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Unrestricted solution of the Eliashberg equations for Nb

by M. Peter, J. Ashkenazi and M. Dacorogna

Département de Physique de la Matiére Condensée
Université de Genéve, Suisse

(25. VIIL. 1976)

Abstract. The Eliashberg equations for superconductivity are solved numerically for Nb using band
structure results and experimental phonon spectrum. The solution is done unrestrictedly in the sense that
all anisotropy effects as well as the frequency dependence of the gap function are treated correctly. The
electron—phonon coupling constants are evaluated in the rigid-ion approximation, and the Coulomb
interaction is treated on the same level using typical parameters. The method used requires reasonable
computer time which could make it applicable for rather complicated materials. The anisotropy effects
on the gap function and 7T, are studied with some detail.

1. Introduction

Right after the BCS theory had been proposed for superconductivity, there
arose the problem how to treat superconductors with strong electron—-phonon and
Coulomb interactions. Nambu [1] has applied the Green’s functions method for
superconductivity to tackle this problem, and Eliashberg [2] obtained in terms of
this method a set of equations called after his name. Those equations were generalized
for the finite temperature case by Scalapino et al. [3] and are given in the Matsubara
representation in equations (1)

1 Lew + x(K, n)]1[D(k, K,n — n') — V(k K)]

e la)
Mo = T p e Ty ZK MO + [+ K WOF + 007 O
_ 1 w, Z(K,n)Dk, K, n — n')
Aem =t g & To, Z0 T + [ + 2,008 + 60w D)
smy = L5 QU HIED Kn = ) — V(W] o

p kz;‘ [wp Z(K, 1) + [g + x(K,n)]* + oK, n)?

The notations are the ones adopted previously [4, 5, 6].

Since we are dealing with a multi-band problem, the k index is followed by a
band index b which is omitted here (and generally also later on). Non-diagonal band
terms on the right sides of the equations are ignorable provided that correlation
energies are small compared with Hartree—Fock energies. y(k, n) is the ordinary self-
energy term, its dependence on » can be generally ignored for Matsubara frequencies
involved in superconductivity (except for special cases as for instance charge density
waves), replacing ¢, + x(k, n) by & (and omitting the bar). Z(k, n) is the mass
renormalization, and ¢(k, n)/Z(k, n) plays the role of the superconducting gap (for
imaginary frequencies).
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Various attempts have been made to treat those equations. McMillan [7],
neglecting high frequency contributions and anisotropy in k-space, obtained a semi-
empirical equation for 7. The idea of the semiempirical equation has been developed
further by several people. Birnboim and Gutfreund [8], starting from the Appel-
Kohn [9] formalism, appropriate for tightly bound electrons, could fit their results
with a similar formula. Allen and Dynes [10] and others solved the Eliashberg equa-
tions neglecting anisotropy. Butler and Allen [11] made a calculation approximating
the electron anisotropy by Fermi surface harmonics and neglecting phonon aniso-
tropy.

In the present work the linearized Eliashberg equations (which hold for T = T)
are solved unrestrictedly, namely obtaining the correct frequency dependence and
treating anisotropy almost exactly both for the electrons and for the phonons. Here
the method and the results are discussed briefly ; the detailed work will be described
later.

2. Formalism

As was discussed in Reference [10], the mass renormalization and the gap are
invariant under the transformation n— —n — 1, so that the »' summation in
equations (1) can be limited to non-negative values.

Similarly to Reference [3], it can be shown that this summation is cut off at n_,
such that w, = w, > 0, provided that the Coulomb potential matrix V is replaced
by a pseudo potential matrix U given by:

U=(01+Q)'V (2a)
where
Qk, k') = V(k, K)E(n,) | (2b)
292 0 |
%
E(n) = 5%.5,] [1 _ %arctg %’;] (2¢)
?"“v@o 1
2a]

(Band indices are omitted here.)

