elements A fulfill the two conditions

i) A~ =f
(i) A™'p=p+df, forsomea €U. (3.16)

It 1s useful at this point, because of (3.16) (i) to parametrize f (as in [8]) as a formal
constant uniform (c.u.) e.m. field with fo; = e;, f;; = &;3by, 1, j, k€1, 2, 3 and ¢;; the
totally antisymmetric tensor of order 3, so that the first condition of (3.16) reduces to
the well known problem of the symmetry group of such a field (see e.g. [12], [17] or
[18]). These symmetry groups can be classified with the help of the following two
Lorentz invariants of the tensor f-

(N = (f-) = fnf" = 2007 — &)
() =S5 =) = 4(b-e) (3.17)

where (f*)* = —e“"""f is the dual of f (¢"*#? the totally antisymmetric tensor of
order 4). Itiseasy to see that because det f = (b-e)?, the prev1ous classification in cases
() (B) and (y) corresponds in this language to f=0, i,(f) # 0, and i,(f) =0,
f # 0 respectively.

Before we determine the homogeneous little groups of the classes [V, ,] of
irreducible representations of K, let us analyze more precisely what is the action of
SL(2,C) on them, for the three cases we had in turn. For this purpose, we can, as seen
before, look equivalently at the action on the orbits 0, ,). This action follows from
(3.15). Let us thus consider again the three cases separately

(«) The orbits 0, are mapped onto the collection {0,-1,|V A € 04(3,1)},
() The orbits 0, are mapped onto the collection {0,-,|¥ A € 04(3,1)},

(y) The orbits 0, , (with ge M*(4)/Im(f)) are mapped onto the collection
{0-1 A-1,}- This follows from the fact that

Im(A™f) = {a"(A"D)UA DS fos| Vae U} |
= {(A")(@Vf,sIVa = Aae U} = A™(Im(f)). (3.18)

We shall denote in the sequel superorbits these sets (orbits of orbits) in order to avoid
confusion. Let us remark here that all these superorbits are connected, since 04(3, 1) is
so [19]. Further, since the class of an induced representation of M, does not depend on
the element of the superorbit it is based on, we shall fix in each case the coordinates in
such a way that the formal field f'has a simple structure (note that this will imply that it
will in general not be possible to put at the same time the other parameter p € M*(4)ina
form as simple as in the free field case). It is well known (see e.g. [ 12]) that for fasin case
() it is always possible to choose a reference frame in such a way that e||b|| z-axis and
for f as in case (y) there are three possibilities depending on the first invariant of fin
(3.17): if i;(f) > 0, there exists a frame with e = 0, and b| z-axis; if i;(f) < O there
exists a frame with b = 0, e|| z-axis, and if i, (f) = 0 there exists a frame with e| z-axis,

b|| x-axis. We denote for obvious reasons (and as in [8]) these cases by (y mag) (y el)
and (y rad) respectively. With this choice of representatives we have made on the
superorbits we have in fact also constructed, as is easily seen, a Borel cross-section, 1.e. a
Borel set in K° intersecting per definition each superorbit once and only once. This
ensures us that the semi-direct product of K by SL(2, €) is regular in the sense of
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Mackey [5] and thus that all ergodic measures on the superorbits will be transitive so
that any possible pathology is excluded (on the contrary of certain physically relevant
subgroups of M, see [20]). The theorem 3.1 may thus be applied.

With these particular choices on the superorbits, it is now an easy matter to
determine the homogeneous little groups which are the subgroups of the symmetry
groups of the various (formal) fields f,,, fulfilling (3.16) (ii) too. This last condition may
split of course in function of p each case in more subcases. In case () we know that p can
always be chosen 0 so that (3.16) (ii) is always fulfilled. In case (y) we have, with the
above choices of coordinates, in M*(4)

(y mag):Im(f) = {(0, 4, 1, 0) | VA, pe 2}
(yel) :Im(f)={(4,0,0,p) |V ueR) (3.19)
(y rad) :Im(f) = {(4,0, 4, p) | VA, pe R}

so that the quotient spaces M *(4)/Im( /) can be parametrized by (po, p3), (p1, p2), and

