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Dynamics of the Dicke laser model II:
an example of a semi-classical theory in the presence of
focal points

by G. Scharf
Institut fiir Theoretische Physik der Universitit, Ziirich, Schonberggasse 9, CH-8001 Ziirich
(18.VII1.1976)

Abstract. The nature of the time-dependent WK B-Maslov approximation is investigated for the
quantum mechanical system which is equivalent to the Dicke Laser model. The local seml-classwal
solution and-its continuation beyond the focal points are discussed. :

1. Introduction

The previous paper [1] on the dynamics of the Dicke model was concerned
with explicit calculations of the most important dynamical quantities of the system.
The main tool in these calculations was the time-dependent WKB-Maslov method.
In the present paper this method will be studied in detail ; in particular, the peculiarities
that appear in the application to the Dicke Hamiltonian will be analysed. This is a
subject of its own interest because it gives an interesting example for the use of the
WKB method. This example shows how miserable our imagination is, even for
quantum systems with one degree of freedom, if trained only with the harmonic
oscillator. ,

The quantum mechanical problem to be discussed is defined in the next section.
Its relation to the Dicke Hamiltonian was discussed before [1] and is unimportant
in the present context, so that the subject is fully understandable without any reference
to quantum optics. The corresponding classical mechanical problem is then con-
sidered. The classical solution shows clearly the local nature of the Hamilton-Jacobi
theory: The Cauchy problem for the Hamilton-Jacobi equation has a unique
solution only for small times ¢t < T,. For larger times the solution becomes multi-
valued, the branch-points are the focal points. As a consequence, the semi-classical
WXKB solution can be derived only for ¢t < T, (Section 3), and in fact, it diverges at
the focal point T|,. The main problem is the continuation of this local semi-classical
solution beyond the focal points. This can be done according to a method of Maslov
[2] by going over to the momentum space. Then, beyond a focal point new branches
Si(x, t) of the action contribute to the semi-classical solution. In this way, the global
semi-classical solution is obtained (Section 4). It is valid on a much larger time interval,
except in the neighborhood of the focal points. Since the number of branches S (x, ?)
increases linearly with time ¢, the error in the semi-classical solution increases in the
same way. This is the mechanism which finally leads to the breakdown of the global
semi-classical solution for large times, where the system then shows an essentially
quantum-mechanical behavior.
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2. The quantum mechanical and the classical Cauchy problems
We will consider the following time-dependent Schrédinger equation

Ly h*[ &y | o

def Hy

with the potential energy
2

V(x) = x* — nx + %c_’ n, A > 0. (2.2)

. For simplicity, a (non-resonant) term 6x2/2 in V(x) [1] has been dropped. The
whole analysis goes through with some minor changes in this non-resonant case too.

The Hamiltonian

0 0

- B
H= —h o " o + V(x) (2.3)
defines a symmetric differential operator H in L? (0, <©). It is essential for the formu-
lation of a Cauchy problem for equation (2.1) to extend H to a self-adjoint operator.
Both end-points x = 0 and o are singular points which belong, according to the
classification of H. Weyl, either to the limit-point or to the limit-circle case [3]:

H is in the limit-circle case at 0 (respectively at <o) if all solutions y of

Hy =0 (2.4)

are square integrable at O (respectively at o0), otherwise H is in the limit-point case.
According to a simple criterion ([3], p. 231), H is always in the limit-point case at
infinity. Since for x — 0 the two fundamental solutions y,, y, of (2.4) behave as

yi(x) ~ xh y(x) ~ x7 (2.5)

H is in the limit-point case at 0 for 4 = 1 and in the limit-circle case for A < 3 (the
case A = 3 is just the superradiant case previously discussed [5]). According to the
general theory [3, 4], there exists a unique self-adjoint extension of H in the limit-
point case A = 1.

