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Covariance group in the presence
of external electromagnetic fields

by N. Giovannini

Institute for Theoretical Physics, University of Nijmegen, the Netherlands

(26.X1.1976)

Abstract. In the frame of a research program concerned with the investigation by group theoretical
methods of space-time symmetries of interacting systems we explicitly derive in this paper the general
covariance group for a charged particle moving in an arbitrary external (classical) electromagnetic field. We
obtain this group independently of any equation of motion, essentially on the simple basis of the invariance
properties of the Maxwell equations under Poincaré transformations. As a consequence of these results, the
group theoretical definition of an elementary particle can usefully be extended to the case where an external
field is present, and useful information can be obtained on the characterization of covariant equations of
motion.

0. Introduction

The group theoretical definition of elementary particles in terms of repre-
sentations of the Poincaré group 10(3, 1) is a well known and successful one [1]. In this
frame, the Poincaré group plays the role of covariance group of special relativity, i.e.
embodies the basic postulate of the theory that physical results should be left invariant
under a space-time change of reference frame relating by definition two inertial
systems. The elementary particles can then be characterized by the values of their spin
and their squared mass and it is also possible, using group theoretical methods, to
tackle successfully the description of the time evolution of the states representing such
particles, i.e. to relate covariant equations of motion to representations of this group. It
is the purpose of the present work to extend this well known and successful analysis to
the case where an external (classical) e.m. field is present.

Usually such a field is introduced via a potential A4 in the free equation of motion
by so-called minimal coupling, the momentum operators P, being replaced by
I1, = P, — (e/c)A,(x) (e the charge of the particle). Except for the well understood
high field limit and for the serious troubles encountered in the higher spin (s > 1) cases
[2, 3], that we shall discuss later on [4], this recipe is a very satisfying and successful
one.

From the point of view of the symmetries, however, the situation is not that clear.
For example, as a consequence of the arbitrariness (gauge) in the choice of the
potential, there corresponds to a given field not one equation of motion, but an infinite,
physically indistinguishable, class of them. This implies that Poincaré covariance then
only has to hold for this class as a whole and not for each element of that class
separately. In addition, arbitrary gauge transformations are then covariant transfor-
mations for this class, too, and this gives rise to interesting but infinite dimensional
groups which are quite difficult to handle [5, 6]. This is of course not new and a natural
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alternative would be to develop a formalism without introducing a potential, but based
only on fields, as it is partly possible, e.g. for Dirac particles [ 7]. Such a formalism is
however not exempt of difficulties and a generalization of it is not known.

In the present work we choose a way in between, using the advantages of these two
formalisms, i.e. we use potentials, but we get rid of the arbitrariness mentioned above
by fixing in some convenient way the gauge, for any given field. In this way it is possible
to build up group theoretically a theory of elementary particles in interaction with an
external field, by the construction first of the relevant covariance group, independently
of any equation of motion, and by the analysis then of the representations of this group.

This paper will be organized as follows: in the first part we define more precisely
what we mean by covariance. Then, after having made also more precise in part two the
class of fields we consider, we define covariant transformations as acting on the
potential space of a given field. This will be done, following our philosophy, with the
help of the quite natural concept of compensating gauges together with a (fixed) chosen
map n: F— A which applies any e.m. field F in an uniquely determined potential 4.
The result is shown to be essentially independent of the particular choice for . In this
way we construct covariance operator groups that may however, by construction,
depend on the field we started with. We get rid of this dependence in the fourth part, by
expliciting the general covariance group, valid for any field, and by making also
explicit its relationship with the concept of covariant equation of motion in the
presence of an external field. The representations of this group and their physical
interpretation and consequences are the subject of a subsequent paper [4].

1. Covariance (definition)

Because the term covariance is quite a much used one (and unfortunately not
always with the same meaning), let us first briefly define what we mean more precisely
by covariance and covariance group. Let therefore « be an element of some parameter
space X, € #(X) some (separable) Hilbert space of functions on X and

O(o)y(a) = 0, Yaoe X (1.1)

some (scalar) wave equation on #(X) (e.g. an equation of motion). Let now g be an
invertible map from X into itself with ga = «’. Then ¢ is called a covariant

transformation for O if and only if there exists a unitary (or antiunitary) operator ¥, on
H(X) such that

0'(g0) = V,0(ga)V; ! = O(w) (1.2)

implying of course that in the new frame, with /() = (V,y)(«) we have, for all
satisfying (1.1) |

O' ()Y () = 0. (1.1y

Note that in our case X will depend not only on space-time coordinates but also on a
potential of the external field considered. The condition of covariance (1.2) is then as
made more explicit in (4.11).

