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On the formation of droplets in supersaturated systems

by Hans Rudolf Tschudi

Institut de Physique Théorique, Université de Lausanne, CH-1015 Lausanne, Switzerland
(9. IX. 1976)

Abstract. The formation of droplets in a supersaturated vapor is described by a set of chemical
reactions. The reaction kinetics are treated in the framework of the thermodynamics of irreversible processes.
We emphasize the difference between homogeneous nucleation (the formation of pure droplets from
supersaturated vapor) and heterogeneous nucleation (dirt nuclei collect water and grow) because different
sets of chemical reactions are involved. We first derive the kinetic equation for heterogeneous nucleation
which is identical with the equation of Zeldovich and Frenkel [6], [4] usually accepted for homogeneous
nucleation. The kinetic equation, together, with suitable boundary conditions, form a well defined initial
value problem which we discuss for constant undersaturation or saturation and for constant supersatura-
tion of the vapor. The time evolutions for some simplified models are calculated explicitly. In the second
part of the paper, homogeneous nucleation is discussed. We derive the kinetic equation for homogeneous
nucleation, and starting from it, an integral equation for the nucleation rate which we solve for a simple
but realistic model. We then determine the stationary nucleation rate of the kinetic equation. Our result
contains the Becker-Doring nucleation rate [3] as a special case.

I. Introdliction

The theory of nucleation is not a very old science. The pioneering work of
Volmer and Weber [1] dates back to 1926. They measured the nucleation rate (the
number of droplets formed per second in a supersaturated vapor) and observed a
characteristic behaviour: no nucleation occurs if the supersaturation stays below a
critical value, above this threshold nucleation becomes very strong. Volmer explains
this in the following way. The amount of Gibbs free energy necessary to form a
droplet from the supersaturated vapor has a maximum at Kelvin’s critical radius ry
(A derivation may be found in textbooks of thermodynamics. See f.i. [2]). This
means that a droplet of radius r is metastable. Smaller droplets decay, bigger droplets
grow. The nucleation-rate is determined by the frequency of density fluctuations
generating droplets of overcritical size.

I do not find Volmer’s theoretical explanation satisfying. His rather quahtauve
considerations determine the nucleation rate only to within a factor which is difficult
to estimate. But the main objection is that density fluctuation in a pure phase and
(local) phase transitions are two different things which should be kept apart. I do not
think that droplets are formed by density fluctuations (see Section IIL.5 for a detailed
discussion). '

A more satisfying nucleation theory was proposed by Becker and Doéring [3].
They considered that droplet formation is governed by a set of coupled reaction
rate equations for evaporation and condensation on the droplet, and they evaluated
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the solution for a particular stationary process. I think that their result is correct in
principle, but the derivation must be criticized. The authors treated only a very
special problem with methods which seem to be chosen ad hoc. The significance and
the consequences of their assumptions are, therefore, not clear. The connection
between their stationary process and real nucleation experiments is not at all obvious.
The derivation of the nucleation formula is obscured by the fact that some results
of an equilibrium theory are used but no consistent thermodynamics of fog is de-
veloped. Their thermodynamic considerations are, in fact, wrong. The vapor pressure
of a droplet in fog depends not only upon the radius of the droplet but also on the
number of droplets of a given size (see equation (11.5)). However, this causes only a
minor influence on the final result.

Lord Kelvin’s statement that a droplet can never be in equilibrium with the
vapor inhibited the development of an equilibrium theory of fog for more than 60
years. Fog was considered as caused uniquely by the presence of dirt nuclei. It was
J. Frenkel [4] who remarked that nevertheless an ensemble of droplets could be
. thermodynamically stable and that ‘even in the range of thermodynamic stability
of the phase A, the latter is not strictly homogeneous, but contains embryos of a
second phase B (in the form of liquid drops, gas bubbles, small crystals, etc.)...’
([4]. p- 382).

Frenkel’s thermodynamics of fog are based on the following ideas. A liquid
droplet containing j molecules of the gaseous phase A4, is itself considered as a
molecule of a new substance 4; and fog as a mixture of all these substances. Con-
densation and evaporation on the droplets are described by a set of chemical reactions
between the different substances 4, (j = 1). The conditions of chemical equilibrium
yield the concentration of the droplets of a given size. They turn out to be bigger
than zero (but very small in practice) ; fog is stabilized by the mixing entropy. Frenkel’s
thermodynamics of fog is critically revised and extended in Reference [5].

Frenkel does not go beyond Becker and Doring’s work as far as nucleation
theory is concerned. Starting from the same set of equations, he derives a differential
equation for the time development of the number of droplets which was found
independently also by J. Zeldovich (Reference [4], p. 393 and [6]). Frenkel and
Zeldovich reproduce Becker and Doring’s nucleation formula by considering a
stationary solution of the mentioned differential equation on which they impose
particular boundary conditions. They do not justify the special choice they make.
It is shown in this paper that a justification is in fact impossible because they started
from a wrong equation.

Becker—-Doring and Frenkel-Zeldovich based their nucleation theory upon a
kinetic theory of condensation on a single droplet. We propose in this paper a
different scheme, namely, to take seriously Frenkel’s idea to consider fog as a mixture
of different chemical substances in which chemical reactions take place. In a previous
paper [5] we discussed the thermodynamics of fog and found an expression for the
Helmholtz free energy of fog. This allows to treat the kinetics of the chemical reactions
describing the droplet formation in the framework of the thermodynamics of irre-
versible processes.

This phenomenological approach provides some advantages compared with the
purely kinetic treatment mentioned above. In a phenomenological theory the
assumptions and restrictions are formulated in a language near experiment and the
theory itself has a simple structure. The general form of the equations can be gained
very easily. It is true, though, that only a kinetic theory can predict the numerical



Veol. 50, 1977 On the formation of droplets in supersaturated systems 287

values of the proportionality coefficients which occur. We determine them con-
sequently by comparing the phenomenological with a kinetic treatment.

In the phenomenlogical approach it becomes clear how one has to account for
the two different types of chemical reactions which mainly occur in fog: (i) Growth
of the droplets by successive accumulation of vapor molecules; (ii) Instantaneous
formation of a droplet out of the vapor. The first set of reactions does not change the
total number of droplets, it alone determines heterogeneous nucleation (i.e. how
dirt nuclei collect water and grow). The second set of reactions produces droplets.
Both types of chemical reactions contribute, therefore, to homogeneous nucleation
(1.e. the formation of pure droplets from supersaturated vapor).

These considerations indicate that one should treat separately homogeneous
and heterogeneous nucleation. The usual kinetic equation (I1.7) of Zeldovich and
Frenkel describes only heterogeneous nucleation. We shall have to find another
equation for homogeneous nucleation.

In Section II, heterogeneous nucleation is discussed. We derive the kinetic
equation (I1.7) for heterogeneous nucleation together with the appropriate boundary
conditions (I1.15) for the distribution function of the droplet sizes. A modification
occurs because we account for the fact that the condensed vapor has to be transported
through the atmosphere. This effect becomes important for water droplet in air if
the droplet radius exceeds 5.107° m.