Py, \/%(po —p)Ep) respectively. We do not go into details of all these
calculations, since they are tedious but straightforward: we just give the complete
results in the form of Tables. The homogeneous little groups are listed in Table I where
the elements of SL(2, €) are characterized by their generators in 4/(2, C). We also
already include in this Table the elements of the Poincaré group which are not in the
connected component and whose action is defined in the next section on p and f. We
denote these last elements m; for a mirror perpendicular to the i-axis; an accent means
time-inversion and a bar space-inversion. For the case () we just include the well
known results of Wigner for completeness (see e.g. [19], [21]). In Table II we list other
useful results for each case, in particular the isomorphism classes of the homogeneous
little groups (including again discrete symmetries and denoting C; a discrete generator
containing time-inversion), the structure of the coset spaces and a set of generators of

Table I
Homogeneous little groups of the representants 0, , of the superorbits

Discrete
transformations
anti-
Case Subcases Infinitesimal generators unitary unitary
@ @ p=po(1,0,0,0,po#0 My, M3, My, T 1',
(_H)P=Po(1,0, 1,0),po #0 M3, Mo3 + My3, My, — My, my m;
(iii) p = p (0, 1, 0, 0) My, My,, My, m, I’
iv) p=0 M,,, Yuvel,..,3 1 1
) p=0 M,;, Moy mj
(ym) (1) p3#0 M,, .
(11) P3=0%#p, M,, 1 my
(i) p3 =po =0 M,,, My; 1 my
(ye) (1) p1#0orp,#0 My, M—2,1) _
(i) py=p,=0 My, M, my 1’
(yr) (1) P #FO0#p_ My + My,
(11) p1=0#p_ My; + M,, my mj
(iii) p; 0 =p_ My; + My, My, — My,

(iv) py=0=p_ Moy + Myy, My, — My, my m,
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Table II
Isomorphy classes of homogeneous little groups and coset spaces

Coset spaces

Dimen- Parameter

Case Isomorphy classes sion spaces Coset representants

@ () SUQ®(C,®C)) 3 2 Moy, Moy, Moy
(i) AQ)®(C,®C3) Y 3 &° My, My3, My,
(iii) SL(2, #) ®(C, ® C;) 3 7 Moy, My, My
(iv) SL22,C) B (C, ® C}) 0 - s

(B) (R/4nZ Q@ R) ® C} 4 R %2 Moy, Moy, Mys, Mys, T

(ym) () #/AnZ 5 R % 4 Moowe Mlyss Mg Moy Mo L TP
(11) R/ATZL ((C, ® C3) 5 R Moy, Moy, Moz, M5, My;
(iii) (#/4nZ® R) BD(C, @ C,) 4 R#* Moy, Moy, My3, My,

yo () 2®C, 5 R % 2 Moy, Moy, My, My3, M5, T
(i) (#/4nZ @ R)O(C,®C;) 4 a* Mgy, Moy, M5, M5

(yr) (i) # 5 R° % 4 M01,M02,M03aM123M135_1, I’
(i) 2®(C, ® ¢;) 5 25 Moy, Moy, Moy, My, M
(iii) %#* 4 A* x 4 Moy, M3, M5, Mys, 1,1
(iv) 9?2©(C2®C£) 4 #* Moy, My, M5, M,;

1y For this notation, see [19].

the corresponding coset decompositions. Finally @ denotes a direct product and (5) a
semidirect product. .

The last step of the induction procedure to M,,, as described in the first part of this
section, is now the following: from each of the superorbits one takes the irreducible
representation V', , of K as given by (2.17), (2.18) or (2.19), with (f, p) as just chosen
and one constructs all unitary irreducible representations of M as in (3.10). The result
is then as follows

(V(f,p)-sTMo)L<B, a, X>€P(Kn) - o . L
= (Vs p-s- L0, 0, AD<B, a, A)<0,0, A; ' D)p(A;) (3.20)

with again the usual identifications, with A determined by the condition that A, AA

in the homogeneous little group of V; and with @(A;) defined as in (3.9). In (3. 20)
the representation (V. s- L) of the little group (here the semidirect product of K by
the corresponding homogeneous little group) is given, as in (3.7), by

