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Projective representations of the Schrédinger group

by M. Perroud®)

Centre de Recherches Mathématiques,
Université de Montréal,
Montreéal, Québec

(11.VL.76)

Abstract. A classification of the projective unitary irreducible representations of the Schrodinger
group & (3) is given and a representative of each class is explicitly constructed by the method of induced
representations. The connection between some of these representatives and the realizations found by
U. Niederer on spaces of wave functions is established. The physical interpretation of these representations
is very similar to the case of the Galilei group; however the usefulness of generalizing the concept of
elementary systems to these representations is not very clear in view of the appearance of an infinite
number of degrees of internal freedom.

I. Introduction

In his two first articles devoted to the Schrddinger group, U. Niederer [1, 2]
constructed a projective unitary irreducible representation of this group in two
different realizations. The first one was constructed on the Hilbert space of the solu-
tions of the Schrodinger equation for a free particle and the second one on the Hilbert
space of the solutions of the Schrédinger equation for a harmonic oscillator. In these
two examples, a natural realization of the space of the states for which the position
observables are ‘diagonal’ is given by L%(R*); this space inherits a representation of
the group induced by the ones defined on the spaces of wave functions. Actually it is
the choice of a law of evolution which permits, starting from this representation to
obtain the various realizations on the wave functions. Any localizable three dimen-
sional system with spin 0 has L*(R®) as a space of states (as long as its Hamiltonian
1s defined on a dense domain of it) and therefore it admits the Schrodinger group as
an invariance group. To each choice of a Hamiltonian there corresponds a particular
realization on the corresponding space of wave functions. The third article of U.
Niederer [3] devoted to Hamiltonians with arbitrary potentials does not contradict
this fact: it is the ‘kinematical requirement’, characterized by a specified law of trans-
formation for the wave function, which restricts the invariance group. The operators
of the representation always permute the solutions, but not necessarily via ‘kine-
matical transformations’.

In the two examples mentioned above, the Hamiltonian is the generator of a
one parameter subgroup of the Schrédinger group and the idea of interpreting the

') Work supported by the Ministére de ’Education du Gouvernement du Québec.
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generators of all one parameter subgroups as possible Hamiltonians was explored by
G. Burdet and M. Perrin [4]. The knowledge of the representations of the Schrodinger
group may be useful here: they explicitly give the evolution operator and therefore
the propagator of the corresponding Schrédinger equation. The interest in the
representations of this group is not limited to the cases where the group of evolution
is a subgroup; as a subgroup of the canonical group, the Schrédinger group through
its representations can serve as a spectrum-generating group for Hamiltonians, the
symmetry group of which does not remove all degeneracies.

At a more fundamental level it is of interest to compare the projective irreducible
representations of the Schrodinger group with those of the Galilei group; the former
containing the latter. The possibility of usefully generalizing the notion of elementary
Galilean systems to some projective irreducible representations of the Schrodinger
group arises. However the answer, after a somewhat superficial analysis, seems to be
negative.

The first three sections are devoted to a review of some useful information on
the Schrodinger group, its central extensions and the induction procedure for their
representations. In Sections 5, 6, 7, 8 we classify and construct the projective irre-
ducible representations of the group. In the last section we examine the consequences
of a dynamical postulate for a class of these representations and establish the link
between the representations and the various realizations on certain spaces of wave
functions given by U. Niederer.

II. The Schriodinger group and its central extensions

Within the group of all unitary transformations of the Hilbert space of the
solutions of the Schrodinger equation for a free particle

i0y(x, 1) + Q% Ay(x, 1) =0,

U. Niederer [1] considered the subgroup of transformations of the form
UlgW = (fy-¥)og™!
generated by the maximal local Lie group of the transformations
g:Ey xR—>E; xR
of space-time. The associated Lie group, called the maximal kinematical invariance

group of the free Schridinger equation and denoted #(3), admits a faithful matrix
realization in the group of 5 x 5 real matrices

P(3) = {(5 g) e My, sR)|Re SOB3), SeSLQ2,R), Te M, xz(R)}.
(2.1)

The local group of transformations of space-time is deduced from the linear .
action of #(3)on E; x R x R:

Rx + tv + a
ct + d
at + b
ct + d

X >

(2.2)

{—




Vol. 50, 1977  Projective representations of the Schrodinger group 235

b
where R € SO(3), [v, a] € M, . ,(R), (‘; d) e SL (2, R).
By restricting S to the elements of the subgroup

s ) oo

of SL (2, R), we obtain the full Galilei group, while the restrictions to the subgroups

Kz{(c.()sr —sinr); _— 2n[}
sin T COS T

cosht sinht
L = {(sinh T cosh r); te R}
furnish the two Newton’s groups which are the contractions (with respect to the
speed of light) of the two de Sitter groups SO(4, 1) or SO(3, 2) [5].