The differential equation of Zeldovich and Frenkel and the indicated boundary
conditions form a well defined initial value problem. In Section II.3, we discuss the
time evolution of the spectrum of droplet sizes when the degree of saturation of the
atmosphere is held fixed. In the case of saturation or undersaturation the droplet
distribution converges towards its equilibrium value. For constant supersaturation
the spectrum of droplet sizes falls to zero if time goes to infinity, but the total amount
of water increases infinitely. The time development for some simplified models is
explicitly calculated. |

In section 1.4, we establish a set of equations for the development in time of the
mean value of the droplet size. These equations may be useful for numerical
computations.

Homogeneous nucleation is discussed in Section III. We derive the kinetic
equation (III.14) for homogeneous nucleation and starting from it, the integral
equation (III.18) for the nucleation rate (Section III.2). We solve the nucleation
equation (III.18) for a simple but realistic model.

In Section II1.3, we determine the stationary nucleation rate of the kinetic
equation (III.14). Our result contains the Becker-Doring nucleation rate [3] as a
special case. The stationary nucleation rate is derived under the assumption that
only the very smallest droplets are formed directly from the vapor and that all others
grow by successive accumulation of single vapor molecules. This contradicts Volmer’s
statement that overcritical fluctuations should be responsible for nucleation. These
questions are discussed more closely in Section III.5.

In Section III.4, we calculate the stationary nucleation rate for the droplet
model given in Reference [5]. We compare the result with experiment and determine
the constant V* which was indetermined in the previous paper.
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II. The kinetics of heterogeneous nucleation
II.1. The kinetic equation

In Reference [5] the following expression for the Helmholtz free energy F of
fog was derived (see equation (III (3.2) in Reference [5]. For simplicity, we consider
here only one kind and one size of dirt nucleus. Generalizations are evident):

F = FyT, VO,NO,NB)+Zf{ (V T, Vf,ﬁ ]IZ)JrkT(lnf - 1)}

(IL1)

F, denotes the free energy of the atmosphere, V), its volume, N, the particle
number of the water vapor, Ny the particle number of an inert gas, which eventually
may be present in the atmosphere, f; is the number of droplets containing j water
molecules. F; is the Helmholtz free energy of a droplet of size j in contact with the
atmosphere and movmg in the volume ¥V, V; denotes its volume. Explicit expressions
for F; are given in Reference [5].

The chemical potential 4’ of the water in the atmosphere is given by the equation

OF or;
0) _
7 =po+ D iz (I1.2a)
4 aN OI|f,Ng. T,V s Z aNO N, T,V
oF
Ho = 2 (I11.2b)
aNO Vo, T,NB

An expression for the chemical potential xY of the water in a droplet of size j
can be obtained by the following consideration: if we add a molecule to a droplet of
particle number j keeping fixed the number of water molecules in all other droplets,
we change the number of droplets j from f; to f; — 1 and f;,, to f;,; + 1. The total
volume

V="V, + SV
Jj

of the system remains unchanged. Assuming that the system is always in mechanical
equilibrium, we obtain

oF oF 0
) — 4 - = —(G, + kT'lnf, (L3)
Ha (afjtl af;) No,Ng,V,T aj( ! fj)
where
oF;
G,=F, — V"’aV-

In equilibrium
Wy = ug
and the droplet number f; is proportional to 4; defined as

A; = exp kT(],u‘O} G)) (11.4)
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We consider the difference uf’ — u9 as a ‘driving force’ which moves the
distribution f; toward the equilibrium value. The rate of condensation 7; on a droplet

containing j molecules is given by
() I (1)
' D, Ha = Ka _

an/

J

We derive an expression for the proportionality function D; in the following section.
The droplet current /; is defined as

. o (1,
L=nf;= =D g (;lfi) (IL6)
: j

We now consider the variable j as continuous.
Because the number of droplets is conserved, the continuity equation yields:

P I YOO V(Y
PUCDE ajI(J)—”a“j(D(JM(JJ ST I)) (IL.7)

This equation was derived by Frenkel [4] with purely kinetic arguments and
under the assumption, that 4 defined by (IL.4) is a steady state solution. This assump-
tion is clearly justified for systems below saturation. In the case of supersaturation
A(j) corresponds to an infinite number of droplets per unit volume, which requires
justification. In our approach A(j, £) has not primarily the meaning of a steady state so-
lution (It is a result, the fproportional to 4 are stationary solutions of (I.7)) but it is a
mere abbreviation. x4, 4!’ and consequently the 1 may depend upon time. The
degree of supersaturation will be lowered in general by the condensation of water on
the droplets.

Equation (I1.7) is usually proposed to describe homogeneous nucleation (see
f.i. [7]). We propose it for heterogeneous nucleation. For its derivation, only pro-
cesses are taken into consideration which conserve the number of droplets (see Section
II1.1 for a detailed discussion of this point).

I1.2. The function D( )

We obtain an expression for D(j) by comparing the phenomenological descrip-
tion with a simple kinetic model [8] of condensation. We suppose the molecules of
the liquid phase to be in a potential well of depth U, with respect to that of the gas
molecules. The velocities of the molecules obey Boltzmann’s law. We denote by v
the component of the molecular velocity perpendicular to the surface separating
the liquid and the gas which we assume to be plane.

Molecules in a surface layer of depth |v| df moving from the liquid toward the
gas with a kinetic energy exceeding U, can escape into the gas with probability w,
during the time dt. The current i, _, , of particles from the liquid into the gas given by

: m |® _ kT
hg=wn || dwe ™ =yn [—e
2nkT ) pp2ja= v, 2nm

—Uo/kT

The molecules of the gas moving toward the liquid are absorbed with probability

w. The particle current i _,, from the gas into the liquid equals

g—l
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' m o 3 kT
i, =wn dov e ™ 2T = ywp [
2 ’ \/21:ij0 9\ 2mm

n,, n, are the numbers of molecules per unit volume in the liquid and in the gas. The
net current is

=i, —h,,=wW \/—(n un (1I1.8)
where
w _
n = —L p, e~ VolkT
w

is the saturation density determined by the equation i = 0.

We now calculate the difference of the chemical potentials of the liquid and the
gas for two cases:

(a) for pure vapor considered as an ideal gas. The saturation pressure p>(T) is
defined by the equation

1%, T) = w(@° T)
Developing p, around the saturation pressure, we get

—1—( — i L oty
kT =TT op
(b) for a mixture of vapor with an inert gas B under the assumption that the

density of the vapor n, is much smaller than the density np of the inert component B.
One can show that in this limit

n n, .
)=t o)

with ¢ > 0 and ¢ a function of the pressure and the temperature only (see appendix B
of Reference [5]).
Setting

S
n, I’lg

S
ng

(p—ps)=

1 n
ﬁ(l‘l‘g — W) = lnn_g s : (I1.9)

g q
we find from equation (II.5, 8, 9) for a droplet of radius r that

kT
2nm

forw =1, equation (I1.10) is identical with Frenkel’s result [9].