(Vig.prs- LB, a, A = Vi (KB, a, 1>)S(K) ® L(_A—) (3.21)

for some w-representation L of the homogeneous little group, with w as in (3.12), and
which has now to be calculated explicitly. We first observe therefore in Table I that,
except in case () of course, all homogeneous little groups are Abelian (we consider now
again the connected component of M to unity only), and their Lie-algebra is isomorphic
either to # or to #2, so that, using the well known result of Bargmann [7] on.the
relevant cohomology groups

H*(#", U(1)) = "~ V2 (3.22)
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we know already that only in the two dimensional cases the factor set w could be non-
trivial. Let us now use the more precise result (3.12) for the induction from a normal
nilpotent subgroup: it shows that w, as a class, is also an element of H2(N/L, U(1)),
since p is a factor set on N/L and T, 1.7 is unitary and one-dimensional (in fact
[w]e H3(N/L(H;), U(1)) where N/L(H ) is the subgroup of N/L generated by the
classes of all n(h), h € H;). Let us now then consider again the various cases in turn, with
now N = K:

Case («) K/L = 1 (from (2.14)) so that w = 1. This is of course trivial and well
known, but it shows how our result works.

Case () K/L =~ #* (from (2.14)) thus non-trivial multipliers could occur. The
elements n(h) of (3.12) are given by the translations &’ in (3.16) (i) and thus the
multiplier o by T, ,(A4(a}, a;)) where A is the factor system (1.3) as restricted to
U x U. We had however seen that, choosing p = 0 (as it is always possible in this
case) a’ = 0 satisfies (3.16) (ii) Y A € SL(2, €), so that w is necessarily trivial, 4 being
then equal to zero.

Case (y) K/L = & (from (2.14) thus by (3.22) w is, also in this case, tr1v1a1

These results make the situation quite easier, because we then only have to
consider ordinary representations of the homogeneous little groups and these are of so
simple structure (except in case («) they are all Abelian) that this problem is easily
solved: the irreducible unitary representations of %2/4nZ are given by {¢"", r e #/4nZ,
2j€ Z} and the ones of Z by {¢'*", r e &, A€ #}. We shall call spins, similarly as in the free
case, the labels j resp. A4 of these representations and spinors the square p-integrable
functions on the corresponding coset spaces, with pu the ergodic (here transitive)
measures on these spaces under the action of SL(2, €). A complete list of these spins
and of the dimension (i.e. number of independent components) of the corresponding
spinors will be given at the end of the next section and we shall discuss in Section 5 the
physical meaning of these spins.

4. Inclusion of the discrete transformations

So far we have obtained all projective unitary representations of the connected
component M, of M (by means of the ordinary unitary irreducibles of M,). If we want
to reintroduce the discrete transformations and calculate all PUAIR of M we first have
to calculate all multipliers (1.7) on M, with respect to the UA decomposition M" U M!,
M’ being, as seen in Section 1, the subgroup of M corresponding to orthochronous
Poincaré transformations only). Let us therefore consider the following exact sequence
of groups :

1-M,—>M— V4—¥1 o 4.1)

where V, is the Klein Vierergruppe. Since M is a spht extension of K by 0(3, 1) (see
Section 1), ¥, can be identified with the subgroup of M (and of M) generated by
£0,0,1,<0,0,1,<0,0, 1>and <0, 0, 1" thus (4.1) is also split. The action ¢ of ¥, on
M, follows then from (1. 2) and from the correspondmg action of the Poincaré group.
Using (4.1) we may write each element of M as a pair (777, 4) withme My and he V. The
product reads then

(m, h)-(m', h') = (m-@(h)m', hi').
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The problem of the multipliers on M can now be solved, using the following:

Proposition 4.1. Let ¢ be a multiplier on M x M (w.r. to the above U4
decomposition), then there exists a multiplier o; ~ ¢ with

a,((m, h),(m', h')) = o(h, k') 4.2)
where 6 is a multiplier on ¥, x V, (w.r. to the U4 decomposition {1, 1} U {1, 1'}).