Integrating normal to the Fermi surface by using the residuum theorem, the
sum over k' in equations (1) can be replaced for 0, « Er by a sum over the Fermi
surface (FS). As was discussed in Reference [6], the FS summation can be limited
to the irreducible Brillouin zone (BZ) provided that D and U are replaced by D*
and U* defined by:

D*(k, K, n) = Y D(k, sk, n); U*(k, k) =) U(k, sk') 3)

where s are the 48 star operations spanning the whole BZ out of the irreducible one.
Each k represents in our calculation a piece of the IFS (irreducible Fermi
surface). All averaging procedures are reduced to within such a piece (compared to
the whole FS or BZ in theories neglecting anisotropy), each such a piece has a weight
W, which is the density of states integrated over it. Equations (1) reduce then to:
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Zhkn) =1+ —— Y W ID*k K,n —n) — D4 Kn + n' + 1)] (4a)
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where _
A(kn, K'n') = = _ M
B w,, Z(K, n')

[D*k, k', n —n) + D¥Kk, K,n+n + 1) — 2U*Kk,Kk')] (4c)
Equation (4b) has a non-trivial solution for:
det[1 — A] =0 (5)

(those are matrices both in the k and the » indices).

The highest temperature in which equation (5) is satisfied is 7... Using the
Wilkinson method [12], the gap function ¢(k, »’) is obtained easily when this deter-
minant is evaluated close to a zero value.

3. Calculation

In order to solve equation (5) (which is relatively rapid), the following calcula-
tions have to be done:

First we need a band structure yielding a reasonable Fermi surface. We have
used the results obtained for Nb by Mattheiss [13] in the APW method (whose FS
has been verified experimentally). The band structure has been fitted by effective
tight-binding integrals using 6 x 6 tight binding matrices for the hybridized 4d-5s
bands around E;.

Effective crystal field and transfer integrals were determined up to the third
shell. The transfer integrals were calculated in the two-centre approximation using a
distance-dependent parametrization developed from the method of Ashkenazi and
Weger [14].

Ten independent band parameters were required, yielding a band structure close
to the one of Mattheiss (particularly near the Fermi surface). Some difficulty in the
exact fit appeared due to a 5p type level lying not far from E near the N symmetry
point. The results obtained for the band integrals are shown in Table I, and for the
irreducible Fermi surface in Figure 1. This IFS is composed of a jungle gym, ellipsoid
and jack portions like the one of Mattheiss, and in order to solve the Eliashberg
equations, it is divided into 22 pieces shown in the graph.

In order to obtain those pieces, we started with a cubic mesh of 2109 points in
the IBZ. 492 points were calculated in which the axes of this mesh cut the FS. Those
points were subdivided into 22 groups (FS pieces) using the criterion that the points
within each piece are close both in their k value and energy gradient. Making a FS
integration, the density of states at £, was found to be 9.9 states/(ryd-atom-spin)
which is close to the one of Mattheiss (the density of states curves are also similar).

The surface and volume integrations required in this work were done using a
new interpolation method, based inherently on equienergetical surfaces, which made
the calculations rather simple compared to other interpolation methods. This method
will be discussed elsewhere. The mesh used was found sufficient up to a high accuracy.
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Table 1

Values, in ryd, of the crystal field splitting, the Slater—Koster transfer integrals and their distance (R)
derivatives, used for Nb in this work.

R ddo ddn ddo ssG sdo K, KD
0 —0.06477 —0.09957
Integral a,./3/2 —0.08570  0.07909 —0.02452 —0.07288 —0.06892
f(R) a,°) —0.04809  0.04168 —0.01183 —0.04959 —0.05064
a,/2 —001035 000741 —0.00167 —0.01664 —0.01818
ap/3/2 —3.922  —4.325 —4921 2559 —1879
Deriva-
tive  a, —4.118 —4588 —5218 —2800 —2.394
R df

AR ap/2 —4806 —5430 —6.136 —3.456 —3.517

Y Crystal field splitting between the 44 and the 5s orbitals.
’)  Crystal field splitting between the e (d,., d,._,.) and the 7 (d,,, d,,, d,,) orbitals.
) a, = 6.2294 (a.u.). '

Figure 1
The irreducible Fermi surface of Nb obtained fitting our band parameters to the results of Mattheiss [13].
It is divided into 22 pieces for the solution of the Eliashberg equations. Pieces 1-10 form the ‘ellipsoid’,
11-20 form the ‘jungle-gym’ and 21-22 the ‘jack’.