The current in the atmosphere is a diffusion current and the density n, is different
on the surface of the droplet and away from the surface. Assuming Spherlcal sym-
metry, we obtain the stationary current

n, . ony

] = =

47r? or

where 6 denotes the coeflicient of diffusion.

S

D = 4ar’y with y = wn} (I1.10)
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Integrating the last equation yields:
n.
n,(r) = n(o0) — —2
o) o) 4nrod
Equation (II.8) refers to the density n,(r) near the surface but equation (II.5) contains
the chemical potential of the atmosphere which is characterized by ,ug(n (00)). We
must calculate the condensation current n; as a function of n(c0) — n

_ S
n; = 4nr2x(1 + rx) ng(oo)s "y

5n§ n,
and get from equations (I1.5, 9)
=
D= 4nr2x(1 + rL) (IL11a)
with
0 [2mm
N (I1.11b)
and
4
= _g rin, — j* (I1.12)

The constant j* accounts for the dry volume of the nucleus. If the radius r of the
droplet is smaller than r,, formula (II.11a) is identical with formula (I1.10). The
effects of diffusion become important for droplets bigger than r,, and slow down their
growth.

For water in air at 7 = 300° K and p = 10° dyn cm ™~ ? the above constants are:
w = 004 [10], § = 0.26 cm? sec™ ! [11], p¥ = 3.7 x 10* dyncm ™2, [12] which
yieldlz r, =45 x 10"%*cm, y = 5.3 x 102°sec™* em~2, and D(r,,) = 6.7 x 10'*
sec” .

It would be more realistic to include the effects of the heat produced by con-
densation. One must then allow the temperature 7(j, ¢) of a droplet of size j at the
time ¢ to be different from the temperature T of the atmosphere and A(j, #) would
depend on time. The law of heat diffusion yields a second equation connecting
f(Jj, ©) and T(j, 1) and one has to determine simultaneously fand 7. This is a much
more complicated task than to determine f(j, #) alone from the kinetic equation
(II.7) when A(j) is independent of time. We, therefore, consider first the simpler
problem.

11.3. The time evolution of the droplet distribution f

We assume in this section that the function 4 defined by formula (I1.4) does not
depend upon time. It is then convenient to write equation (IL.7) in the variable
: SR
Agdl =
A(J)

which yields the equation

(I1.13)

d 1 o
ggy(j, 1) = O (D(J)/l(J) - y(Js t)) (I1.14)
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How does a given initial distribution y( j, 0) develop in time ? We first remark
that the initial value problem is not defined properly by equation (II.14) only. One
has to specify the boundary conditions atj = 0,7 — oco. Equation (I1.7) shall conserve
the total number of droplets. We require, therefore, that

© 0 .
j 45 S0, 1) = 1(0) — I(0) = 0
0

We do not add dry condensation nuclei (i.e. /(0) = 0) and the natural boundary
conditions become

0
lim D(J')?L(j)a—jy(j, 1) =0 (IL.15)
i”%

We show in the Appendix A, that the distribution y(j, #) achieves a constant
equilibrium value different from zero if the system is saturated or undersaturated
and that the distribution y goes to zero as ¢ goes to infinity in the case of super-
saturation. The initial value problem (II.14) with the boundary condition (II.15)
can in general not be solved analytically. This is, however, possible for some especially
simple forms of A(j). These functions nevertheless represent the typical shape of 4
obtained from droplet models (see [5]) and can yield some useful information.

A. Saturation and undersaturation. The function A has in this case a very narrow
maximum at some droplet size j,. Therefore we replace

() = e ¢ ‘ (I1.16)

by
1 d?
A(Jo) exp ( = Eﬁé (J — jo)z) (IL.17)

and the function D(j) which varies slowly in comparison to 4 by the constant D( j,).
Equation (II.14) is then written as

Jo

5 1 2 a — 2 a
a—ry(x, 1) = 5 e’ o (e x é-;y(x, r)) (I1.18a)
with
1 d*¢
x= =22 (j=Jjo) (I1.18b)
\/2 @) |}, 0
and
d*¢
T = D(jy) o | ¢ (I1.18¢)
CIM
The ansatz
Vo =€~ e u,(x)
yields
dz

— (dT)z ug, —+ xzuw = (2(1) + l)uw
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which has bounded solutions only for w € {0, 1, 2, ...}. The longest relaxation time
of the system is
dz¢ L )—1
t, = (D) =2 (IL.19)
1 ( 7 @7 |,
For fog around soluble nuclei ¢(j) equals
() = oj + 9** — slnj (I1.20)

if j » s, s being the number of molecules or ions of the soluble dirt nucleus (see [5]).
The symbol o represents the difference between the chemical potential of the liquid
and the gaseous phase, measured in units k7. It is

1
@ = (p, T) — up, T) (IL.21)

The degree of saturation is characterized by a. « > 0 for undersaturation and o < 0
for supersaturation. The effect of surface tension is included in y, which is given by

4r\173 gv?/3
= 3] = ! 11.22
y ( 3 ) T (I1.22)

where ¢ is the surface tension and v, the volume per molecule in the liquid. We can
neglect the constant j* in (I1.12), which is of the order of s « j.

y =~ 8 for water at 300° K which yields at saturation (« = 0) and fors = 1.6 x
10"° (see Reference [ 5], Section I11.3. This value of s corresponds to j, = 1.6 x 10'%):

t; = 1.2 x 10° sec (I1.23)

B. Supersaturation. As already indicated, the distribution goes to zero in this
case and one has, therefore, to pose slightly different questions. An interesting
quantity is the time dependence of the total amount of water condensed in the
droplets '

A1) = j: dijf(J, 1) (11.24)

An eigenfunction expansion is inefficacious, since all expansion coefficients decrease
in time; whereas, we expect A, to grow. This means that the two integrations in

Ay(1) = r) djj Jw dw e™c(w) f,(J)
0 0

cannot be interchanged (c(w) are the expansion coefficients of the initial condition
f(Jj, 0) with respect to the eigenfunctions f,(j) belonging to the eigenvalue w of the
operator A defined in Appendix A). One has to know the propagator of the initial
value problem (I1.7.15):

S, = jw dl K(j, 1, 8) f(l,0) (11.25)

0

The kernel K of the propagator is determined by the properties
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0 0 0 (1 ,
lim K(j, 1, §) = 8(j — 1) (I1.26b)

tl0

0
lim D(j)A(j) 3

J—+g,

(K(j, )
ACJ)
The conservation of the total number of droplets implies

) =0 Y,t=0 (11.26¢)

J diK(jl,by=1 ViI>0,t=20 (I1.27)
0

The boundary conditions

_ 0 (K : .

lim DA—(—=|=0 and Im K(j, /., t)=0 (I1.26d)

are equivalent to the conditions (I1.26¢) because the equations (I1.25, 26a, 26b, 26d)
determine the kernel uniquely (see Appendix B).
We also prove in Appendix B that

KG,LH>0 VilLt=0 (11.28)

under conditions which are specified there. The inequality (I1.28) is valid for all
kernels that we use in this paper.