Proof. Since M is a semidirect product in (4.1) the same argumentation as in
theorem 9.4 of [5b] applies (see also [6] for this extension of Mackey’s proof) so that
o ~ g, with

a,((m, h), (m', h')) = (m, p(W)m") o(h, K" )Y(r', h) (4.3)

where i is a Borel function from M, x ¥, on U(1), T and é are multipliers on M, x M,
and V, x V, (w.r. to the given UA decomposition) respectively, and 7 and y satisfy,
Vm,meMy, h, eV,

(@) w(o(h)m, (hym’) = t(m, im"YW(mm', h)(m, h)~ ' y(m', b))~
(i) Y(m, hh') = Y(p(h')m, hyy(m, h'). (4.4)

Since any multiplier on M, x M, is trivial, 7 is necessarily so. Using this fact and
the equations (4.4) it is straightforward to verify that T may be then chosen equal to one,
as giving rise to an equivalent factor system g, in (4.3) It follows then from (4.4) (i) that
for any A4,  is a 1-dimensional unitary representation of M, and because the only 1-
dimensional unitary representation of M, is the identity (from our previous results),
¥ = 1. The proof then follows from (4.3).

The multipliers on ¥V, x V, (w.r. to the given U4 decomposition) are well known
(see e.g. [7]). There are 4 inequivalent classes with representants 6*/, where o, § = +1
and

5 1 1 BY 13

1 1 1 1 1

i I 1 1 1 4.5)
¥ 1 of o B

I’ 1 off o B

The last step for obtaining all PUAIR of M would thus now be to induce the
unitary representatlons of M, to M. The theory of Mackey has for this purpose to be
slightly generalized in order to take the antiunitary character into account. This
generalization has recently been achieved by Shaw and Lever [22] and we refer to their
paper for a detailed description of the theory, whose application is quite straightfor-
ward in our problem and will therefore just briefly be sketched here.

Let us first determine the action of the discrete transformations on the dual MO of
M, . This action is obviously given by the correspondmg action on an element (f, p) of
the dual algebra k&’ of k, and similarly as in the free particle case, we assume that
elements of M containing time-reversal are represented by antlumtary operators. We
obtain in this way

o(h)-p =eMAMR) " -p
@) f=e(WAW)~" - f (4.6)
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with he V,, A(h) the corresponding Lorentz transformation and
e(h) = sign (AS(h)).

This action determines, for any irreducible representation of M,, and similarly as
before, little groups as the groups that leave this representation (as a class) invariant.
Because of the unitary/antiunitary character of the representations, these groups are
termed generalized little groups (respectively generalized homogeneous little groups).
Using the action in (4.6) and the explicit form of the representations we have found
previously, these generalized little groups can be straightforwardly computed. The
results are listed in Table 1.

Once these groups are known one may further induce the corresponding
representations to the whole of M. Since this procedure of ‘generalized inducing’ has
already been applied [23] for the PUAIR of the Poincare group (our case (x)), we
indicate briefly for the case (), and for illustration, the essential steps of the procedure:

In case (f3), the generalized homogeneous little group G is given (see Tables I and
II) by G = (Z/4nZ @ R) (® C; with generators M,,, M,; and h = m respectively.
The UA decomposition of G reads then

G=G"UG™ ={M,,, Mos} Um'{M,,, Mys,)}. 4.7)

The unitary irreducible representations D** of G* are 1-dimensional and labelled

by (j, A)with 2j € Zand A € £. Since 4 s in the same connected component as 1’ we have
by (4.2) and (4.5)

a*((0, k), (0, b)) = 6*(1', 1) = o

We now, using Theorem B of [22], define the following G-representation of G*, with &
the factor system obtained from ¢ by complex conjugation:

E**g) = a(g, h)/a(h, ¢(h)~'g) D" *(p(h)~'g) (4.8)

with ge G and (g, 4) a shorthand notation for a((m, 1), (1, h)).

The following possibilities can now occur: If E and D are antiunitarily equivalent
(in the sense of ordinary (and not projective) equivalence) by means of an antiunitary
operator K, then the induced PUAIR will be of Wigner-Type I respectively of Wigner-
Type I1if K* = a(h, h)D(h?), and respectively K2 = — a(h, h)D(h*). If no such X exists
then it will be of Wigner-Type III3).