In the limit-circle case there are many self-adjoint extensions specified by a
boundary condition at x = 0 of the form ([4], p. 187)

lim {p(x)A(ex* — Bx~*) — y'(x)x(ex* + fx~ %)} =0 (2.6)

x=0
We know, however, from reference [ 1] that the physically important solution y(x, #)
corresponding to the quantum optical problem behaves as x* for x — 0. That requires
B = 0in (2.6). We therefore take for A < 1 the self-adjoint extension defined by

lim {Ax*p(x) — x**1y'(x)} = 0 2.7

x—0
In both cases, a self-adjoint Hamiltonian (denoted also by H) has been obtained.
This operator H then generates a unitary group which gives the unique global solution
¥(x, ) of the Cauchy problem for the Schrédinger equation (2.1) in L*(0, oo).

Let us now turn to classical mechanics. The Hamiltonian function H(p, x)
corresponding to (2.3) is

H(p, x) = xp* + V() 2:8)
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and the corresponding Hamiltonian—Jacobi equation reads

oS a5
g il . 2.9
EY + x(@x) + V(x) = 0. (2.9)

A complete integral S of this equation depending on two constants of integration
x, and ¢ is given by the following elliptic integral
L T P 12\ 1/2 :
S(x, xo, €5 2,0) = de’ (n — ax'? - o Scﬁ) + et. (2.10)
Then the Cauchy problem of determining a solution S(x, ¢) of equation (2.9) which
satisfies the initial condition

S(x, 0) = Sy(x) (2.11)
at t = 0, is solved by forming envelopes of solutions (2.10)
S(x, ) = 8(x, x4, £; 1, 0) + So(Xo)s (2.12)

where the functions x, = x(x, f) and ¢ = &(x, t) are implicitly given by the two
relations

95 _ | (2.13)
Oe

98 95y _ 4 | (2.14)
Ox, 0x,

The first relation (2.13) leads to
trjmm””ﬁ’ | 2.15)

with

R(x) = —x* + x> — dex — 422, (.16
This equation (2.15) can be inverted [5], yielding x,, (or x respectively)
- b P(OR(x)'? + (=2x3 + 4nx — 2e)(P + 3x*) — XR(x)

_ : 2.17
} o 2P + %) + IR(x) 10
Here
_ dp(t
PO =po) — b, P =D 2.18)
where

p = plt; 92, 93)
is Weierstrass’ p-function with invariants
g2 = 3" + 442
g3 = —2m> + i + & | ‘ (2.19)



256 G. Scharf  H.P. A

The equation for x i1s obtained from (2.17) by the changes x < x,, t <& —t. These
equations give the spatial trajectories leading from the point x to the point x,, in time ¢
(or reversed) for a given energy —e.

In order to discuss the second relation (2.14), let us consider the following initial
condition (2.11)

So(x) = —i(dlog x — 3x?), (2.20)

which will be of interest in the following. Since this S, is no longer real, the corres-
ponding action S(x, ) will be complex. The corresponding complex trajectories do
not describe classical motions in the ordinary sense. However, if the quantum
mechanical (time dependent) wave function is considered in a classically forbidden
region, then the relevant classical trajectories are necessarily complex. Therefore, in a
general semi-classical theory, all (real and complex) trajectories have to be used. This
point is missed in the book by Maslov [2] (apart from a remark on the last page, 328),
which restricts the usefulness of the general apparatus developed there. Inserting
(2.20) into equation (2.14), we get the simple expression

e =(n — A)x,. (2.21)
This has to be substituted for ¢ in (2.17) yielding a transcendental equation for
Xo = Xo(x, 7).