For a supersaturated system A(j) has typically a very sharp minimum at some
place j,. We distinguish two cases: j, > 0 and j, = 0.

Bl:j, >» 0
We proceed as in A: We replace D(j) by a constant D, and A(j) by
Mjo) exp 3a°(J — jo)* a >0 (11.29)
Furthermore, we extend the range of j from — oo to + 0. The kernel is then given by
_ T2
K(x, z,7) = (n(e* — 1))~ 12 exp — (Xez—fell (I1.30)
where the new variables are defined as
a
=—=(—-J I1.31a
a .
zZ = ﬁ (- Jjo) (I1.31b)
T = Dya’t (I1.31c)
Using the kernel (I1.30), one can write equation (II.25) in the form
+ o
fx, 1) = e"n_"zj dze % f(z(1 — e 292 4+ xe™ ", 0) (11.32)

which clearly illustrates how the distribution flattens and spreads out.
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We define A, by
A, = f dij"f(j. 1) (11.33)
0
Equation (I1.32) yields
A1) = joho = Ay(0) — joA,) exp (Doa®l) - (I1.34)

The exponential growth of the water content of the droplets is not realistic as we shall
show in Section I1.4. The function A( ;) is rather proportional to exp (— o) (x < 0)
than to exp (a*/2)j* for j > j,.

B2:j, =0
We replace again D(j) by a constant D, and A(j) by
A0) e (I1.35)
This choice of D and A leads to the kernel
K(¢, @,1) = (4n1)" V% exp — S j: o
0 o @+ E+y+ o) (11.36)
— z%{e‘: (4mt) 112 L dy exp — — i }
with the new variables
& = qj (I1.37a)
©=al . (I1.37b)
1 = Dya’t (I1.37¢)

The first term in formula (I1.36) is the ker;lel for the extended interval —oo < &,
@ < + 0.
We deduce from the kernel (I1.36) that

A (D) = A (0) + aDyAyt(1 + O(e™Pory) - (I1.38)

A comparison of equations (I1.34) and (I1.38) shows that the function A,(?), -
denoting the total amount of liquid condensed in the droplets as function of time,
depends very sensitively upon the form of A( j). It is very hard to calculate analytically
the kernel for a more realistic shape of A than for that given by equations (IL.29, 35).
In the following section we evaluate the quantity A, directly from the differential
equation (I1.7).

I1.4. The time evolution of the moments of the droplet distribution f( j, t)

Equations (I1.27, 28) indicate that the time evolution (I1.25) transforms a
probability distribution into a probability distribution. We establish in this section
a set of equations for the development in time of the mean value of the droplet size
with respect to the droplet distribution (which we consider in this section to be
normalized to one). We denote the mean value of the droplet size by

x(2) = (1) ' (I1.392)
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higher moments by

A =j—x()"> (@) neNnz=2 (I1.39b)
Using equation (I1.7), we obtain the relation

°° 10
X(1) = dj [~ (DA
(1) f i1 5P

(= %)

if we assume that the integrated parts

= 0

can be neglected. A Taylor expansion of A~' d/dj(D2X) yields the (formal) series

<0

Df

0

= 11.40
where the function gb equals
1
/ 11.41
VD =35 ® (D)) (IL41)
Neglecting again the integrated parts, one obtains similarly
1 = A d'
4 — A . ntl-2 Ayii—y
n An X n—1 + I;O (n 1) l! (d )[ (x) + ;o l' (dx)l l//(.X)
(I1.42)

forn>2(A, =1,A, =0).

If we now start with a distribution f( j, 0) for which in equations (I1.40, 42) the
A, with n bigger than some number N may be neglected, equation (I1.40) and the
equations (I1.42) with 2 < n < N determine x(7) and A, with 2 <n < N. The
equation for Ay,, can serve to test the validity of the assumption that A, with
n < N can still be neglected after a certain time.

If we start for instance with a J-distribution all A, = 0 and we use

X = Y(x) (I1.43)
The equation

« d? dy

A, = 2D(x) + ((d X D+ 2 dx) (I1.44)

together with the condition
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M) (s G0 | < wato) (11.45)

may serve as test for the validity of (I1.43).

We now discuss briefly equation (I1.43). It is very reasonable to assume that for
macroscopic droplets (x > 1019)

d
o In A(x) = —

where o is given by (I1.23b). (See f.i. [5]). Furthermore,
d D
aD(x)-— 0(;) & |oD|

D being a smooth function of x. We choose
U(x) = —aD(x) (I1.46)

The function D(x) is given by equations (I1.10, 11, 12). With this choice of Y equation
(I1.43) can be easily integrated and yield

1
0+37 = -0 1L.47)
with ¢ defined by
= r (I1.48)

cr

and y, r.. by equations (IL.10, 11b). v, is the volume of the liquid per molecule.
The constant v;yr, +' = 35s7! for the example discussed at the end of Section II.2.
We note that q is proport1onal to the condensation rate per unit area of the surface
of the droplet.

Within the approximation (11.46) equation (I11.44) can be written as

4 M) = — 2 — 29D 2 (11.49)

which yields (x, = x(?)],- )

Ay(x) = — §D‘2’“ (x) Jx dx' D*(x") (11.50)

and

2 1 f2\% d D’
Ax) = — &(x — Xo) — 5(;) (x — x,)? alnD + O(,—D_ (x — x0)3)

by a power series expansion of the integrand of (I1.50). Observing that

4 "

D S D
=07 5 =067
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we get for the inequality (I1.45) that

2

<x (1L.51)

ox ox

Equation (I1.51) is fulfilled for the values of x and « (x » 1, 1 < a < 2) in which
we are interested.

The reader may check that the equation (I1.43) reproduces the formulas (11.34)
and (I1.38), if he inserts into (I1.41) the forms of A(j) given by formula (I1.29) and
(I1.35) and replaces D(j) by the constant D,,.

The main advantage of the approach outlined in this section is that it con-
ceptually leads back to a simple one-droplet-picture: it is enough to study the
behaviour of a droplet which represents the mean water content per droplet. Its
evolution is given essentially by equation (I1.43). It is very satisfactory that the
statistical effects disappear for macroscopic droplets as a consequence of equations
(11.46) and (I1.51).

The set of equations (I1.40, 42) is suitable for numerical calculations.