Using now the commutation relations

A(my)A(Mo3) = A(—Mo3)A(my)

Alm)AM 1) = A(— M ,)A(m})
we get for (4.8)

E?*(g) = D" (g™') = D™" " Xg). , (4.10)

Hence the representations E and D are antiunitarity equivalent by means of the
complex conjugation operator K. As K? = 1 the induced PUAIR will be, from the

(4.9)

%) The(Wigner) Type we refer to have of course nothing to do with the (Murray-von Neumann) Types we
referred to previously.
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criterion just given, of (Wigner-) Type I if a = (—)?(K? = 8*/(h, h)D’*(h*) with
D#*h?) = DI*((m))?) = (—)*) and of (Wigner-) Type Il if « = (—)*/* 1. In the first
case there is no doubling of states and the restriction of the inducing representation on
G™ isirreducible. In the second case the carrier space is doubled and the representatlon
is given by

. DiMg) 0 . — KX -
Uf"(g)=(. 0(9) D,-J(g)); UJ-A(m;)=(IO< 0) 4.11)

the restriction to G* being thus then reducible in two equivalent irreducible
subrepresentations. Taking into account the doubling of states occurring from the fact
that the coset-space of the complete superorbits has two connected components we get
finally, inserting also the dimension of the corresponding spinors, the followmg
possibilities

Wigner Dimension inducing Dimension

o B type representation spinors
—)2i + 1 1 2
Case () (Tl 1o : : @.12)

Denoung then AUj i the representatlon of M, based on an orbit 0, , withdet f'# 0 and
with spin values j and 4, the whole UAIR of M (and hence, V1a the covering map of
SL(2, €) onto 0,(3, 1)), the whole PUAIR of M is finally given by

(A5 TM)(m, ), (A,)
5, )
T 8%(s, rhs™ 1)

where r, s label the different connected components of the complete superorbits (and
the corresponding (dlscrete) elements of V,), A;, A; are as before, with the usual
identifications, A; (1, h)A €@, the generahzed homogeneous little group (as e.g. in
@4.7)) and (V.5 U” ) is given as in (3.21) with L replaced by U (this last
representation being then as constructed explicitly in (4.11) for the illustrative example
we have discussed).

More important than this formula (which essentially illustrates how the factor set
and the antiunitary operators are introduced in the generalized induction procedure),
are of course the characterizations of the various PUAIR of M by means of the spins
and of the dimensions of the corresponding spinors. The latter are defined, in analogy
with the free particle case, by the number of independent states with definite f,, and p,,
(modulo Im(f)) in an irreducible representation. In other words, calling states the
carrier space functions (i.e. the u-measurable square integrable functions on the
superorbits as in (3.9) with values in the carrier space of the representations U of the
generalized homogeneous little groups G), the dimension of the spinors is then given by
the dimension of this representation of G times the number of connected components in
the superorbit.

The case (y) splits in more subcases (see Tables I and II) but does not present very
different situations than the one we have just sketched. Since the calculations are quite
straightforward applications of the general theory, we again drop the details and list
only the results (Table I1I). We include for completeness in this Table the free particle
case, too (as obtained in [23]), but for some ‘physical’ representations only.

Vig.mes- UPDA 05, A Do) (4.13)
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As it can be seen from this Table, as soon as an external e.m. field (with non-zero
c.u. part, see [ 1] and Section 5) is present, the dimension of the spinors, as well as the
spin-labels, may change discontinuously, together in fact with the discontinuous
change which has occurred in the representation class of the covariance group. Another
fact is that one or more continuous spins occur for some PUAIR of the new covariance
group M. These continuous spins are however of quite a different type than the well
known continuous spins of m? < 0 free particles, since the corresponding spinors have
here only finitely many components.