In order to obtain the electron—phonon-electron interaction matrix D*(k, k',
n — n'), one needs values for the electron—phonon coupling constants and the phonon
energies. The electron—phonon coupling is evaluated in the rigid ion approximation.
Expressions for the coupling constants in terms of the Hamiltonian’s derivatives are
given in References [4, 6]. The derivatives of the transfer integrals are obtained
easily from their distance-dependent parametrization and shown in Table 1. This
method for the electron—-phonon coupling is basically similar to the one used by
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Birnboim and Gutfreund [8]. It has been shown [15] to account for the Mathias
rules and the pressure dependence of 7, in transition metals. The tight-binding
distance-dependence parametrization is known to be equivalent to the ones derived
from the KKR method [16, 17]. For the case of d electrons it turns out to be close
to R~ > behaviour, which is similar to Pettifor’s results [18].

The phonon energies for each point in the BZ are calculated using Born-
von Karman parameters obtained by Nagakawa and Woods [19] from neutron
diffraction results.

Within each Fermi surface piece, the Hamiltonian space derivatives, needed for
the evaluation of the electron—phonon coupling, are averaged using the original 492
points on the IFS. An average k point is taken for each piece to evaluate eigen-
vectors and phonon energies.

In order to satisfy the star summation (equation 3), one has to evaluate coupling
constants and phonon energies between each piece k in the IFS, and a piece k' in the
whole FS. For the phonons, only 3 x 3 matrix diagonalizations are required, and
their energies between all those pieces are calculated rapidly. (One can also calculate
phonon energies for a mesh in the BZ and make a linear interpolation to k' — k).
For the electron—phonon coupling on the other hand, rather simple star rules have
been found, which enable us to diagonalize the electron 6 x 6 matrix just for the
case where both k and k’ are in the IFS, and then to obtain the results for the star
of k' by simple transformations. Special treatment has been made for a coupling of
a piece with itself. (The numbers required for the Eliashberg equations are found to
converge to finite values for |k' — k| — 0.)

The Coulomb pseudopotential matrix U*(k, k') was treated on the same level
as the D matrix using again the above mentioned star rules. Since the Coulomb
potential is screened, we consider only intra-atomic interactions as was generally
done in similar calculations [3]. Similarly to a calculation done recently by Ashkenazi
and Weger [20] for the metal-insulator transition in V,0; and Ti,O,, the interaction
is expressed in terms of a matrix {m m,|V|mym,>, where m, are the 4d-5s orbitals
(for intra-atomic interactions V is independent of k).

The Coulomb matrix is expressed in terms of six parameters: Three parameters
A, B, C for the d-d interactions [21], whose relation to the Slater integrals is given
by: A = F©@ — JF®; B = LF?® — 22F®; C = &§FY; two parameters D and E
for the direct and exchange s—d interactions; and one parameter F for the s—s inter-
action. Since complicated screening effects play an important role in the determination
of those parameters, it is difficult to evaluate them from first principles. So we have
chosen for them the typical values:

A,B,C,D, E, F = 0.08, 0.003, 0.001, 0.02, 0.002, 0.01 ryd

and studied the sensitivity of the results to their variation.

It is found that in the orbital (m) representation k independent V yields also a
k independent U. So equation (2a) for the evaluation of U turns out to bea 36 x 36
matrix inversion problem, and the U matrix in this approximation is a generalized
Morel-Anderson [22] pseudopotential. BZ integration is done evaluating € for
that equation, and the calculated U is transformed from the orbital representation
to U*(k, k). It is found that the pseudopotential’s dependence on the Coulomb
parameters 1s weak for the reasonable values range (saturation is obtained for
| > 1).

Next we solve the Eliashberg equations. It turns out that the highest temperature
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where equation (5) is satisfied (i.e. 7,) is well separated from any other possible
solution. Making an interpolation of the determinant’s value to zero, convergence
is obtained in a few steps. Z, D*, U* and A have to be calculated for each value of
the trial temperature, however, most of the numbers required for the calculation are
evaluated once and for all and stored, and each trial temperature requires a few
minutes of computer time, on a UNIVAC 1108.