III. The kinetics of homogeneous nucleation

II11.1. The kinetic equation

‘Homogeneous nucleation” means the process of the formation of droplets
from a supersaturated vapor without condensation nuclei. We derive an expression for
the kinetic equation using Frenkel’s idea to consider droplets containing j molecules
themselves as molecules of some substance 4 jand fog as a composed system in which
chemical reactions take place. These reactions are described by the equations

Za;/ljzo re N dieZ (II1.1)
J

The state of the r-th reaction is indicated by some reaction parameter ®". The ®@" are
the independent particle number variables. The number f; of particles in the substance
A; 1s given by

fi=f0+Yaw (111.2)

The differential of the inner energy U of the system is
dU =TdS — pdV + ) p,;d; d0’
Jr

In equilibrium, the activities
of =) ud
j

are zero.
If we keep the volume V and the inner energy U fixed, a change of the entropy
is caused by the chemical reactions and equals

dS do’

1
_d—t —_ 712'_: 0.4 _CZ‘- : (1113)
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In accordance with the thermodynamics of irreversible processes, the ‘currents’ are,
in a first approximation, linear combinations of the ‘entropy conjugated potentials’
T~ 'a" given by

do" o O
y ; L = (111.4)
in which the matrix of the coefficients is symmetric (Onsagers relations) [13].
Considering homogeneous nucleation, we have to account for at least two sets
of chemical reactions:
(1) the growth of droplets by successive accumulation of single vapor molecules.
These processes are described by the reaction equations

Ajyy —4;,—A4,=0, j=2 (II1.5a)
with reaction parameters
oIt (111.5b)
and activities
2t = aﬁF _ g; _ (IIL5c)
j+1 j

The Helmholtz free energy is given by equation (I1.1), ¢ by (I1.2) and
oF

el =10, : ' - (1116
7|, G, + kT'Inf, (111.6)
11) the direct formation of a droplet containing j molecules from the vapor:
A;—ja, =0, j=2 (I1L.7a)
with reaction parameters
o, (I11.7b)
and activities
. OF |
o) = 7, uQ (I1L.7¢)

We immediately get from the definition (I11.2) (d/dt = -) that
f 2 = (D% - 4’%

o, 1118

fi=di+ @ - gl i3 (L=

and

Ao=Y fi=3 & (I11.9)
j=2  j=2

- The equations (II1.5) determine heterogeneous nucleation. The equations
el =t —af =0, j=2

determine the equilibrium distribution only up to a constant which is given by the
total number A, of the nuclei. This is an external parameter of the system for hetero-
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geneous nucleation. In the case of homogeneous nucleation at least one equation
of the type (IIL.7) is present, forcing the o to be zero in equilibrium and yielding so
the result obtained in Reference [5]:

e 1
fi(equilibrium) = 4; = exp T (u, — G))

We now get the kinetic equation for homogeneous nucleation specifying
statement (II1.4) by postulating that the reaction rates @}, ®, depend upon the
activities o}, o} in the following manner

& = — k—}a{ (IT1.10a)

D, = — ﬁajz (IT1.10b)
We assume that the matrix L™ in equation (III.4) is diagonal, i.e. the chemical
reactions are completely decoupled. We justify this postulat by showing that (II1.10)
agrees near equilibrium with the reaction equation obtained by kinetic considerations
for dilute gases. This comparison will furnish the coefficients d;, ¢; (up to an am-
biguity which is inherent in the method).

An elementary probability consideration leads to the following kinetic equation
for the reaction (II1.5a)

B = gt e o= & fisn (TIL.11)

where n, = Ny/V. The coefficients d]” and d; can in principle be calculated from
the intermolecular potentials. A stationary solution of (III.11) is given by the
conditions

dising f7 = divy fiv
and equation (II1.11) is near a stationary solution nj, f7'

Ny _ of'; of; onm
Ot = — 4; f A (_ it1 i ~°)
1 _]+1 j+1 js+1 st nf)
where

But one has on the other hand for small deviations on, and df; the relation
ofir  Of; onp  af"?

s s s

because )= kT In n, up to a constant not depending on n, for a dilute gas if
one neglects the dependence of G; on n, in equation (II1.6). We may, therefore, take

= dingf;-, or d,=d (IIL.12)

in equation (II1.10a). The two prescriptions are equivalent near equilibrium. We
choose the second expression to get back equation (II.7).
The kinetic equation corresponding to the reaction (II1.7a) is

b = etV — "
D), = ¢ Vny — ¢ f
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which leads to the identifications
c;=cj f; or ¢;=c]Vn

which are again equivalent near equilibrium. Since we are interested in studying the
formation of droplets, we propose

¢c; = Vejnl (II1.13)

The equations (II1.5, 6, 7, 8, 12, 13) finally lead to the kinetic equation for
homogeneous nucleation (c(j) = ¢;)

0 A (o 31D A
5700 = 2400t 0 (BN + vetpm(1 - 5E8) g

Being in the framework of a linearized theory, we have replaced in equation
(III.14) In x by x — 1. One avoids so an artificial singularity for f = 0.

The boundary conditions at j = 0, j — oo are the same as for the equation (I1.7)
of heterogeneous nucleation: the production rate of droplets is given uniquely by
the second term of equation (I11.14).

Because only very small clusters are likely to be produced directly from the
vapor, we replace

Ve(jmh by C8(j — 0%) (II1.15a)
where
0(j —0") =1lim é(j — ¢) (IT1.15b)
€l0
and
C= Vf dj c(jnd (II1.15¢)
0

(See Section I11.4 for a justification). C'is the total current of direct droplet production
from the vapor. But the effective production rate

N I I 110, 2
A1) = L dj a:ﬂj’ 1) C(l 0. t)) (I11.16)
is smaller than C, because some of the droplets reevaporate.

Elementary kinetic and thermodynamic considerations yield the function D( )
and the function A(j) up to a constant factor [5]. The constant C can be evaluated in
a kinetic theory. (We do not calculate C in this paper.) The only quantity which is
hardly accessible to theoretical calculations is A(0). We use A(0) as fit-parameter.

II1.2. The nucleation rate

We assume in this section that the supersaturation of the system is held constant.
With the help of propagator K of the equation (I1.7), we express a special solution
of the inhomogeneous equation

of @ d .
a3 5(3)) oo
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in the form

t e o]
Jdﬁ'wmﬁawwwug
4] 0

The solution of equations (I11.14, 15) to the initial condition f(j, 0) = 0 obeys the
equation

AR J ds K(j, 0%, 1 — 5)Ay(s) (I11.17)
0
and the nucleation rate A, is determined by the linear integral equation
t
wit) =1— j ds h(t — s)u(s) (IT1.18a)
0
where
A,
= — II1.18b
u="Z (1L 18b)
and
h(t) = LK(O* 0%, 1) (I11.18¢)
A07) T '

The function h(¢) has the form ¢~ '/2¢(t), g being a smooth, bounded and non
negative function, for the kernels in Section I1.3B. One can show that in this case the
integral equation (II1.18a) has exactly one solution [14] which can be represented
in a closed form by a Laplace transformation [15]:

N PR I il 111.19
H=1- — e .
o Jo Sznijm—ioo BT T H(p)™! ( )

Equation (II1.19a) is valid for any real m with

m > inf {J e” ™ |h(t)| dt < oo} (II1.19b)
m’'eR 0
and H( p) equals
H(p) = f e P h(t) dt (I11.19¢)
0

We evaluate formula (II1.19) for a simple model function
W) = b(rt) 2 e, a>0 (I11.20)

which has a realistic shape for  — 0 and ¢t — oo (a* may be identified with the smallest
eigenvalue of the eigenvalue equation Au = wu. The operator 4 isdefined in Appendix
A. The proportionality to ¢~ '/* comes from the normalization of the §-distribution in
formula (I1.26b)). H( p) is then