The above definition may be of course generalized to the case where Y/(a) is a n-
components wave function and O(x) is in » X n matrix form: g will be then called a
covariant transformation for O if and only if there exist an unitary (or antiunitary)
operator ¥, in #(X) and a non singular n x n matrix A, which satisfy the condition
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0'(gw) = V,0(gn)V; ! = A,O()A; ! 2y

implying the same equation (1.1)" as before with similarly y/'(x) given by (¥, y)(x).

One may verify that this definition implies that the elements g which are covariant
transformations form a group G, the covariance group. Furthermore, if the set of all
functions {(V,¥)} in #(X) does not contain proper invariant subspaces, it follows, also
from the deﬁmtlon and from Schur’s Lemma, that the set {V,| Vg € g} satlsﬁes the
extra condition

Vg' VQ' = (D(g, g’)Vggl' (13)

where w(g, ¢') is some complex number of modulus one, so that, taking into account the
associativity properties of operators on Hilbert spaces and of matrices, the set {v,}
forms an irreducible projective representation of G with carrier space #(X).

We define further g to be an invariant transformation of O, or a symmetry for O, if
g 1s a covariant transformation with in addition

0'(gx) = O(ga). | (1.4)

The essential point to note here is that for G the Poincaré group and O the operator of
an ordinary (free) equation of motion, the two concepts do coincide. This will however
no longer be so in our case: covariance embodies the property of equivalence of
reference systems (and there will thus be elements related to every Poincare
transformation) whereas invariance will be generated by the covariant transformations
which in addition leave the external field invariant. As we shall see, in both cases it will
be in general necessary to combine in a non-trivial way Poincaré and gauge trans-
formations.

2. External e.m. fields

Because they will play quite an important role with respect to our space X, let us
make first mathematically more precise what we consider as possible candidates for an
external e.m. field: an external e.m. field will be a continuous differentiable map from
the Minkovski space M(4) into the space of the real anti-symmetric (time-pseudo-)
tensors of rank two F,, with the following three properties

() Tt satisfies the Maxwell equations

’ Fuv,p+va.u+Fpuv_O
. 4n o .
Fu‘,,v 27111 ‘ (21)

Because we make, from the physical point of view, no further restriction on the 4-
currentj, the second set of equations canand will be con51dered as a definition of this 4-
current.

(i) It transforms under an element g = (a, A)!) of the Poincaré group 10(3, 1)
according to

')  We adopt the notation g = (a, A) € I0(3, 1), with (a, A)x = Ax + a, xe M(4), a a 4-translation,
Ae0@3,1), an element of the homogeneous Lorentz group, (Ax), = A}x, for covariant and (Ax)" =

(A™")2x” for contravariant vector components. In this notation the product in I0(3, 1) reads then
(a, A\, A") = (a + Ad', AN).
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(9F)u(x) = e@ALATF, (A (x — a)) (2.2)

with &(g) = sign (AJ).
This law defines obviously, by the condition

geGy ifand only if (gF),(x) = F,(x), VxeM4) (2.3)
a subgroup G, of 10(3, 1), the symmetry group of the field F.

(iii) It can be written as an integral
F,(x) = jd"kﬁyv(k) exp (tkx) (2.9

with k€ M*(4), the dual of the Minkovski space, i.e. we consider any e.m. field for
which the integral

F. (k)= (517;)4 Jd“xFM(x) exp (—ikx) (2.5)

exists, in the sense of generalized functions.

3. Invariant and covariant transformations acting on e.m. potentials

(a) Invariant transformations

Let us now, for a given F, (x), consider a potential 4,(x) as a real 4-vector field
over M(4) satisfying

A, (x) — A, (%) = F,(x) (3.1)
and transforming under the Poincaré group, correspondingly to (2.2), as

(94),(x) = e(g) Ay A(A™ (x — a)). (3.2)
It is clear that all g€ 10(3, 1) satisfying the equation

(gA)(x) = A,(x) (3.3)

will satisfy the corresponding equation (2.3) for the e.m. field, too. But, as is well
known, the converse is in general not true. It is also not always possible to choose a
potential with the same symmetry as the field: if this is well the case e.g. for a crystal
field, this is not so for a constant uniform field, as is easy to realize, or in the example of
the field of a plane wave [8], for instance.