A basis for the Lie algebra 4(3) of the group is easily obtained from the matrix
realization (2.1). Setting

J]. = = 23 + E32, J2 — E13 — E31,‘ J3 == _Elz + E21 fOI' S0(3),
G, = E,s, Gy =E,, — Ess, G_=E,, forsi2R),
K = E,, Py= B 1= 1,23 Tot L,

we get the following commutation relations

[, Ji1 = epdy

- K] = sukK

[J;, P = &P, (2.3)
[/, G:1=0, [J;,Gl=0, [J,G.1=0

[Go, Gi] = +2G,, [G,.G_] = Go

[G.,K] = —P, [GO,K] = —-K, [G_,K]=0 (2.3)
[G+!Pi] = 0, [Goa P;] = 19 [G—sPi] = —K

[K;, Kj] =i i) [K;, Pj] = 1), [P, Pj] =,

or

The group #(3) admits the Levi-Malcev decomposition
F(3) = T, O (SOB3) x SL(2, R))

(where T, denotes the additive Abelian group R®). We note that this is a connected
but not a simply connected group; its universal covering group (< (3)*; IT) is

FB)* = T, [ (SUQ) x SL2, R)¥)

with IT: #(3)* —> #(3), the canonical projection.
Setting g* = (a, v, s, o) for an element of .#(3)*, the multlpllcatlon law becomes

(a,v,s5,0)a,V,5,0)=(Ra + bv+ da RV + av+ ca ss, od) (2.4)

where R, and a, l;, are the IT projections into SO(3) and SL(2, R) of the elements
c
s€ SU(2) and ¢’ € SL(2, R)*.



236 M. Perroud H. P A

Referring to the fundamental article of V. Bargmann [6] on the projective
unitary representations (P.U.R.) of the Lie groups, we make the following assertions.
If

U: L3y UH)
is a P.U.R. of ¥(3)*, U will also be a P.U.R. of #(3) if
U(g*) = €“id,,, aeR, Vg* € Ker I1.
Moreover each P.U.R. of #(3)* is obtained from a unitary representation (U.R.) of
a central extension of #(3)* by a one-parameter Lie group
Z(3) = RO ¥3)*.
More precisely, all P.U.R. of &#(3)* are either given by

U(g*) = V(0, g*),

where Visa U.R. of #(3), or they are projectively equivalent to such a representation.
The problem of constructing the irreducible P.U.R. (P.I.U.R.) of #(3) thus
reduces of constructing the irreducible U.R. (I.U.R.) of the central extensions #(3)
and then if necessary to choose those which give the P.I1.U.R. of #(3).
The easiest way of finding the central extensions of %(3)* is given by the Barg-
mann procedure starting from those of the Lie algebra

3(3) = R x 4(3).
It is not difficult to convince oneself, in view of the appearance of the subalgebras
su(2) x sl(2, R) and R*® x su(2) which admit only trivial extensions, that 4(3) has

only one class of non trivial extensions. A representative of this latter is characterized
by the bilinear from B appearing in the commutation relations

[0, h), (0, H')] = (B(h, h'), [h, h'])

of 3(3). It can be chosen to be zero on all couples of elements of the basis (2.3) except
for the couples {K;, P;} for which we can put

BK,,P)=1, i=12,3.

Identifying 4(3) with its image in 3(3) ((0, ) = h) and setting M = (1, 0), we
obtain for 3(3) the same commutation relations as in (2.3) except for [K;, P;] = 0
which must be replaced by

(K., P;] = 6,;M.