H(p) = b(p + a*)™'"

With the substitutions ¢ = sb?, 1 = th?, a = a/b,q = (p + a®)/b*, /i = (m + a*)/b?,
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formula (I11.19a) yields

ur) =1 — 1 j_ . + foo do e~ %7 (o)

We now remark that the function
1 m+ico eqx
dog ———
v(x) = i L foo qq”"‘ + 1

has the property that for positive values of the argument x

lim Y(x) =0
and that
dd; | it Uy g ] 11
ty == oy TR =T = o e
The solution is found to be
- 1 1 1
| dye 111.21
(x) L ye (x e + 2Jn(x + y)3/2> ( )
T(=2) = —=2yn)
and
2
ut) = ——+ J do exp (— — a)w(a) (I11.22)
a+ b 2

The function u(¢) falls monotonically from one to the stationary value a/(a + b)
after a time of the order of a2 if a/b >» 1, or of the order of b~ ? if a/b « 1.
In the following section, we calculate directly the stationary nucleation rate.

II1.3. The Becker-Doring nucleation rate

Equation (III.14) has the form of a continuity equation with a source term.
Integration of (II1.14) over the interval 0 < j < M, and using y'(0) = 0 yields

d M , ;
o Mow + I = L dj Ve( j)n{,(l _J! /(lz'j)’)) (I11.232)
with
N _
Aoy = J 4jf(. 1) (111.23b)
0
and
, S0 1)
> = )
y(Jj, 1) 20) (I11.23c)
Y.
Iy = —DiA—; il (111.23d)
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Two remarks are crucial for the following:

(i) The direct formation of droplets from the vapor occurs only for very small
droplets (with j < j, say). Ay, + I,, becomes independent from M for M > j,.

(i) In the case of supersaturation (DA)~ ! has a sharp maximum at j, > j, (see
Section (II1.4); j, lies between 40 and 90) and goes to zero very rapidly if j deviates
from j,.

V\?e now assume that f'can be approximated by a stationary solution of (I11.14)
in some interval 0 < j < M, for M > j,. (A justification of this assumption is
given in Appendix C). A,,, is then zero and the total droplet production rate A,
equals I,,. The general solution of the equation

d dy\ _ 5 g e

p7 (Dl E) = — Ve(jmd(1 — y) = F()) (I11.24a)
with the boundary conditions

»'(©0)=0 and pM) =y, (I11.24b)

can be found using the Greensfunction u( j, /) which is determined by the equations

%(D%J) =5 - 1)
Ou
0j
The solution u( j, /) equals

=0, uM,l)=u,, YI=20

j=0

i g

uy + | = Jj=!

M JMDA
ldjf

u,, + — i<

u(j, 1) =

We write the general solution of equations (II1.24) in the form

M . B j dj’ M M di’ M
y = L dl u(j, HF(1) = (uM + JM 5 ,1) L dIF(l) + j, ) f, dl F(I)

Since

jMle(l) = -1,

0

for a stationary process and, according to the remarks (i) and (ii),

Mg (M M i (M
dl F R dl F
|l arel<| ] 5 e

the stationary solution is given by

v
DA

<«

YJj)=yy + IMJ\

J
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We insert now this stationary solution into equation (I1.23a) and get

J‘M ‘ M djr
I, = dj Ve(jn (1 — (y + 1 J —))
M 0 0 M M ; DA«

which determines /,,. We can first extend the range of integration of ;' from zero to
M, because (DA)™'(j) = 0if Ve(j)ni is different from zero.

If moreover M » j, then y,, = (f/2)(M) = 0 and the ranges of integration
of j and j' can be extended from 0 to co. This yields the following equation for the
nucleation rate /

0 d oo} ‘ — 1 ==l
F= ( L 3"2— " ( L dj Ve( j)n{)) )) (I11.25)

Equation (II1.25) reduces to

oo d] |
( L m) | (111.26)

in the case that

I=1,

c_r4a wd'Vc(')j 1 (IIL.27)
I . D', i Ve(jnh » ;

i.e. if the ‘production current” C of droplets from the vapor is sufficiently high (see
equations (I11.13, 15¢)). Equation (II1.26) is generally accepted to be true, mainly
because the fact escaped attention that two things determine the stationary nucleation
rate I: the production current C and the manner how the reactions (I11.5a) transport
the droplet flow I (which is indicated by the quantity (II1.26)).

Equation (II1.26) was first derived by Becker and Doring [3] using the kinetic
equations (II1.11) but imposing somehow artificial and in fact unnecessary restrictions
on the stationary process they considered. Equation (II1.26) was also derived by
Frenkel [9] starting from a stationary solution of equation (II.7) and from rather
mysterious boundary conditions at j = 0. Frenkel's derivation is shorter than
Becker’s but not a progress from our point of view.

I11.4. Nucleation rate for a simple droplet model

In ref. [5], we derived the expression
: 4 . :
M) = Jexp (—af — 1) (II1.28)

o and y are as in (I11.21, 22), I* is an unknown parameter with the dimension of a
volume.

Only droplets whose size lies far beyond the critical radius r,, given by formula
(II.11) are important for the calculation. Following equation (I1.10), we set D equal to

1/3
D = 3wp®QRumkT)™ 112 (%E) DEREER = Bk (I11.29)
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(E = 2.4 x 10% sec™ ! for the values of the constants involved given at the end of
Section 11.2)
Introducing z = j!/° as a new variable, we get

w© H %k o]
J 4G _ 3 J dz exp (az® + yz?)
0 0

DA EV
We expand the exponential around its maximum (« < 0!)
2y
Z,=jP= -2~ - (111.30
JO 3 o ( )

and evaluate the integral of equation (I11.26) by the saddelpoint method. This yields

I n E 4 3

o & -t I11.31

% \/y3V*exP( 27a2) (Ll

[9]. This formularepresents well the qualitative behaviour of nucleation. (4/27)y® =~ 76
and the nucleation rate should depend strongly on the supersaturation «. Beyond
critical supersaturation practically no nucleation occurs, above this value nucleation
becomes very violent. This behaviour is indeed observed in experiments.

The nucleation rate /,/V has been measured. The magnitude of the parameter
V'* may, therefore, be estimated by the equation (II1.31)

Table 1
V*
T I N4 S — P o y To [107* cm?]
[°K] [em ?] [mb] [dyncm™!] 5
; Volmer &
261 ~10%2  5.03 1.67 2.44 77.6 9.93 64 19.8 {
Flood
263 10° 5.0 1.61 2.86 77.3 9.82 68 23.4 Frey
Sander &
261 102 436 1.47 2.44 77.6 993 92 25.9
; Damkohler
261 10°  6.60 1.89 2.44 77.6 993 43 18.6 Barnard
Madonna
261 10  5.70 1.74 2.44 77.6 993 55 18.6 & al.
a
Madonna
238 10°  6.40 1.86 0.313 81.41) 11.4 69 26.6 & al
a

1) Extrapolated value.