The symmetry of the field (i.e., of the physical system) has however to be restored
in some way. This is possible, using the quite natural concept of compensating gauge: a
symmetry of the field can, acting on a corresponding potential generate a new potential
that can clearly only differ from the previous one by a gauge transformation.
Combining thus gauge and space-time transformations one obtains for each symmetry
of the field a coupled transformation leaving the potential invariant and hence an
operator commuting with the equations of motion [9-12].

The so generated invariance operator groups are then, in general, not subgroups of
the usual space-time transformation groups corresponding to the equation of motion
considered. Invariant transformations, (relating identical physical systems) are
however necessarily particular cases of covariant transformations (relating equivalent
physical systems). It is in fact on this basis that we shall now extend the just sketched
treatment for covariant transformations as well.
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(b) Covariant transformations

Let us thus now consider the case where g runs over the whole Poincaré group, and
construct in a first step a group of transformations on the space of potentials as follows:

Let Fbe an arbitrary but fixed external e.m. field and assume we have chosen some
(convenient) fixed (linear) map = from the e.m. field tensors to the space of potentials

. Fr>A. (3.4)

In order to get rid of the arbitrariness introduced together with the potential we now
want to construct a set {g* | Vge I0(3, 1)} of transformations combining gauge and
Poincaré transformations and acting on the space of the potentials in such a way that
the diagram

F—* A4
ly lg" (3.5)
(9gF)—>n(gF)
i1s commutative, i.e. such that
g*(nF) = n(gF) VgelO(3,1). (3.6)

Because of the transformation laws (2.2) and (3.2) for fields and potentials both n(gF)
and g(nF) correspond to the same field so that we have, in general,

(g(nF))(x) = (H(gF))(x) + 0x4(n(gF), x) 3.7

for some gauge function y,(n(gF), x) which may depend on x, on g, on the field Fand on
the chosen map n. This gauge function is then fixed by (3.7) uniquely up to a constant.
We may now combine, analogously as in the invariance case, any Poincaré
transformation with a gauge transformation in such a way that the transformed
potential is kept in the same fixed gauge as defined by the map n. We thus define, for any
g€l10(3, 1) a pair {y,, g} & g*, whose action on =F is given by

{1s> 9} (F) € g(nF) — 3y (n(gF), x), (3-8)(1)
so that by construction we have, as required _
{Xy» 9}(@F) = n(gF). (3.8)(ii)

The transformations defined by (3.8) do not however, in general, form a group, as
it 1s not necessarily possible to choose the arbitrary constants in (3.7) in such a way that
the gauge function associated with the product of two Poincaré transformations is the
gauge function resulting from the product of the corresponding two pairs.

It is however possible to imbed them in a larger group Q*. combining constant
gauge functions with Poincaré transformations, and which we now want to make more
explicit.

Using first (3.2) and the fact that the operator 0 transforms covariantly under the
Poincaré group, the action of an element g, € I0(3, 1) on the gauge functions in (3.7)
may be consistently defined as follows, Vg,, g, € I0(3, 1)

W(g1)x,,(n(g:F), x) = e(g)x,, (g2 F), g1 ' ). (3.9)
Using this relation and letting g, act on both sides of (3.7) one then obtains

OL(g)xg (g2 B), x)] — 0y, ((g192F), 91 ')
+ 01y, (n(g19,F), g7 'x) = 0. (3.10)
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The relation (3.10) can be integrated and one finds (after a shift in the field variable)
Xgl(TCF: x) + l//(gl)XQZ(n(gl_ IF)) x) - Xglgz(TCF: X) EAR. (311)

This expression does thus not depend on x but may of course depend on nF and on the
space-time transformations g, and g,. We shall denote this function in the sequel by
(f*(g4, g,))(nF). Rewriting the second member of (3.11) as

(912, (g1 'F), x) € L(g1)x,,(7F, X) (3.12)
one finally obtains for (3.11)
(f*G1, 2DRF) = x, (nF, x) + {(g1)2g,(TF, X) — %4, 4, (F, X). (3.13)

Denoting now by ®,, the additive group of real functions of nF generated by the
functions in (3.13), Vg,, g, €103, 1), and with product

(@1 + @2)(F) € @y(rF) 4+ @o(nF), Vo, p,€P,p, VFEO, (3.14)
where O denotes the orbit of Funder the Poincaré group, one finds that the group Q7
which is generated by the transformations in (3.8) has the following structure:

Proposition 3.1. QF is an extension of @ . by 10(3, 1) with product rule, Ve,
¢,€Prand Vyg,, g,€10(3, 1)

(@1, 91002, 92) = (@1 + g, + *(91,92), 9192) (3.15)
where f*(g,, g,) is given by (3.13) and {(g,) is defined, from (3.12) and (3.13), by
(g )o)rF) <€ e(g,)p(n(gy ' F)) (3.16)

the possible sign ¢(g,) in (3.16) being as in (2.2) and (3.9). These properties can be
summarized in the following exact sequence of groups:

0>, Q% 103, 1)~ 1,*,{. | (3.17)

Proof: That @, is normal in Q¥ and that Q¥./®,, =~ I0(3, 1) follow from the
definitions. We just have to verify that Q¥ is indeed the group generated by the
transformations g* in (3.8) and that the functions f* in (3.13) do satisfy the factor
system conditions.

For the former, defining the imbedding of g* in Q%;, Vg € IO(3, 1), by the following
map r
r'g*Er{Xg9 g}g(oa g)eQ:F (318)

the verification is straightforward. Note that the map g — r(g*)is of course nothing else
than a section for (3.17). Conversely the action of Q¥ in (3.17) on the potential
subspace defined by n, YFe Oy, is given by the mapping ¢ defined by

(o(e, 9))(nF) & g + @, g}(nF) = n(gF) o - (3.19)

where we have used (3.7), (3.8) and the definition of @ ;.

Finally, using the definitions (3.13) and (3.16), it is tedious but straxghtforward to
verify that

F*:10(3, 1) x 10(3, 1) > ®_,. (3.20)
satisfies, VFe O, and Vyg,, ¢g,, g;€10(3, 1) the identity
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S*G1,9295) + {91)f*(92, 93) =F*(g1, 92) + *(9192, 93) (3.21)

so that f* is effectively a factor system.

We shall later on explicit the structure of this group. Before we do so, we first show
that our definition is consistent, in the sense that Q. does not, as an abstract group,
depend on the particular choice of gauge we have made by fixing 7, nor on the choice of -
a particular reference frame.

Proposition 3.2. The following groups are isomorphic:

jF = :(QF) =5 QnF-t—B{(n:Fx) (322)

VgelO(3, 1) and for all differentiable (gauge) functions &(nF, x) on space-time.

Proof: The first relation follows from the fact that a change of reference frame
induces a conjugation in the r.h. side of (3.17) giving rise to an isomorphic extension.
Further, let ' be a new choice of gauge (which may also be different for different
FeOp), ie. let

A'(x) = (' F)(x) = (nF)(x) + d(nF, x)
for some gauge functions &(nF, x). We then have

(n(gF) — g(nF))(x) = Oy, (n(gF), x)

(w'(gF) — g(n' F))(x) = (n(gF) — g(nF))(x) (3.23)

+ 0&(n(gF), x) — Y(g)0S(nF, x)

where we have used the linearity of the action of the Poincaré group on potentials. It
follows from (3.23), 0 transforming covariantly under /0(3, 1), that

X' (GF), xX) — x,((gF), x) = (1 — {(g)E(n(gF), x)

up to an arbitrary (inessential) constant function of nF.
Inserting this relation in (3.13) one then obtains

(f*(91> g2 )(F) — (f*(g1, g2 N F) =0, Vg,9,€10(3,1)

so that both factor sets describe equivalent thus a fortiori isomorphic extensions. This
completes the proof.

Let us now turn to the explicit calculation of the structure of our group. As a
consequence of Proposition 3.2 we may choose some convenient gauge for the
potential, i.e. some convenient map . We therefore split the spectrum Sof the field, i.e.
the set of all £ in (2.5) for which F, (k) # 0 in three disconnected parts

S=S9,80 W

3.24
SONSH =K a#pB,a fe0,r,j (329)
with
SO = {keS|k = 0)
SO = (keS|k2 =0, k#0} (3.25)

S = {keS|k* # 0.