It is found that the electron—-phonon coupling constants determined by our
method are probably too large, and have to be multiplied by a factor of 0.7 (which
means a factor of 0.49 in the electron—phonon—electron interaction) in order to
obtain the observed T,. This discrepancy could be a result of the rigid ion approxi-
mation [8, 17]. The dependence of 7, on the Coulomb parameters is weak for reason-
able values as was noted before. _

It turned out that for 22 pieces in the IFS, the maximal number of non-negative
Matsubara frequencies permitted by the size of our computer was 14 (n, = 13)
yielding a value of 9.48°K for T,. However, we found a criterion under which we
could join pieces to reduce their number with a minimal effect on the resulting T, .

It is based on the following:

A result of equation (4b) is that if there is a group of pieces Q such that for each
k,,k, e O and for all n, ¢(k,, n) = ¢(k,, n), then all the pieces in Q can be joint.
Generally such an identity does not exist, however joining pieces with close ¢(k, n)
should not be a bad approximation. The joining is done under the following renormal-
ization equations:

WoDXQ, Q' n) = Y W (D*(k, K, n)y.q (6a)
k'eQ’ .

WoU*(Q,0) = ) W {U*K kDo (6b)
k'eQ’

In order to find out what pieces are to be joint, we have to get an idea about the
behaviour of ¢(k, »n). This can be done by two methods:

The first one is to calculate ¢(k, n) for n, low enough, to keep the calculation
within the computer’s limitations. The low n gap functions are the most important
ones for the pieces-joining criterion. The second method is to start from model
functions ¢(k, n) which have a close behaviour to ¢(k, n), and multiply them by the
A matrix as in equation (4b) replacing ¢ in the right side by ¢ (this can be done
without keeping the matrix A itself which may be too large for the computer). The
functions obtained then are closer to ¢(k, n), and can be used as a measure for the
joining criterion. In each temperature iteration stage, we use functions obtained
from those of the last stage by multiplying A.

It is found that suitable model functions to start with are:

<D*(ka kfa 0)>k’

3 — UMK Ky ()
D*(k, k', 1)
a1+ (- Giwol)|

The functions obtained multiplying them by A deviate only by about 19, from the
exact gap functions.

Each one of the original 22 pieces k is given a ‘coordinate’ ¢(k, n) in a n,
dimensional space (n, < n,_, is chosen small enough to keep the behaviour of ¢(k, n,)
sensitive to D*) and a ‘mass’ W, . Pieces which are close in this space are joint. The

Pk, n) =
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best criterion found for the joining was to select the groups of pieces in such a way
that the sum of their ‘moments of inertia’ around their ‘centres of mass’ would be
minimalized.

4. Results

We studied the variation of 7. with the number of (aggregate) pieces, and the
results (for n, = 13) are shown in Figure 2. The anisotropy effect on T, defined as
its variation between the infinite number of pieces, and the one piece cases, turns out
to be an increase of 0.24°K, compared to the 0.06°K increase found by Butler and
Allen [11]. About 609, of the anisotropy effect are obtained by two pieces and for
11 pieces there is only a 0.002°K deviation from the 22 pieces case.

9.5 T T T T
./0 L e
9". — ./ nc = 13 7]
=3
(%]
-
9.3 -
L o 4
9.2 I | | |
0 5 10 15 20 25
pieces
Figure 2

The variation of T, with the number of groups (aggregate pieces) formed of the 22 ones in the IFS shown
in Figure 1. The cut-off Matsubara frequency n, is taken to be 13.

Using 11 aggregate pieces we could increase the cut-off Matsubara frequency
n. (due to the computer’s limitation) up to 24. This increase had almost no effect on
the anisotropy curve (Fig. 2) except for a constant shift of 7.. In Figure 3a the
variation of 7, with n, (for 11 pieces) is shown. 7, converges exponentially to the
infinite cut—oﬂ" case Whlch is found, using a semi- logarlthrmc scale (Fig. 3b), to be
8.78 + 0.005°K.

In Tables IT and III, the mass renormalization function Z(k, n) and the gap
function qbﬂ( n) are shown for n, = 24. qS is defined here up to a multiplicative
factor. It is calculated for the origlnal 22 pleces multiplying ¢ given in equation (7)
by A several times. We see that ¢ is converging into the high frequency limit (which
is determined by the Coulomb interaction). The k anisotropy is found to behave
similarly for Z and for ¢.