The supersaturation parameter S is defined as
S=e"

Values of the nucleation rate /,/V versus the supersaturation parameter S are
taken from Mason’s book [16] the other constants from the Landolt-Bornstein tables
[10], [11], [12]. Mason judges the measurements of Barnard and of Madonna to
be the most reliable. The small value of V* at 238°K may be caused by a too high
extrapolated value of the surface tension (x = 18.6 would correspond to ¢ =
72 dyn cm™?) following Mason, but we see no reason why V* could not depend
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quite strongly on the temperature. Another reason may be that for 7' = 238° the
saturation density n, of the vapor is so small that C < /. One must then use the full
formula (TI1.25) and take into account that /(x) saturates for high values of |o|. We,
therefore, choose V* >~ 2.5 x 10713 cm”.

II1.5. Fluctuations and nucleation
The quantity
4 y°
27 o?
is the amount of Gibbs free energy AG,, required to form a droplet of Kelvin’'s
critical size from the vapor. One droplet of critical size is metastable in a super-

saturated vapor, a smaller droplet evaporates, and a bigger one grows. Equation
(IT1.31) is often written [7], [17] in the form

AG, = kT —

1,
9 = .const. exp — 86, (I11.32)
V kT

One considers exp (— 1/kT AG_,) as Boltzmann’s factor proportional to the frequency
of ‘fluctuations of overcritical size’ which are believed alone to generate droplets
which can grow. In contrast “‘undercritical fluctuations’ should decay (see [3], [9]).
I think this is a misleading statement. Phase transitions, or more general,
chemical reactions are not caused by fluctuations. Nobody would consider the chain
0, 0,, 0;,... to be caused by density fluctuations. The notion ‘fluctuation’ has a
precise meamng in statistical physics. It indicates how well the mean values are
defined which are the constituent quantities of thermodynamics. They impose an
under limit to the size of systems which can reasonably be described by thermo-
dynamics. Itis a crucial point in our derivation of the formula (III.25) for the stationary
nucleation rate that only the very smallest clusters are formed directly from the
vapor and that all others are formed by successive accumulation. All clusters grow
in the average if the system is supersaturated, the ‘undercriticals’ grow too.
Consider the difference of the chemical potentials (I1.5)

(0) (J)
o — #8060 f (I11.33)

kT 9 A

which governs the rate of condensation on a droplet. Inserting the stationary droplet
distribution
[s 6} dj’

f= ML Di (I11.34)

of Section II1.3 into formula (II1.33) yields

(0) (Wi N —1
ba L _ (D(;)x(nf df) (I11.35)

The function (DA)~! has a sharp maximum near Kelvin’s critical size j,. The
‘driving force’ (I11.33) equals, therefore,
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-

IO
~ 0 j ]
ongp =9 forj <o
#(0) _ HU} I 9 e ) ]
7R T AR G R et
0
d
EjlnDi (= —a—3y 3 +2;Y) forj > j,
L

The values in the brackets correspond to the expressions (II1.28), (I11.29), (II11.31)
for A, D and I,,. The approximation for j > j, is obtained by replacing the function

(DAY} by
(DY) -exp (d 1‘;}.’) A - j)) (I1L.37)

One may check that for j* > j > j, and with the expressions (I11.28), (I11.29) for the
functions A and D

(DA > (DAY)-exp (d ";jD L - j)) (I1L.38)

if one chooses the appropriate values for the involved constants (y = 8, j, > 40).
The inequality (II1.38) implies that x’ — 4! increases monotonically with j.

The condensation rate 7; on a droplet of size j (I1.5) is a positive and mono-
tonically increasing function of j, although very small for j < j,. For j > j,, we
obtain the first order approximation (11.43) of Section II.4.

The growth of the droplets is a dynamical process: more molecules condense
on a droplet than evaporate from it. The quantity 7, stands for the mean condensation
rate on a droplet of size j. This mean value is the quantity of interest, not the story of
an individual droplet which may evaporate even when 7; > 0.

The basic quantity is the stationary nucleation rate /,

ed] dj)—l )
I, = )~ min DX (111.39)
’ (L DA :

J
due to the functional forms of A and D. The Gibbs’ droplet model yields the expression
(II1.28) for the function A(j) [5], and allows to go from equation (I11.39) to (I11.32).
I do not think that the transition from equation (II1.39) to (III.32) conceals
deep physical insights. It may well be that A(j) increases monotonically in j for
systems other than liquid droplets in gas. One would then write /, more appropriately
in the form

n

It =Y &) = ) DAY
j=2

ji=2
where » is a small number, than in the form (II1.32) and nobody would introduce
the notions of metastability and of over- or under-critical fluctuations.

IV. Conclusion

It is not the fact that one droplet can be at best metastable in contact with a
supersaturated vapor that is the guiding physical insight in nucleation theory, but
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that an ensemble of droplets can be thermodynamically stable. This allows the
development of the thermodynamics of fog. Starting from the equilibrium theory,
one derives the basic nucleation equations by directly applying the principles of the
thermodynamics of irreversible processes.

The crucial physical concept in the derivation of the formula (II.1) for the
Helmholtz free energy of fog is the notion of identical particles. We call particles
identical if they share the same physical properties, i.e. if the result of an experiment
does not depend upon which particles were used. This definition of ‘identical’ makes
sense in classical as well as in quantum physics. It leads in the classical framework
to the statistical postulate of Reference [5] which shows that — and in what respects —
droplets of the same size j can be treated as identical particles. Fog and clouds
represent the consequences of the notion ‘identical particles” on a macroscopic
scale — a phenomenon similar to the zero point pressure of a Fermi gas.
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Appendix A

We reformulate the initial value problem (I1.14, 15) in the language of vectors
in a Hilbert space and their time evolution due to a differential equation of the type

dy
— = 4
dt Y

The linear operator 4

is symmetric in the Hilbert space L,(4 dj, R") of complex functions u(j) for which

' d
de u()PAj) < o and S| =0

j=0

dj

with respect to the scalar product

(u,v) = j dj A(j)u*(j)o(J)
0 5

A is furthermore a non-negative operator (the functions D(j) and A(j) are positive
for 0 <j < 0).

o . ' ' du 2

W, Aw) = | dj D()HAJ) || =0

0 d |
and can be enlarged to a non-negative selfadjoint operator (Theorem of Friedrichs
[18]). We may expand every initial condition y(j, 0) e L,(A dj, R") in terms of
(generalized) eigenfunctions of 4 and obtain a Fourier analysis of the problem.
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The condition (u, Au) = 0 implies u = const. If the system is saturated or
undersaturated A decreases exponentially for large j (see Reference [5], Sections
II1.2 and III.3) and the integral

Fdjz(j) <

u = const. is an eigenfunction of A4 with eigenvalue zero and y achieves a
constant equilibrium value different from zero. In the case of supersaturation 4
increases exponentially and the above integral diverges. The operator 4 is then
strictly positive and y( j, t) goes to zero almost everywhere as ¢ goes to infinity.