Let us consider this equation in some detail for the special value x = 0, which
1s of particular interest in the quantum optical problem [1]. In this case the equation
for x,(0, t) becomes

iAP'(1)
PP — 22+ (n— AP

(2.22)

Xog = —

We emphasize that x, enters also in the invariant g, (2.19) of the p-function through
¢ (2.21). The p-function and its derivative (2.18) are periodic functions of ¢ with real
half-periods @ = w(g,, g;) depending on the invariants g¢,, g;. Consequently, if
Xo(t;) 1s a solution of (2.22) for ¢t = ¢,, it is also a solution for t = ¢; + w. But the
periods vary with the value of x,. Therefore x,(¢) is not periodic in ¢, but it can be
constructed from the values in the interval 0 < ¢ < w, = w(x, = 0) by a non-
uniform shear transformation (see Figure 1). For small times, x,(¢) is unique and
shows an oscillatory behavior. Since the period w(x,) increases with increasing |x,|,
the larger values of |x,| are shifted more to the right than the smaller ones during the
next oscillation. This leads to a fall over of the wave, which occurs already in the
second oscillation, in general. In Figure 1 numerical values of x,(0, t) are shown for
A =%, n = 3. We see that x,(r) necessarily becomes multivalued for larger ¢. The
branch-points where new branches x,,(f) appear (or disappear), i.e. where

ey
ot

are the focal points. The number of branches increases linearly with z.

In the general case x#0 the situation is qualitatively the same. Since x,(x, )
is multivalued, S(x, ) (2.12) becomes multivalued as well. We therefore get finitely
many different solutions S,(x, #) of the Cauchy problem for the Hamilton-Jacobi
equation. But there exists a finite time interval [0, T(x)) (larger than one oscillation
period) where the solution x,(x, ) is unique. Moreover, the focal points 7(x) are

— Jeo (2.23)
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time t
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8 . R |
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A :
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! I 1 1 I L L
Figure 1:

Xo(x, 1) for x = 0, A = 0.5, n = 1.5 as a function of ¢. The arrows illustrate the shear transformation.
The focal points are marked by little circles.

bounded away from 0
T, = inf T(x)> 0. (2.24)

0<x< 0

As in the case of ordinary mechanical systems we could try to solveequation (2.15)
for ¢

e = &(x, X, 1) (2.25)

in order to get the action S (2.10) as a function of the coordinates x,, x and ¢. Equa-
tion (2.15) can indeed be inverted in the form ([5] equation 4.19)

¢ = (x + x,)Gxx, — P) + Q'/? (2.26)
with
QO = [(x + x,)* — 4y — 4P][Ex*x2 + A% — Pxx,]. | (2.27)

But this transcendental equation for ¢ has infinitely many solutions, in general, even
for arbitrarilv small t! This can be seen as follows: For fixed x, x,, &(x, Xy, #) 1s a
monotonely decreasing function of #(e(f = 0) = + o), following one branch. In
the same manner as was discussed above, infinitely many new branches can be
generated from a given one by non-uniform shear transformations. The crucial point
is that the real period w of the shear translation goes to 0 for # — (), which can be
deduced from the expansion of the p-function for small t. Consequently, the branches
approach each other for 1 — 0. Then there are infinitely many different values of
e(x, xq, t) for all t > 0. In Figure 2, &(x, x,, t) as a function of ¢ is depicted for fixed
X, X, In a typical case.
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Figure 2:
Energy ¢(0, x,, ¢) for x, = 0.4i, A = 0.25, n = 1.25 as a function of t. The arrows illustrate the shear
transformation.

This behavior of the energy ¢ has some unusual consequences. Given two points
X, and x in space, then there exist infinitely many trajectories leading from x, to x
in a given time ¢, and this remains true for arbitrarily small ¢. That is in sharp contrast
to the behavior of a ordinary point mass (with kinetic energy p*/2m). At least if the
potential ¥(x) is bounded, there is only one trajectory from x, to x for sufficiently
small 7 ([ 7], theorem 3.1). At the same time the action S,(x, x,, ?) has infinitely many
different branches for all ¢ > 0. Then, it is quite complicated to derive a semi-classical
approximation for the Green’s function K(x, x,, t) of the Schrédinger equation (2.1)
even for small ¢, as can be done in ordinary quantum mechanics [7]. Therefore, it
seems to be rather difficult to convert the formal arguments of reference [1] into a
proof. For this reason, we proceed a somewhat different way in the following sections.