In Table IV we represent the joining of the original 22 pieces for the cases shown
in Figure 2. It turns out that neighbouring ones (Fig. 1) are generally joint first.
Using those results, one can study the nature of the anisotropy. Two important
anisotropy effects are noticed. The first, determined by the electrons, yields both for
zero frequency and high frequencies greater gap functions for pieces on the jungle-
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Figure 3a
The variation of T, with the cut-off Matsubara frequency n, for 11 aggregate pieces in the IFS.

Figure 3b
The same graph shown for 7, — 8.78°K on a semi-logarithmic scale.

gym and the jack, than for pieces on the ellipsoid. This is primarily an interference
effect due to overlap of wave functions, occurring in the star summations (the same
anisotropy is found both for D* and for U*). The wave functions on the jungle-gym
and the jack are mainly admixture (with close amplitudes) of 4, ,, d,, and d,,, while
those on the ellipsoid contain also d,. and d,._ ., and the first yield a more con-
structive interference. Also, the wave functions on the ellipsoid contain generally
a greater 5s component (which has lower Coulomb and electron—phonon interaction)
than those on the jungle-gym and the jack, but this is found to be a secondary eflect.

The second anisotropy effect is due to the phonons, and results in a faster
decrease with frequency of the gap functions on pieces which have other pieces in
their close neighbourhood. The phonons connecting close pieces are soft, resulting
in a fast decrease with frequency of the D matrix elements between them.

In the one (aggregate) piece result shown in Figure 2, there is still some aniso-
tropy effect through the construction of the D* matrix. In order to make a com-
parison with the ‘total’ isotropic approximation, we calculated the McMillan
parameters [7], making a weighted average of our pseudopotential, and the usual
McMillan electron—phonon function over the FS pieces. We obtained 4 = 0.857,
u* = 0.111, which are close to the values predicted by McMillan, and using his
semiempiric formula one obtains 7, = 9.04°K.