Note that this decomposition:is Pomcare invariant. The field F sphts correspond-
ingly to (3.25) in three (independent) e.m. fields:
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F,(x) = F9 + FQ(x) + F(x) (3.26)

where F{)) will be assumed for the sake of this work to consist in a constant uniform
field only, F{) is a radiation field, FY)) a ‘current’ field. All these fields are obviously
defined for o = 0, r, j, by

FO(x) = Jd"kﬁ “(k) exp (ikx) (3.27)
with

i (@
FOk) = {Fw(k) keS

0 else

(3.28)

As each of these fields has to satisfy independently the Maxwell équations (2.1), one
may choose for each of them a corresponding potential in a specific convenient gauge.
We define thus a map = by its action on the various parts of (3.24)

(TF@)(x) = A“(x)
with
ALO)(x) o Lx?F f,?}

AD(x) € jd“k( (l;( )) exp (ikx) (3.29)

(J)
AP(x) < j d“k( Z k,gk)>exp (ikx),

1.e. in the symmetric, radiation (or Coulomb), respectively Lorentz gauges. It can easily
be verified, using the Maxwell equations (2.1) that each of these potentials satisfies (3.1)
for the corresponding e.m. field. Furthermore, as 7 is linear, we shall then find (nF) for
the whole field F by simple addition of the various parts in (3.23), i.e.

(nF)(x) = AV(x) + AV(x) + AV(x).

We may now use this particular choice to calculate the compensating gauges
defined by (3.7) and (3.8) and then, by (3.13), the representative factor set f* defining
the extension (3.17).

Using further the transformation law for the fields (2.2) and for the potentlals
(3.2), we get, after a long but straightforward calculation, that for the three parts of the
field separately

Xg(n(gF(O)), X) = (g(nF ) (x)a* + ¢, = —%(yF(O))c,pa"x” te,
1(m(gF™), x) = J ) (g(RF™))o(x) dx° + ¢, (3.30)

1o(m(gF), x) = ¢}

where g = (a, A)eI0(3, 1) as before and where c,, ¢, ¢, are free integration constants,
which may depend on nF but may obviously be chosen to be identically zero (as giving
rise to equivalent extensions (3.17)). Further we obtain, with (3.13) and (3.30)
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(f*(@g1, g2 ((gF'?)) = HgF ™), ,(Ara,)(ar )
(f*(g1, g2))(r(gF ")) = 0 (3.31)
(F*(91, 92))(n(gF?)) = 0

Using finally the linearity of the map = and of the Poincaré transformations, the
compensating gauges and the factor set of the extension (3.17) are obtained by simple
addition of the different parts of (3.30) and (3.31) so that finally

Xo(M(gF), x) = —3(gF?),,a"x" + Jx (g(mF))o(x) dx®

(f*(g1, 92))(n(gF)) = %(QF(O))ap(Aﬂz)a(%)p-

This result solves incidentally the problem of the possible factor systems involved
by symmetry groups of e.m. fields [9]: indeed (f*(g, g,))(n(gF)) becomes then a
constant f(g,, g,), (F remaining of course unchanged under transformations of the
symmetry group) and y, is then also constant as a function of nF. We get directly from
(3.32), for all ge G (see (2.3))

x0

1(X) = —3Fa’x" + | (g(nF))o(x) dx°

f91,9:) = %Ft(r?;)(AlaZ)a(al Vs

These results look quite simple, given the large class of fields we have considered,
but are in fact quite important. They show that there are so to say three kinds of fields:
fields with sources with a Poincaré covariance; radiation fields, with a Poincaré
isomorphic covariance (but with non-trivial compensating gauges) and fields with a
non-zero contribution at the origin of the dual space, i.e. for the class we consider, fields
carrying a constant uniform part, that give rise to non-trivial extensions in (3.17).

(3.32)

(3.33)

4. The general covariance group M

In the previous section we have in a first step determined a covariance operator
group by the analysis of its action on the potential subspace defined by a fixed cross-
section n for an arbitrary but fixed external field and we have investigated some of its
essential general structure properties. The group obtained in this way may however
implicitly depend on the field we started with, as the function space @, . is generated by
the factor system f™* corresponding to this given field.

Using the obtained general explicit expression for the corresponding factor system
(see (3.32)), we may now get rid of the above dependence, letting now F run over all
possible fields and considering the most general function space generated by f*. This
function space will be denoted by B.

It follows from (3.32), that only /inear functions in the constant uniform part of the
field do occur, so that this function space can be identified with the 6-dimensional dual
vector space T A T of 4 x 4 antisymmetric contravariant real tensors. A basis for this
function space can thus be given by the (antisymmetric) external tensor product of a
basis of the Minkovski space with itself, i.e. by

E,=e, ne, 4.1)
withu,v=20,1, 2, 3,and (¢,)" = J,. An arbitrary element B of B can then be expressed
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as

B= Y B"E,, B“e® Vuv | 4.2)

“,v

The group structure of B being generated because of (3.14) by the (additive) product of
the real line, we have

(B, + By)™ = BY" + BY.