3. The local semi-classical solution

It is our aim to construct an asymptotic approximation for 2 — 0 to the solution
y(x, t) of the Cauchy problem for the Schrédinger equation (2.1). Following Maslov
[6], we consider the initial condition

1
¥(x, 0) = yo(x) = p(x) exp ~h~<p(x)- (3.1)

In this section, we assume p to be in L%(0, c0) and Re ¢(x) bounded from above, in
addition p and ¢ are supposed to have analytic continuations into the complex
x-plane. For the physically most interesting initial state (the so-called fully excited
state of quantum optics) we have [1]
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Yo(X) = exp %(l log x — x?), (3.2)

which is not precisely of the form (3.1). But if y, is normalized such that the L*(0, c0) —
norm is |

Iyoll* = 1, (3.3)
then in the limit £ — 0, y2(x) goes to ‘
YE(x) = d(x — /2) (3.4)

in the sense of distributions. Therefore, if we multiply by a continuous p(x) € L*(0, o)

with p(\/24) = 1, the error is exponentially small for 2 — 0.
For the solution y(x, #) of the Cauchy problem, we now make the following
ansatz

y(x, 1) = u(x, t) exp % S(x, 1) (3.5)
where S(x, ¢) is the solution of the Hamilton-Jacobi equation (2.9) satisfying the
initial condition

S(x, 0) = Sy(x) = —ip(x). (3.6)

As was pointed out in the last section, S(x, 7) is uniquely determined for small
t < T,(2.24).

In particular, for the fully excited initial state (3.2) this has been investigated

(2.20). If (3.5) is substituted into the Schrodinger equation (2.1), one gets the following
equation for u(x, 7)

., Ou oS 0S\?
lha = (E + X (5;) + V(x))u

— ih xﬁg + 2 §@+a_s — h? a"_qu@
xz *oxox T ax” *ox2 T oax)

where the first term on the right side vanishes due to the choice of S(x, #). The corres-
ponding initial condition is

u(x, 0) = p(x). | (3.8)

Let us consider the function x,(x, #) which is implicitly given in terms of the
trajectory

(3.7)

x = x(xy, 1). (3.9)
We calculate the time derivative of x (with x fixed) from (3.9)
23
556[0 = - g; | (3.10)
0x,
and use
ox OH oS



260 | G.Scharf  H.P. A.

obtaining

Ox, 0x, ., 0S

= _sza" (3.12)
Differentiating this with respect to x, we get the relation

d 0x, 00x,  0’x,, 0S 0x, 0S Ox, 0°S

B 0 dx T Ox Pox  Coxdx X ox oxk iRy

For the solution u(x, t) of (3.7), (3.8), we now make the ansatz

0x4\/* _ .
u(x, t) = (73?) vu(x, 1). : (3.14)

Substituting into equation (3.7) and using (3.13), we find the following equation for
Uh(xa t)

dv, 0S0dv, _ . (0xo\ 1?8 8 [0x,\'?

o T amox (“a?) axox\ox ) )
The initial condition now reads

v(x, 0) = p(x). (3.16)

For the left side of equation (3.15) we can write

v, O0xdv, d
NI T vu(x(xg, 1), 1) (3.17)

which is the time derivative along the trajectory (3.9). Then (3 15) and (3.16) are
equivalent to the integral equation

t
| . ox,\ V2 8 8 [ox,\"?
b(x, 1) = p(x) + ik f dtl( a";) = ax( axxo) 0,(%, 1)), (3.18)
0

where the integral is taken along the trajectory (3.9), that means x has to be substituted
by x(x,, t;). Since for 0 < ¢ < T, there exists a unique trajectory, it follows that
0x

X 4, (3.19)
0x,

Therefore, the factors appearing in (3.14) and (3.18) are bounded. If the time ¢
approaches a focal point, then according to (2.23) and (3.10)
0x

=, (3.20)

which is usually taken as the definition of a focal point [7].
We must now control the A-dependence of v,(x, ). For this purpose, let us per-
form a scaling transformation

x = xh~ 12, t' = h*

J—y n = nh (3.21)
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in equation (3.15), which leads to

dv  ox dv . [Oxp\"Y? 0 8 [Exq\1?