275

Unrestricted solution of the Eliashberg equations for Nb

Vol. 50. 1977

80l 601 80T 80T 601 60T 60T 601 OI'T OI't II'T TI'T LOT LOT LOT 80T 80'L 801 LOT 901 LOT 901 #C
ort I1rr orr orr I1rr Irr Irr crr o crr Tt €It St 801 601 601 OI'T OI'T 60T 60T LOT 601 801 €T
mr et 1t g <t ert et €'t vl T STTL LI'E 60D 01T OI'l I IT°F IT°1 OI'l 601 OI'T 601 €T
el't Sl el't €'t UL PICL STT ST 91T 91T LITT 6L'D IT'T I II'T €'t ert Trr o1rt o ort Irr orr Ig
PUT 91T #1°T 1T ST'T 9U'T 9U'T LI'T LT'T LU 61'1 1T CI'l 2I'T ¢l UL U1 U1 €T IT'T €'l 10T OC
SI't 8I'T ST'T OSI'l 9I'T LI'T 8I'l S8I'T 6I'T 6I'l ITT ¢TI ¢€I'l €'t +vI'T SI'L SU°'L SU'T #1'1 CU'1 #I'L CTI'D 61
or't e61't 9or't LI'l 8I'T 8I'T e6I'l 6I'T 0TI oTT ¢T1 STl #I'T SI'L ST OI'T L©'1T OoI'T SI'T €'l SI'l €'l 81
LU IT1 LTT 8I'T 6I'T OTT 1ITT1 1ITT 21 ¢TCl 21 LTT SU'L 9I'L oU'l LI'T S8I'T LU'L 91T +I'T 9I'TL #I'T LI
6I't Tl 8I'T e6I'l 0Tl 1T1 TT1l Tl €Tl o1 9¢1l eC1 9I'l LI'L LU'L 6I'l 6I'T 8I'T LT'T #I'T LI'T SI'T 91
0T $T1 OT1 1TT CTTT €1 1 $T1 STT STL 8T1 1¢1 LI'T 8I'T 8I'T 0TT OCT OTT 8I'T OI'T 8I'T 91I'T SI
ITT STL ITT TL €TT vT'1 STT 9TT LTT LTT O¢LT €1 8I'T 6I'1 0TT IT1T TCT1 1T1T 01 LI'D 61'T LI'T +1
€L LT €T1 $T1 STL 9T1 LTT LTT 6T1 6T1 TET SE1 6I'l 11 1Tl €71 €1 ¢l 1T1 8I'T 1TT1T 6I'T ¢l
STI 6T1 ¥T1 STI LTT 8TI 6C1 6T1 I€1T I€1 ¥E1 81T 1TT L €T ST ST +$T1 €T1 6I'T TCT 0T1 Tl
L1 1€ 91 LT1 6CT Ot'1T 1I€1 Tl €1 €€l LeT Ivl Tl 1 vC1 9C1 L1 9T1 #C1 1T1 €1 CT1 11
601 veE'l 8TT 6C1 I€1 €€1 #€1 v€1 91T 9¢°1 or'l w1 1 9CT 9C1 601 671 8TI 91 TC1 9T1 ¢€T'1 Ol
€T LET T€1 TEL #€°1T SE1 LET LET 6€1T 6€1 €1 81 91 8T1 8TT 1€1 TET 0T 8T ¥CT 8CTT STT 6
PET OP'1T vE'T SET LT 8T OFT OFT PT TPT 9Pl TET 6T 01T T1€T1T ve1 €1 €€1 I€T 9T1T 0€1 LTT 8
LET #P1 LET 8ET OP'T THVT w1 #PT 9T 9P ISTT LST T1€T €€1 €1 LET LET 9€T €1 601 ¢€€1 0¢1 L
'L 81 IvT el SPT 91 8¢'1 61 O0ST IST 991 TOT €1 91 LET Ol Iv'1 6e1 LET 1€ 9¢€1 €1 9
'l P19l Lyl OS'T " IS'T €T 61 961 991 191 89T 8¢ Ovl I¥F1 bl SP1 €1 Ivl Se1 Okl 91T ¢
ST 091 TST €S°1 95T LST 6T 091 T9T TO1 89T 9L'T ¢TI vl S¥I 6v'1 0S'1 81 ST 8T 1 OVl ¥
09'T 89T 68T 19T €91 +#9T 99T 89T 69T 691 O9L'T ¥81 L¥T 6V'1 0ST ST 951 €51 O0ST eVl oev'l Sv'l ¢
69°1 LLT 89T OL'T TLT €L'T $L'T LLT LLT 9L 81 €61 TST vS'T ST 19T T91 651 SST 81T SST 0S1T €
08°'1 48T 61 I8T1 €81 I8T1T T8T 98T 981 €81 T6'T 10T LST 091 191 L9T 691 S9°1 191 €51 091 SS1 1
6’1 81T T6T t6'1 S6'T 681 681 S6T €61 681 861 LOT 19T +9'1 €91 TLT LT OLT S9T LST 91 8S'T O
[44 I 0¢ 61 81 L1 91 el v el 4! I1 01 6 8 L 9 ¢ v € (4 [ u
‘(g = ’u) pa1apIsuood a1k ([eo1119A) sarouanbaij ereqnsjely aanedau-uou ¢z *([eyuoziioy) saoaid .1 ¢z 10J (# ‘Y)Z uondunj UONLZI[BULIOUAI SSBUW Y,

I1 3198l



H. P A.

M. Peter, J. Ashkenazi and M. Dacorogna

276

{1 1o st o9 w1 €1 8 L 9 § gt o0z 6 8 o v 6 T € 1} I
et o1 oo stoo91 w1 €1 8 L 9 st {eg oz 61 81 ol v 6 T £ 1) z
vy {ic v st 91 w1 €1 8 L 9 s} {zz oz 61 81} o1 ¥ 6 T £ 1 %
{cv 1y {ic o0 stoo91 w1 €1} {8 L 9 sy {zz oz 61 81} o1 v 6 T {& 1) 9
{feiy {1y {1z v st o9t w1 1) {8 L 9 s} {z oN 61} a: o1 v 6 T {£ 1} 8
{eiy iy {ic e st} {or w1 €1 {8 {L 9 s} {w= 61} {81} {o1 ¢} {6 T {¢ 1} 11
{ay iy {igy ey {si3 {or} w1} f{e1} {8} {} {9} (s} {c& 3@ {er} {81} fory (v} {6} {o {e} {1} @

.—QQESZ

"IoquInu I13y) Juronpai ‘saoaid zz [eurdio ayy jo no pauwrroj sdnoid ay .