The generator M of course commutes with the entire algebra.
The corresponding extension of the group can be found either by the Bargmann
method or by formal exponentiation of the Lie algebra. Denoting by § = (&, g*) =

(&, a, v, s, 0) an element of 9(3), we can write the law of composition as

(&, g*)(& 9™) = (€ + & + E(g% 9™), 9%9™) (2.5)
where g*g'* is defined by (2.4) and

E(g*, g'*) = Hab'|v)* + cd'|a]* + 2b'c'v-a + 2(d'v + 'a)-Ra).
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(Recall that every analytical function on &(3)* allows us to pass to an equivalent
extension by putting

E'(g*, g%) = E(g*, g™) + A(g*) + A(g™) — A(g*9™))

From now on we shall call ..‘7(3) the extended Schradinger group; the following
sections will be devoted to the construction of the I.U.R. of this group. Indeed it 1s
sufficient to limit oneself to these latter, since the P.I.U.R. of &(3) arising from the
L.U.R. of the trivial extension R x £ (3)* will be already given by those I.U.R. of
&(3) whose kernel contains the group of extension.

III. The induction procedure
The extended group &(3) admits the following semidirect decomposition
F(3) = G(3) O SL2, R)*

where
G'(3) = W,0 SUQ)

is the derived group of the extended Galilei group (the isochronous group of J.-M.
Lévy-Leblond [7]); W; = R [0 T, denotes the Heisenberg group of dimension 7.
G’ (3)isa type I group and its I.U.R. are easy to find; we are therefore in a favourable
position to construct the I.U.R. of #(3) by an mductlon method.

The normal subgroup G'(3) is not Abelian as in the case of the Euclidean or
Poincaré groups; the Wigner method of induction [8] must be modified. We restrict
ourselves to giving the individual steps of the recipe we have followed in the inducing
procedure. It is an application of the general method due to G. Mackey [9, 10].

(1) Find all the equivalence classes of I.U.R. of G'(3); we call this set the dual

é’(3) of the group.
(2) Classify the orbits of 9(3) in G '(3); the A(3) action is defined as follows: for

[L1e G'(3) and geA3), [L]+> [L7] is given by L(h) = L(ghg™"), Vhe G'(3).
Choose a class [L], in each orbit and find its stabilizer I'; = G'(3)[J K. (K <
SL(2, R)* is called the little group of I',,.)

(3) ‘Extend’ a representative L € [L], to a unitary representatlon L° (projective
if necessary) of I'y and liftan LU.R. & (projective if L° is projective) of K to a repre-
sentation 2° of F (2°g) = 2(gG’'(3))) in order to obtain a representation & =
L°® 2° of T, acting on a Hilbert space .

(4) If the orbit is a point (I'y =.443)), the induced representation is simply
given by #. If the orbit is not just a point, find an invariant measure u on the orbit
(9(3) and its semldlrect decomposition are ‘good ones’ for this) and construct a
section A: O — y(3) (O ~ 9”(3)/F0) such that A, [L], > [L?].

(5) Induce starting from % and A: the umtary induced representation of 5‘9(3)
which acts on the Hilbert space L2(0; /) is given by

(U(9)F)(x) = L(AL "gA,-1,)F(g™ ' x).

The equivalence class [U] is characterized by the class [L], of G'(3) and by a class
[Z] of the little group K.
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Remarks. (1) When the normal subgroup is an Abelian one, this recipe reduces
to that of Wigner.
(11) The stabilizers I', are of type I for each case under con51derat10n and the

rather_involved measure theoretical conditions on the dual G (3) are satisfied so
that £(3) is a type 1 group.

IV. The LU.R. of G'(3) and the orbits of G'(3)

Denoting by g = (¢, a, v, s) an element of G'(3), the law of composition can be
written as
¢ avs)E, a,v,s)=(E+ & +v-Ra,a+ Ra,v+ Ry,ss). - (4.1)

The I.U.R. of this group are the most easily found by the induction method
starting from the semidirect decomposition

G'(3) = KO EQ)*

where K = {(£, a, 0, 1)} is an Abelian normal subgroup and E(3)* = {(0, 0, v, 5)} is
the universal covering of the Euclidean group E(3). Because of the Abelian character

of K, the method is standard and we limit ourselves to giving some outlines.
The action of G'(3) on K follows from (4.1):

A, a,v,5):(,a)~ (& + v-Ra', Ra)

A(E, a,v,5) (&, a) > (& — v-a, R7a).
IfK = {(m, p) | m € R, p € R*} denotes the dual of K, the I.U.R. (one-dimensional)
of K are given by