—~t=—==i|l= — == A - 3.22

or + ot ox’' ’(ax) ox ~ ax \ ax’ v _ (3.22)
Since this equation no longer contains the parameter # and the initial condition
(3.16) 1s independent of 4 too, it follows that

v(x, 1) = v(xh™ 12, th'/?), (3.23)

Then, since v(x’, ') is bounded for x' — o, ' — 0, v,(x, t) is bounded with respect
to Auniformly in xand 0 < ¢ < t; < T, together with its first and second x-deriva-
tives. Consequently, we may conclude from the integral equation (3.18) that

vu(x, 1) = p(xo(x, 1)) + O(h) ' (3.24)

for h — 0 and x fixed.
Summing up, we have shown that

0x, b2 i/(h) S(x, 1) :
y(x, 1) = ] ¢ P Lp(xo) + 0(A)] (3.25)

for t < T,. Since the error term is square integrable, we have also an approximation
in the L? sense

[¥(x, 1) — yx, 0)|| = O(h) (3.26)
where

(x 1 = p(x,) %o Uzex iS(x t) (3.27)
Feoe B = EN P AR |

1s the local semi-classical solution. .

4. The global semi-classical solution

The local semi-classical solution (3.27) diverges at the first focal point according
to (3.20). However, beyond the focal points the expression (3.27) is again finite but
not unique. The exact solution y(x, ¢), on the other hand, remains regular at the focal
point. There rises the connection problem of continuing y (x, ¢) in ¢ through the focal
points in such a way that it approximates y(x, #) beyond the focal points.

For technical reasons, we now assume that p(x) and ¢(x) appearing in the
~ initial condition (3.1) are analytic functions of x, regular in a certain region Q' of
the complex x-plane which contains a part of the positive real axis and will be further
specified below. Outside Q' p(x) is assumed to be C? with compact support Q > ',
while @(x) is C? in Q\Q’. We remark that these assumptions are not too restrictive,
because a p(x) with non-compact support can be decomposed by means of a de-
composition of unity

1 = Z pi(X), Py € C%-
3

The focal points 7T(x) of the local semi-classical solution (3.27) lie in the time
interval [T, T,]
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T, = min T(x)
xpe Q2

T, = max T(x) (4.1)
xpel2

Following a method of Maslov ([2], p. 285), we bridge the gap between 7, and T,
by going over to the momentum space. Let us choose ¢; < T, so that the semi-
classical solution y (x, t,) (3.27) is still valid at ¢,. We compute the Fourier transform

; Ox \ & ‘
PAp. 1,) = Quk)~ 17 f dx ¢l (g) IS p(xy), @.2)
where the integral actually runs only over the compact set Q.
Q. = {x(x,, t;) € R} | x, € Q}. (4.3)
The integrand in (4.2) is analytic in
Q' = {x(xo, 1) | X0 € Q}. (4.4)

The integral (4.2) will be evaluated by the saddle-point method. A saddle-point
X, is a solution of the equation
0S(x, t;)
ox 7
that means p must be the momentum at time 7, corresponding to the unique
trajectory (3.9)

(4.5)

p = .p(xO’ tl) (4.6)
Xy = X(Xq, 1)