AlRIqeL
LU= 9I'= 81'— 8I'— LI'— 9I'— SI'— LI'— LU'— LI'— 9I'— €I'— II'— OI'— 60— OI'— 60— 60'— CTI'— #I'— 1I'— ZU'— T
LU= 9'= 81I'— 8I'— LI'— 9I'— SI'— LI'— LI'— LT'— 9I'— GI'— II'— OI'— 60— OI'— 60— 60'— CI'— #I'— 1I'— TI'— €T
LU= 9= 81'— 8I'— LI'— 9T'— SI'— LI'— LI'— LI'=— 9I'— SU'— II'— OI'— 60'— OI'— 60— 60— CTI'— ¢vI'— II'— TI'— TW
LI'= 9'— 8I'— 8I'— LI'— SI'— SI'— LI'— LT'— LI'— 9I'— SI'— 1I'— OI'— 80— 60— 60— 60— CTI'— +¥I'— OI'— TI'— 1T
LU= 9I'= LI'— 8I'— LI'— SI'— SI'— 9I'— LI'— 9I'— §I'— SI'— II'— OI'— 80— 60— 80— 80'— TI'— #I'— OI'— TI'— OC
LU= 9= LT'— 8I'— LI'— SI'— SI'— 9I'— 9I'— 9I'— SI'— vI'— II'— OI'— 80'— 60— 80— 80— II'— #I'— OI'— ZI'— 6l
LU= 91'— LI'= LI'= LI'— SU'— #I'— 9I'— 9T'— 9I'—= SI'— #I'— OI'— 60'— 80'— 60'— 80°'— 80— II'— €I'— OI'— TI'— 81
LU= SI'= LU= LI'— 9'— vI'— #I'— SI'— SI'— SI'— vI'— €I'— OI'— 60— LO'— 80— LO'— LO'— [II'— €1I'— 60— I1I'— LI
9= SI'— 9U'— LI'— 9I'— vI'— ¢I'— SI'— SI'— SI'— €I'— €I'— 60— 60'— LO'— 80— LO'— LO'— OI'— €1I'— 60— II'— O9I
o' = ™= 8I'= O™ EL'— £1'= £ = ¥'= #'— #I"— E0— EI"— &0'— 80— 90— - W— W-— 0"~ TI'— 80— or'— %1
SU'— €I'— SI'— SI'— $I'— TU'— TU— €'~ €I'— €I'— ZI'— OI'— 80°— LO'— 90— 90°— 90°— 90°— 60— CI'— 80— OI'— +¥I
vli— 2= ¢1'— ¢I'— vI'— II'— ITI'— TU'— T1'— TU'— OI'— 60— LO'— 90— SO'— SO'— GO'— SO°— 80— II'— LO— 60— €I
Er— II'= €'— €¢I'— TI'— OoI'— 60— II'— II'— OI'— 60— LO'— 90°— SO'— +v0O°— ¥0O'— €0°— €0°— LO— OI'— 90— 80— ZI
= 60— CI'— T0'— 1I'— 80— 80— 60— 60— 80— LO— SO'— SO'— #0'— TO'— €0°— TO'— TO— 90— 60— #0'— LO— 11T
o= L00— II'= 1I'= 60°— 90— 90°— LO'— LO'— 90— ¥O'— TO— #0'— TO'— 00— 10— 000 00— +0°— LO'— €0°— SO'— OI
80— S0°— 60— 80— LO— ¥O'— €0°— SO'— #O'— €0'— 10— TO TO— 00— TO' TOT TO' TOT TO-— 90— 10— €0 — 6
90— J10'— 90'— 90— +vO'— 10— 10 10°— 00° 10 €0" 90 00 €0 <00 SO0 80 SO 100 €0— 20 00— 8
— et €0'— TW— 00— %0 O €0 SO0 90 600 T ¥O© 90" 80" 80 60" 60 S0 00— 90 O L
£0” 80" T g0 SO0 60 I 60 I or SI° 0T 80 I ¢ ¢ #I° €° 60 O OI" 90 9
60" SI° 80 60" CI' 9I' 81" 91" 81" 0T ¥T 6T ¥vI° 91" 61" 61" 0T 61" SI° 600 O Ir Y
Lr s 910 LI 0T T 8¢ ST 8¢ 6T SE I [cc ¢ 9T [T 8 LT T S T8I 14
Lc L 9T 8T € LY 68" L OF v 8 9¢° 6T Tt S€  LE 8¢ 9 e @ e 9T 3
¥ s o oW 9% 0 £ ¢ ¢ ¢ £ T 68 T S 8 ey LY It e v v 4
LS 89  9¢ 8BS T &9 89° 89" 0oL 6% 6L 68 ey TS §§ 6% 19" 8¢ s o s v I
L 18 I el 9L 9 8L I8 08 8 68 001 S 09 T L9 O 99 8 Ly 8  0S 0