We are thus naturally led to a first conclusion: except in case («), the (usual)
concept of spin has, as a matter of fact, lost the group theoretical meaning it had in the
free case and, as a consequence, it is no longer necessarily related to the number of
independent states nor to a characterization of these states. However, new spin label(s)
appear 1n a natural way as a consequence of a covariance principle in the actual

Table 111
Characterization of the PUAIR of M

Factor sets

Spins of Wigner Dimension Dimension
Case the PUAIR Subcases o i type repr. G spinors
(CI {re (=) I Zj+1 Zi+1
i (_)2]’+1 (_)2j+1 I zgzj 5 lg ;ggj + H

& ¥ 111 227 + 1 i+
(ii) 11’225 i] 11 =;l-2=0 i(“)Zj i(_)2j I 2 2
' j#0 -+ F II 4 4
=) —)% 1 1 1
"113112=0{E“;2j+1 %__;Zj-H I 2 2
j=0 + F I 2 2
else + . F o0 o0
(B) A, £j (-)* + I 1 2
( - )21 +1 + 1I 2 4
(ym) (1) Lj i +, F I 1 4
(i) tj { =1 (~)2 I 1 1
(_)2.)*1 (_)2]+1 I 2 2
+ F 111 2 2
(i) 4, +J i=0 (=) (=) I 1 1
(=) (—)¥*1 11 2 4
+ F I11 2 2
A#£0Q (—)* (=) I 2 2
(_)2j+1 (_)2j+1 1I 4 4
+ F 111 4 4
(o) () 4 o +, F I 1 2
(i) 4, tJ J#0 + +, F 111 4 4
j=0 ar +, F I11 2 2
) M4 e +, F I 1 4
(i) A + + I 1 1
— — II 2 2
+ T I11 2 2
(i) 4;, 4, + +, F I 1 4
v) Ay, 4, + + I 2 2
— - 11 4 4
T + III 4 4
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situation, in presence thus of an external e.m. field, and as a characterization of
representations of the new covariance group. Consider for illustration the case of a c.u.
magnetic field: the corresponding representations are still characterized by a discrete
half-integer spin label that has however a different and more profound significance
than simply a kind of ‘remembering’ of the (free) spin as transposed in the new
situation. This spin has an intrinsic new meaning, and is then of ‘helicity’ type, i.e.
corresponds to only two polarization states (see Table I1I), not along an arbitrary axis
asin the free case, but along the magnetic field axis (this corresponding in fact to what is
physically observed).

In this respect, the external approximation is conceptually more far reaching than
perhaps expected and it can be useful to extend the (group-theoretical) definition of an
elementary particle, as adapted to this new situation and as in a new ‘world’ where the
external field is present. This is what we shall do in the next section, together with a
discussion of our results and of some, we think important, consequences of them.

5. Discussion

(a) Elementary particles in external e.m. fields

A real (physical) particle can be identified, as a set of states, with the solutions of
some covariant equation of motion, i.e. with a representation space of the general
covariance group. Since the external field is an approximation, it is however not
necessary that the corresponding representation is irreducible. Nevertheless it is useful
to introduce the following group theoretical.

Definition An elementary (relativistic) particle in an external e.m. field is a
quantum mechanical system which, as a set of states, spans the carrier space of a
PUAIR of the general covariance group M.

Itis clear from (1.5) and [1] that when the c.u. part of the external field is zero this
definition reduces to the well known group theoretical definition of relativistic free
particles*) of Wigner. Note however that even then the covariance operator group may
be only isomorphic to the ordinary Poincaré action (see .g. below the formulas (5.5) or
(5.6) with compensating gauges x, possibly non zero).

As a consequence of its definition, an elementary particle in an external e.m. field
may be characterized by the labels of the corresponding representation, i.e. by its spins
(see Table I1I), and, in addition, by the values of the invariants of the Lie algebra of Min
this representation. These invariants can be obtained from the Lie algebra (1.9) (see
[12]) and are given explicitly by

0, =B, P
Q, = I, (IF*)*
Qs = I,IT* — M, JF*

o = 2IL(F*)"TI°(F*),,, — (F*)*"M ,,- Q,

(5.1)

*) By this definition we clearly leave open the problems of the physical interpretation and existence of the
discrete symmetry operators [24]. We assume here that they represent exact and rigorously valid
symmetries of space-time.
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where (IF*)*” is the ‘dual’ of IF,,, defined in a similar way as in (3.17) for a field, i.e.
(F*)" = 3",