Let A be the set of momentum values

A = {p(x,, ty) | x(xo, ;) € Q,}. 4.7)
Then, for p € A there exists a unique saddle-point x,, generally complex. For p € A’
A = {p(xq, ;) EA| x5 €Q'} ‘ (4.8)

the saddle-point x, lies in the analyticity domain Q (4.4). The path of integration
can then be deformed inside Q so that it runs through x,. Now the integral inside
Q' can be evaluated by the complex saddle-point method ([8], p. 232) up to an ex-
ponentially small error, the integral in the rest of Q_is 0(h?) because p € C?2. This yields
1/2 _ ) 0 1/2
9y 1) = | " (2mhy 12 e (3’;9)
pe) S(x, t,)

X1

X1

x @lWSELty p(xty L O(h2), (4.9)

with x; = x,(x,, ¢;). The error term in (4.9) can be estimated in the sup-norm or in
the L? norm. In the following, all estimates are understood in the L? sense. For
p ¢ A there exists no saddle point, therefore

94p, t;) = O(R>?). (4.10)
The contribution from p € A\A’ can be made arbitrarily small in the L? sense, say
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0(h*?) also, by choosing Q\Q' small enough. The error 0(h*'?) can be neglected com-
pared with the error O(h) of the local semi-classical solution (3.27) (see (4.22) below).
From (4.6) we get

Xo = Xo(p, 1) (4.11)
and

x; = xy(p, ty). (4.12)
Using (4.5) and the chain rule, we can write (4.9) as

ax 1/2 .

Jeps 1)) = (a—;) e/MSr1) p(x5) + O(h>?) (4.13)
where |

S(p, 1) = S(x(p, 1), ;) — px,(ps 1y)- (4.14)
According to (4.5), this is a Legendre transformation. We have

0Xp.ty) _ (4.15)

op

Let A, be the compact set on the real p-axis which is in A’ (4.8), and
1,(P) € CF(RY) ,

1 peA,
X(p) = <4<l pégA, (4.16)
0 pésuppy, = A,

and similarly

1 xeQ,
A(x) = 9 <1 x¢Q, (4.17)
0 x¢suppy, 2 Q..

In addition, we define y, and y, = 1 in some complex region of thc p or x plane,
respectively, specified below. The function

1/2 .
vAp, ty) = xp(p)( ap) g AN pi(l) (4.18)

is approximately equal to $.(p, t,) in L,(R") up to 0(h*/?). It then follows from the
Fourier inversion theorem in L? that

Vdx, 1) = Qmh)~1P2 j dpip, 1,) €/PP* + O(h*2). (4.19)
Multiplying with y, (4.17), we have also
Yelx, 1)) = 2, (x)@mh)~ 12 j dpp, 1,) €¥P% + O(H12). (4.20)

We now consider ¢ > ¢,. Let y,(x, ?) be the solution of the Schrédinger equatlon
(2.1) with the initial condition

Yo%, 1) = x(x) ePPx (4.21)
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at t = t,. It follows from (3.27) and (4.20) that

y(x, 1) = 2nh)~ 12 J dpy(p, 1)y (x, 1) + O(h) (4.22)

for arbitrary ¢ > t,, due to the unitarity of the exact time evolution operator. Since
y,(x, t;) is of the form (3.1), we can apply the results of Section 3 and compute its
local semi-classical approximation y, (x, #). We have to consider the trajectory

x' = x'(x3,p, ) (4.23)
pP=pup b))t <t <t (4.24)

with x" = x,, p" = p at t = t;. For every given x = x(#) and p = p'(t;) € supp %,
there exists a unique initial coordinate x,

Xy = Xp(x, p, 1), (4.25)
if ¢ is not too big, say

t—t; <At (4.26)
Then there also exists a unique action S ,(x, #) given by (2.12)

S(x, 1) = S(x, x5 1, t,) + px, 4.27)
and a corresponding local semi-classical solution

dx, \!'? i
Vol X, 1) = y(x5) (E) exp |:E S,(x, t)}. (4.28)

The energy ¢ has been dropped in the argument of §, because it is now explicitly
given by

—& = x,p* + V(x,). (4.29)
Using

a8

672 = —p, (4.30)
it follows from (4.27) that

Ay a5 0x

Lt (. 2 = X,. 4.31

2 ((.m +p) % 3= x, | (431)

Finally, substituting y . (4.28) for y, into (4.22), we obtain with (4.18)

12 gy \ /2 i/(h)S(p, 11) i
y(x, 1) = (2nh) dpy,(p) ) € 2 p(xq)
ax\12 (4.32)
~ Xx(xz) ( axz) ez/(h)S,,(:c,z) + O(h).