(m, p), (&', 2)) = exp i(ml’ + p-a)
and the action of G'(3) on K, which is defined as

(AN, a, v, 5)(m, p), (&, a)) = {m, p), (¢, a,v,s5)7 (&, a))
gives

o *(E a,v,5): (m, p)— (m, Rp — mv). (4.2)
The orbits of G'(3) in K are thus of 3 types:

(1) 0,, = {(m,p) |pe R*} ~ R3, m s 0; the stabilizer of the point (m, 0) € O,
r, = KO SUQ).
(2) 0, = {(0,p) | |p|* = p*} =~ S*(p), p>0; the stabilizer of the point
0,(0,0,p)e0,isT’, = K[J (T; O SU(1)), where

B exp iy/2 0 5
T3DSU(I)_{|:V,( " exp_iwz):l[veﬂ% , O~<,v,ll<4n}

(3) O, = {(0,0)}, point orbit; the stabilizer is I, = K[ E(3)*.

The next step consists of constructing the I.U.R. of the little groups of the
stabilizers; but these latter are either well known (SU(2), E(3)*) or they are easy to
compute by induction (73 [J SU(1)). Finally we induce, starting from a section
A: O — G'(3). The results for the three types of orbits are the following.
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(1) The U.R. of T, associated with the stabilized point (m, 0) are:
Dm,j(éa a, 05 S) = e_im‘:Dj(s)'

where Dj(s): C**' — C?*' denotes the U.R. of SU(2), 2j =0,1,2,.... The
action of G'(3) on O,, is given by (4.2) and a choice of sectionis A, = (0,0, —1/mp, 1)
(Ap: (m, 0) — (m, p)); then

D, (A, 'gA,-1,) = 0P DD (s)
and the induced I.U.R. of G'(3) is

(L, (&, 2, v, ) )P) = ™ P UD()f(R; '@ + mv)), m#0, 2jeN,

fe L*R3;C¥*1; d%p). (4.3)
(2) The U.R. of I', associated to the point (0, (0, 0, p)) are here of two types:

(@) (D, (& a,v, sW))f)(B) = 2T ROIVF(H — )
p=(0,0,p, p>0, q=0(0,q7r), ¢g>0, reR
fe L*([0, 2x]; dO)

exp iy/2
0 exp —iy/2

(b) Dp,q’v(é, a, v, s(y)) = PP ata-vw)
p:(0,0,p), P>0, q=(0,0,q), qeR, ZVEZ.

cos@ sinf 0
); RO) = | —sin@ cosf O

s(t/f)=(
0 0 1

The action of G'(3) on 0, ~ S?(p) ~ pS? is given by (4.2) with m = 0 and a section
can be chosen as A, = (0, 0, 0, 5,) (A,: (0,0, p) > R,(0, 0, p) = pz, (cf. [11]). For
the case (a), the induced representations act on the space L2(S%; L%([0, 2n]; d0); dQ);
thanks to the Euler angle parametrization, this space is isometric to L*(SO(3); dR);
thus

(@) (Ly o(&, 2, v, )/ )(R) = ! BP2TRAVSARIIR)

p=(0,0,p), p>0; q=00,4,7r, ¢>0, reR (4.4a)
fe L*(S0OQ3); dR).

(b) (L, .. a,v,9)f)(z) = ®@araTrisDf(R1y)

p>0, geR 2veZ (4.4b)
fe L*(S?, dQ) (4.4b)

(with s(0(s, 2)) = s, '-5-55_1,, [11]).

(3) The U.R. of the stabilizer of (0, 0) are those of group £(3)*; since the orbit
is a point, the induction is trivial and we obtain the two types of representations [11]:

(@) (L, (& a,v,5)f)(z) = @ ¥R 17)
q > 0, veZ (4.52)
fe L%(8%; dQ)

(b) Li(&,a,v,5) = Dys)

4.5
2je N. (4.55)
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The dual G'(3) of G'(3), i.e. the set of all its equivalence classes of I.U.R., is
described by the set of indices appearing in the representations listed above. The

action of #(3) on é’(3) was defined in the Section III by
g:[L]— [L?], where L%h) = L(ghg™"), VYhe G'(3).