A basis element of the carrier space of a PUAIR of M being, as we saw characterized by
an element (f, p) € k" on some superorbit and by a set {s; } of spins, we denoteit|f, p, 5,>.
It follows from (4.13), with (2.15), that in all representations we have

IF,uvlﬁpa Si> =fuvlfap> Si> (52)

so that, comparing with (1.5), we see that the eigenvalues of these operators are equal
(up toafactor —e/ch) to the c.u. part of the field, as expected. The interpretation of the
first two invariants in (5.1) is then quite obvious: they specify so to say the ‘world’ in
which the corresponding particle is ‘elementary’, by means of the invariants of the
corresponding (c.u. part of the) field. The two last invariants Q5 and Q, correspond
then to the particle itself and will thus be related to the equation of motion. Let us note
that we can now explain why we do not share the point of view in [ 12] by which the Lie
algebra (1.9) is rejected as ‘non-informative’: these authors observe that this Lie
algebra gives rise to too many invariants in (5.1) in order to characterize the degrees of
freedom of an elementary particle, because they want to characterize such a particle in
terms of its free quantum numbers, whereas these are in our opinion no longer a good -
characterization of the states of that particle, as a consequence of the presence of the
external field and thus as a consequence of the change occurred in the covariance.

(b) Covariant equations of motion

Irreducible PUA representations of symmetry groups describe the properties of
solutions, 1.e. give information on the classification of the possible states of a quantum-
mechanical system and on their properties (invariants of these states, matrix elements,
selection rules and so on). Irreducible PUA representations of covariance groups
describe properties of the equations of motion. Let us therefore consider first the Klein-
Gordon and the Dirac operators, with minimal coupling:

-
OKG(xa RF) = (pu - E (TCF)#(X))Z - m2C2 (53)
gk B (5.4)

0ul(x, nF) = — (5, — - (nF),()) — me
where p, = —ihd, and nF is some uniquely chosen potential (as fixed by a map =).

Remember that, as we had shown in [1], the choice of 7 is not essential. Let us then
consider the following operators, Vm = (B, g>eM, BeB, gel0(3, 1)

Vio<{B, g>) = exp{—i f,; (B-gF®) + x,(n(gF), x))}cg-Pg (5.5)
and
Vo({B, g>)Z exp {—f;} (B-gF®) + x,(n(gF), x))} 8, P, (5.6)

where x,(n(gF), x) are the compensating gauge functions as for example obtained in
(3.32) of [1], F@ is the c.u. part of the field (see (3.24)-(3.28) of [1]), P, is the
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substitution operator in the x-coordinate. Furthermore S, is given by S - C, where

C =

g

{1 for g orthochronous (5.7)

C for g antichronous

with C the charge conjugation operator and S is determined by the condition that for
A the homogeneous part of g we have

(S)) 1S = Ay (5.8)

A straightforward calculation, similar as in [25], shows now that for the Klein-
Gordon operator we have

Vi <B, g2)0xa(x, nE)Vg6({B, g))) "
= OKG(x9 gT[F - an(n(gF)a x)) (59)
= Ogql(x, T(gF))

by definition of the gauge transformation xg(n(gF), x). Similarly, for the Dirac
operator we obtain with (5.6)

Vo({B, g2)0,(x, nF)V({B, g2)) "' = 0p(x, n(gF)). (5.10)

This means that, by definition of the covariance in the presence of an external e.m.
field (see Section 4 of [1]), both the Klein-Gordon and the Dirac equations are
covariant under M and for the whole class of (almost) arbitrary external fields we have
considered. On the other side, the operators defined in (5.5) and in (5.6) are
homomorphic on M, i.e. generate (projective) representations of M. With the usual
definitions of the scalar products of the free equations of motion in these both cases,
these representations are also obviously unitary (on M),

As follows then also from the above equations (5.9) and (5.10) if yi(x, F) is a
solution of the Klein-Gordon or of the Dirac equation in presence of the field F, i.e.
satisfies for the respective operator (5.3) or (5.4) the equation

O(x, nF)Y(x, F) =0 (5.11)
we have, with O(x, gF) = (V{B, g>¥)(x, F) as given by (5.5), respectively (5.6):
O(x, n(gF))®(x, gF) =0 (5.12)

i.e. O(x, gF)isasolution in the field gF. Note furthermore that, as another consequence
of our approach, the invariance operator groups [ 20, 25] corresponding to a given field,
and that are by definition generated by the covariant operators in the Klein-Gordon or
Dirac representations that in addition leave the external field invariant, will appear
now in a natural way as subgroups of the operator groups defined by (5.5) and (5.6)
respectively.