To be more explicit: we are interested in initial conditions y(j, 0) > 0. This im-
plies y(j, ) > 0 V¢ > 0 (See appendix B). Let us denote by L, (R™, 1 dj) the space
of all functions #: R™ — IR* for which

oo 1/p
uun,,z( j dmnupm) £ &

0
Consider now y(j, t) € L, (R", 1 dj) for which

— éy
r—1 o V

for some p in a neighborhood of 1. One easily calculates

p- d - Y p—2 @ ’
ool 10l = a = py | "o (%)

which yields

lim DAy

i~

d .
= Hy(t)”p =0 ifp=1

d >0 ifp<1 o .
7 H y(t)”p{< 0 ifp > 1} or y(J, t)is constant in j

This illustrates the tendency of the distribution y to spread out and to flatten under
the time evolution.

Appendix B
We consider the differential equation
0 1 o 0
o .. 1 oy ox B —0 B.1
7, YU D) oY (D(J)R(J) 3 y(J, r)) (B.1)

in the region 0 < ¢ < o, 0 < j < oo and with the boundary conditions

. e 0
lim D(]M(J)gj:)’(], =0, t=0

/=0 (B.2)
lim y(j, ) =0, >0

Jj— o
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The functions D(j) and /1( j) can be expanded in infinite power series

0 < D(j)=/, Z k'J SeZ 6 <2
and
: - L
InA(j) = X /"
k=0 K

which converge for jin some interval 0 < j < I, I > 0.

Proposition: The kernel K(J, I, 7) of the propagator of the differential equation
(B.1) with the boundary conditions (B.2) is non-negative:

K(j,,t)y =20 forj,L,t=0
Proof: (a) We first prove the following

Theorem: [19] Let G denote the rectangle 0 < j < J,0 << T

 t
¥ Q
TI ________ QI
0 J i
Figure 1.

and u( j, t) a solution of the differential equation

5 . Ou
D(j)>0 for OSJ\J

in G (u is at least twice continuously differentiable in j and once in ¢ for j, 7 in G).
The functionu(j, #) attains its maximum or minimum in G on theline L = TOJQ.

Proof of the theorem: Let us assume that the absolute maximum M of u lies
in the interior of G or on the line TQ. Let m be the maximum of # on L. We now
consider the function

v(j, ) =u(j,t) + k(T — 1)
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(B.3)

The absolute maximum of v is bigger or equal to M and the maximum of v on L is
smaller than M by construction. The absolute maximum of v still lies in the interior

of G or on the line TQ.
(1) The absolute maximum of v lies at some point j', ¢’ in the interior of G.
This implies

dv| dv| 0%v
oty e @l
which yields

O<Bo=Bu-—k=—k

in contradiction to assumptlon (B.3).
(i1) The absolute maximum of v lies at the point j', T on TQ Then

Ei_li dv v
dt Ir=" ’ @)*

~
i T

2 . i
T dj
and 0 < Bv as before.

The absolute maximum of the function » (and equally of the function — ) in
the rectangle G lies, therefore, on the line L. QED.

(b) We now study a solution of the differential equation (B.1) which fulfills
the boundary condition

lim D(j)i(j) 5 Mﬁﬂ 0, for 0<t<T (B.4)

i=0
in the neighborhood of J = 0. We write u as a power series in j

u(j, 1) = v(t) + j* Z k(')jk, kK # 0

where the coeflicients v(z) and w,(7) are at least once continuously differentiable with
respect to ¢, and insert u into the differential equation (B.1). This yields
dv
‘d_t_“oDoK(K+5 1<% 4 0(j***"1) = 0
as a consequence of the chosen value of 6. The boundary condition (B.4) implies that
K+0—1>0
Therefore, we obtain
kK=2—-—0>0
and

1
u(j, 1) = v(t) + D, — o) i U(t)J2 ® 4+ 0070 (B.5)
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(c) We finally consider the boundary conditions

limDAa—Lf=O for 0<t<T
j—=0 0j

u(j,0) 20 for 0 <

= j<J, wJ,) =20 for 0t <T
Then u(0,1) 2 0for0 <t < T.

Proof" Let us assume that there is a point  with 0 < ¢ < T for which (0, 1) < 0.
Then points ¢, ¢, exist with the following properties

0L, =<T
u(0,1) >0 forallzwith 0 <1t <,
u(0,7) > 0 forallrwith 0 <t <1¢, implies ¢, < ¢,

and
. adu(0, ¢

=T if i )7&0 for t,<t<T

or
du(0, 1)

t, <t, <T and =0

0 1 dt "
du(0, t .

to <t; < T and u(dt) =0 imply¢ > 1,

15

By construction, u(0, 7) decreases monotonically from u(0, z,) = 0 to «(0, z,) < 0.
We choose now a point 7" in 7, < T’ < t,. u(0, T") is the minimum of u on the line

L' =T'0JQ" and
du(0, 1)
dt |p

<0
As a consequence of equation (B.5)

d 23 35 .
e + 0 T
D0(2 5) dl_u(oﬂ t)lt—T.] (] ) < u(O, )

u(j, T = w0, T") +
for a sufficiently small but positive value of j. This contradicts the theorem. Therefore,
u(0,7) 2 0for 0 < t < T. QED.

From the theorem one concludes that the boundary conditions (c) imply that
u(j, r) = 0 for every point j, ¢ in the rectangle G. This implies the statement which
we wanted to prove — namely that the kernel is not negative for the rectangle G.
But the finiteness of J was not assumed in this proof’; it is valid also for the infinite
interval 0 < j < 0. QED.

It is a consequence of the result obtained in c¢) that the only solution of the
differential equation (B.1) is y(j, r) = 0 for the boundary conditions (B.2) and the
initial condition y(j, 0) = 0 for 0 < j. Thus the initial value problem (B.1, 2) and
¥(J, 0) = f(j) has only one solution.

For the functions 4 and D given by equations (I11.28) and (I1.11), we write the
differential equation (B.1) and the boundary condition (B.2) in the variable z = j!/3.
One may verify that the proof stays valid.
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Appendix C
We write equation (II1.14) in the form
oy 148( | Ao()
— — = |DA=|=6(j — 0")—=
ot A aj( aj) G )70)

where 0% is an arbitrarily small but positive number.
If we now substitute -

1 @ dj’
=w+ A(t 0" — 07) —————
y o()J; (J )D(J i)
we get the equation
ow 120 ow . = dj’
— — = [DA——= )= — Ay¢ 0 —07) ———— (C.la
ot Adj ( dj ) ol2) Jj G )D(J )A(J") )
with boundary conditions
ow dy AO(j — 0+)‘
w(oo, t) = p(oo, t) = O, e = — — - - = (Clb)
(=300 =0 T Fleo T DO o

If the system achieves a stationary nucleation rate (A, = 0) the equations (C.1)
are completely equivalent to the equations discussed in Section I1.3 and in Appendix
A ; we conclude that w — 0 as t — oo. If the supersaturated system therefore achieves
a stationary nucleation rate, this stationary value is given by formula (II1.25).
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