This integral will again be computed by the saddle-point method. The saddle-points
are solutions of

oS(p, t;) | 0S,(x, 1)
s =
ap op

0 (4.33)
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or with (4.15) and (4.31)

x1(p, 1) = x,(x, p). (4.34)

Consequently, p must be chosen in such a way that the two trajectories (3.9) from time
0 to ¢, and (4.23) from ¢, to ¢ join together, forming one trajectory from O to z. Since
the latter is no longer unique for ¢ > T, there exists now more than one saddle point
(the argument given in Maslov’s book [2] p. 293 is wrong at this point). The exponent
in (4.32) simplifies at the saddle-points p, :

S(py, ty) + SpX, ) = —pxi(py) + §(x1, Xg5 1, 0)
+ Sp(xo) + S(x, x35 8, 17) + 2iXa ()
Sk(x Xo(P1); 1, 0) + So(xo(P1)
ef S.(x, 1). (4.35)

The domains of analyticity for Xp and y, must be chosen big enough such that all
(complex) saddle-points p, lie inside. Assuming ¢; + At > T,, which can always be
arranged by a suitable restriction of the support Q of p, we can compute the integral
(4.32) for T, < t < t; + At by the saddle-point method

2nh 1 %, O, 2=

v 1) =2 dx, _ 0x, 2nh 0p x|,
op op
x elMSkx0 px ) + 0(h) (4.36)

where
Xow = Xo(X1(Pr> 1), t1) = Xo(X5(x, pi)s 11)
f x (X, 1) (4.37)

Here p (respectively p,) appears as a parameter which must be determined by x,
so that everything on the right side of (4.36) depends ultimately on x only.
We set ¢ = ¢, in (4.24) and solve (4.25) for p to obtain

P = P'(x5, p(X, X5, 1), 1) % p(x,, x) (4.38)
or because of (4.34)
P — p(x((p), x) = 0, (4.39)

omitting the time arguments which are now of no interest. This equation (4.39)
gives p as an implicit function of x. The x-derivative then is

(@ ox,) (2
p _ ox /., _\adp ) \ox/,,

= = : 4.40
0x | — op\ 0x, 0x;\ 0%y (4.40)
0x;)x dp  \dp ). 0p
Using this expression in (4.36), we get the final result ([1], equation (2.31))
1/2
yx ) =Y, (%2) M0 p(xo) + O(h). (4.41)
k

This formula shows that the local semi-classical solution can be continued
beyond the first focal points in the most plausible way by adding up the contributions
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of the different branches. The same arguments can then be used at the following
focal points, at which one considers each branch separately. In this way, the global
semi-classical solution is established. As we have seen, at each focal point an addi-
tional error O(#) comes in. Since the number of focal points increases linearly with ¢,
the total error increases in the same way, if all error terms have the same order of
magnitude. In the quantum optical application [1] 4 is proportional to N~ (N =
number of radiating atoms). The global semi-classical solution then breaks down
after O(V) focal points or after O(N) oscillations. This is precisely what one finds in
numerical calculations for the Dicke model (see also [5] p. 85).

A final remark is concerned with the nature of the semi-classical approximation.
The semi-classical solution y(x, ) approaches y(x, t) for A — 0 in the L* sense, but
in the applications [1] the behavior of y(x, f) in the neighborhood of x = 0 is re-
quired. However, going over to a subsequence #; — 0, we get convergence almost
everywhere, and this is sufficient for the applications.
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