(44 1T 0¢ 61 81 Ll 91 Sl 14 el Cl Il 0l 6 8 L 9 S 14 3 [4 1 U

(¥T = ’u) pa1opIsu0d a1 ([ON194) saUaNbaly BIRqNSIEIA 9ANEIIU-UOU GT *(JBIUOZIIOY) $30a1d §,{[ 77 10] (10108] saneordnnu € 03 dn) (u ‘§)¢ uonoduny ded ay .
IIT @IqeL



Vol. 50, 1977 Unrestricted solution of the Eliashberg equations for Nb 277

Those averaged parameters, and others [ 10] were used for the isotropic Eliash-
berg equation solution of Allen and Dynes (their logarithmic factor in u* is replaced
by the more accurate numeric integration over the E(n.) function given in equation
(2¢)). Comparing the obtained 7, and our previous results, the ‘total’ anisotropy
effect turns again to be an increase in 7, but it is dependent on the cut-off frequency.
The increase varies from 0.33°K for n, = 6, through 0.26°K for n, = 13 to 0.21°K
for the infinite n, limit. This variation is due to phonon-anisotropy.

Additional calculation was to change the electron—phonon coupling and the
phonon energies by multiplicative factors and to study then the anisotropy effect.
Dividing the electron—phonon coupling by 0.7 (which brings us back to the original
electron—phonon coupling constants) yields 7, = 24.91°K, a (total) anisotropy
effect of 0.30°K and McMillan’s 7, of 22.9°K. Multiplying the phonon energies by
0.7 yields 7, = 17.66°K an anisotropy effect of 0.20°K and McMillan’s T, of 16.2°K
(a multiplicative factor for the phonon energies is useful to calculate the isotope
effect). McMillan’s result is found to deviate considerably for high 7, as was argued
by Allen and Dynes.

5. Conclusion

We presented here a method for solving the Eliashberg equations. The method
was applied for Nb, and a calculation for any other material is straightforward
provided that its band structure and phonon spectrum are known. The computer
time required for the calculation was found reasonable, and most of it spent on
evaluation of numbers for the construction of the equations rather than on their
solution. This suggests that instead of performing rather an elaborate calculation of
averaged quantities as McMillan’s parameters, one can without substantial increase
in the computer time solve the whole Eliashberg problem. One can also test various
simplifying models and semiempirical formulas when the exact solution is at hand.

The tight-binding parametrization method has been used for the evaluation of
electron—phonon coupling constants. The linear methods for band calculation of
Andersen [23] could form a basis for a more accurate calculation of those constants,
and perhaps also of the Coulomb interaction constants which were parametrized
here. The electron—phonon and the Coulomb parameters can also be tested experi-
mentally through elastic constants and susceptibility measurements.

The method can also be generalized to include the effect of magnetic fields [5]
and impurities [24]. It can also be used to calculate the mass renormalization and
gap functions on the real frequency axis which can be compared with tunneling
experiments results.

The anisotropy effect on 7, was found to be rather small for Nb. However, for
materials with lower dimensional characteristics such as the layered compounds, the
A1l5 and the Chevrel phases [25], an unrestricted solution of the Eliashberg equations
seems to be essential.
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