An element of the general covariance group M can thus be written as a pair {B, g,
BeB, gel0(3, 1) with product

(B,g)<B,g'>=<B+{g)B + Alg,9), 99 (4.3)
where, as follows from (3.16), B’ transforms under g as a contravariant tensor, i.e.
(@B = (A" )UA™ B )™ (4.4)
and the general factor set 4(g, g') can be obtained from (3.15) and (3.32) as given by
A(g, ') = 3[(Aa') A a?] = i[(Ad')a® — (Aa'YVa’]. (4.5)

In other words, M appears as an extension of B = #° by I0(3, 1), i.e. the following
sequence of groups is exact

0>B—>M—I103,1)—1, 4, (. (4.6)

The relation between QX-and M, for an arbitrary e.m. field Fcan then also be seen,
using the preceding definitions and results, to be as illustrated in the following
commutative diagram of exact sequences

0 » B M —10(3,1) > 1,4,
SN @
O B O8— 103, 1} —1, /% £

where p. is an epimorphism whose kernel is given by the elements of B which as
functions of nF, i.e. as mappings

b:1(0,) — R (4.8)

where b(nF) = B-F© = B*F® ¢ 4, vanish identically on O.
Similarly one may obtain directly the action of M on the potential subspace
defined by = for a given F by the following homomorphism X (compare with (3.19)):

(<B, g))nF) & {3, + b, g}(nF)
= g(nF) — 0[x,(n(gF), x) + b(n(gF))]
= n(gF)
where we have used (3.8) and (4.8). The covariance operator groups QX appear thus,
for each field, as representation operator groups of the general covariance group M as

acting on the potential subspace defined by n and F.
For clarity we define here the physical representations of M, as mappings V

V-M— U(HK)

from M to the unitary/antiunitary operators of some separable Hilbert space # (to be
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specified later on) of (here scalar) functions ¥/(x, nF) depending on x and (via 7), on the
field . The mapping V is explicitly given (for ge PT) by

VB, g)W(x, TF(x)) < exp {—f% [B-gF® + y,(n(gF), x)J}

x Y(g™'x, nF(g~'x)) (4.9)

with y (n(gF), x) as found in (3.32). If the functions ¥(x, nF) describe the states of a
charged particle in the external field F, and thus obey some equation of motion,
represented by a linear differential operator O on #, we have

O(x, tFWY(x, nF) =0,  VxeM(4). (4.10)

From Section 1, and by definition of our group, O will be a covariant equation of
motion if and only if it satisfies the condition

V({B, g9)0(x, nF)(V({B, g7))" ' = O(g™ 'x, n'F)
= O0'(x, nF) = O(x, ngF).

The equation (1.1)" tells us now that if Y¥(x, nF) is a solution of (4.10),

V({B, g2 (x, nF) = O(x, ngF)
is then a solution in the new frame thus satisfies the equation

O(x, ngF)P(x, ngF) = 0. | (4.12)
Using these relations and the fact that, by (3.13), (3.32), and (4.5)

A(9,9')-99'F = f*(g, g'Nn(gg'F)) = y,(n(gg'F), x)
+ l!/(g)Xg’(n(g,F)s x) - ng'(n((gg’)‘F)s x) (413)
one may verify, after a short calculation, that

V((B, g)<B', g))W(x, nF) = V({B, g2)V({B', g ))¥(x, nF) (4.14)

so that V'is indeed an homomorphism and J# is a representation space for the general
covariance group M. In analogy with the free particle case, the quantum system
described by this space will be called an elementary particle in interaction with the field
F, if it is irreducible.

As a general result, we have thus found that in the presence of an external e.m.
field, the relevant covariance group is no longer the Poincaré group but contains the
Poincaré group only as a factor group. Since our approach is in fact independent of
any specific equation of motion it will be interesting to analyse more in detail the
structure of this group M and of its representations. It will be possible in this way not
only to obtain information on the covariant equations of motion in the presence of an
external field but also to extend usefully the group theoretical definition of an
elementary particle for this case where, as in a new world, an external field is present.
This will be done in a subsequent paper [4].

(4.11)
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