The Klein-Gordon and Dirac equations transform thus covariantly under M and
for the whole class of fields considered. This will however not necessarily be true for
higher spins equations. in the presence of c.u. fields, as an arbitrary Poincaré
transformation in the corresponding (free) representations will in general mix up wave
components of different spin values along a given axis and possibly belonging thus to
different irreducible representations of M, this in contradiction with the covariance
statement. The difficulty of the group theoretical interpretation of these higher spin
equations in the presence of an external c.u. field lies in fact even deeper: as is well
known, these equations are characterized by the fact that unwanted additional (free)
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spin components are eliminated by the so-called constraints. In the presence of a c.u.
field, the very existence of the constraints becomes questionable as they have in fact lost
this group theoretical meaning.

Let us, for illustration, consider a (free) spin 3/2 particle with positive mass and
moving in a constant uniform magnetic field. Since it is a priori not possible to choose in
general a reference frame where the field is along the z-axis and at the same time p, = 0
and since the case (ym) (iii) (see Tables I and IIT) can be seen to describe tachyons states,
we are in case (ym) (ii), so that the (free) 3/2 — spin representation of the extended
Poincare group will split in two irreducible sub-representations of the new covariance
group, characterized by the (helicity) spins +3/2 and +1/2 respectively. Now, the
Dirac equation with minimal coupling describes spin + 1/2 particles and is covariant
with respect to M, as we have shown in (5.10). We can thus construct, assuming a
gyromagnetic factor of 1/s [26], with s the spin, an equation for the (reducible) new
‘particle’, by means of a direct sum of two Dirac equations with minimal coupling, one
for each irreducible component. Since the Dirac equation is covariant with respect to M
so is trivially the new one. This splitting of a representation in two subrepresentations,
as a consequence of the presence of the field, can somehow be compared to the mass
zero limit in the case of a free particle: the Poincaré representations describing massive
particles of spin ssplit in this limit in disjoint subrepresentations for massless particles
of (helicity) spin s, s — 1,... (see e.g. [27] §16). That the above constructed equation is
- not equivalent to the usual known equations of motion can be seen as follows: it has
been shown by Velo and Zwanziger [3—4] that the 3/2 (free-) spin equations with
minimal coupling in an external c.u. magnetic field (such as the Rarita-Schwinger
equation for instance) are a-causal in the sense that the propagators do not vanish for
space-like vectors, whereas the Dirac (as the Klein-Gordon) equation is free of a-
causality and thus so is our equation, too. :

The above argumentation strongly indicates that these pathological difficulties
that have given rise in the last few years to an abundant literature (because of their
importance with respect to fully quantized theories e.g.) can possibly be reduced to a
covariance problem, and this is the reason for mentioning this problem here.

It is perhaps also interesting to note here in this respect that tachyons in a c.u. field
(see Table III (ym) (iii) for example) are necessarily described by finite dimensional
spinors whereas in the field 0 limit all these representations will join together to give the
known infinite dimensional spinors. This fact could also be used as a trick to avoid
infinite spinors when one wants to introduce (virtual) tachyons states.

It is quite clear that these last remarks are not meant as a conclusion but merely as
a sketch of some applications of our results and of some new open possibilities we have
been led to, by considering this problem of covariance in external e.m. fields. We have
however been able to relate the Klein-Gordon and the Dirac equations, minimally
coupled to the potential of an (almost) arbitrary external e.m. field, to representations
of a well defined covariance group, i.e. to reintroduce and identify a relationship, well
known in the free case, but which was in fact no longer necessarily present because of
the introduction of the external field.
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