Ifge G'(3), L%Ch) = L(g)L(h)L(g)~ !, then of course [L] = [L]. Since each element

g = (&, a,v,s, o) of #(3) decomposes uniquely under the form g = kh with & =

0,0,0,1,0) = 0 SL(2, R)* and & = ({, a, v, 5, 1) € G'(3), we see that the action

of #(3) on the dual is uniquely determined by that of the elements o of SL(2, R)*.
By virtue of the law of composition (2.4) and (2.5):

o-(¢ a,v,8)-067" = (¢ — $(aclal* + bd|v]* — 2bca-v,aa — bv, dv — ca, s)
(4.6)

with I1: ¢ > (a b) e SL(2, R).
¢c d
On the representatives (4.3)—-(4.5) of [L], we obtain respectively

(1) (L, (& a,v,9f)(p) = exp i(mé - g(acla|2 + bd|v|* — 2bca-v)

+ p-(aa — bv)) Dj(s)f(Rs‘l(p + m(dv — ca))) (4.7)
Ly, ;1s always in the class (m, j); the orbits are here reduced to points.

(2a) (L7 (&, a, v, 9)f)(R) = exp i(R(ap — cq)-a + R(dq — bp)-v)- f(R;'R).
(4.8)

Recall that (p, q) = ((0, 0, p), (0, g, 7)) with p > 0, g > 0; in general the two vectors
(ap — cq, dq — bp) are not of this form, but it is easy to verify that there always
exists a rotation s € G'(3) such that [Lg o] = [Lyigd = Ly o] With (p', q') of the
required form and p' = Ry(ap — ¢q), ¢ = R,(dq — bp). We remark that the action
of ¢ on these classes:

(p, Q) — (ap — cq, dq — bp) (modulo a rotation)

leaves invariant the cross product p x q = (—pg, 0, 0); it follows from this that the
orbits contain all the classes (p, q) for which |p x q| is fixed #0.

(2b) and (32) (WesetL,, = L, , ,.)

(L3, 4+(Es a,v,5)f)(2) = expi((ap — cq)z-a + (dg — bp)z-v
+ v0(s, 2))- f(R '2). (4.9)

The classes (p, g, v) satisfy the positivity conditions p > 0, or ¢ > 0 when p = 0.
These conditions are in general not satisfied by the transformed quantities ap — cgq
and dgq — bp. However, because of the property 0(s, —z) = —0(s, z), it is easily
seen that L, , , ~ L_, _, _,. This together with the transitivity of the action of
SL(2, R) on "the couples (p, ) implies that the orbits contain all the classes (p, g, v)
with |v| fixed.

(3b) LI =1L, (4.10)
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The action of ¢ in this case is trivial and the orbits are points.

To summarize, there exist 4 classes of orbits in (:?’(3):
Class 1. O, ; = {(m,j)}, meR, m#0, 2jeN.
Class 2. 0, = {((0,0,p),(0,¢, 1) |p > 0,9 >0,reR, pg = u}, pu> 0.
Class 3. O, = {(p,q, tv)|p > 0,geR or p=0,9>0}, 2veN.
Class4. O; = {(j)}, 2jeN.

To each class of orbits corresponds a type of I.U.R. of Z(3). The following
sections are devoted to the construction of representatives for each type.

V. Class 1

Since the orbits O, ; reduce to a point, the stabilizer is 7 (3) = G'(3) O SL(2, R)*,
its little group being SL(2, R)*. Following the procedure exposed in Section III, the
first step consists of ‘extending’ a representatlon L, ;of G'(3) to the stabilizer 7 (3).
This is essentially the very problem to solve in th1s case since the I.U.R. of the little
group SL(2, R)* have already been determined [12, 13] and the questlon of choosing
a section does not arise since the orbits are points.

The problem of ‘extending’ L,, ; reduces to that of constructing a unitary repre-
sentation o — T'(¢) of SL(2, R)* (possibly a projective one), such that

T(o)L,, (WT(c)~' = L7, (h), Yhe G'(3). (5.1
Actually, writing the composition law (2.4) and (2.5) in the form
(h, o)W, 6") = (¢’ tha'l, oa’), h, h' € G'(3); 0, ¢’ € SL(2, R)*
we see at once that
ji (h, ) = T(o)L,, ;(h) (5.2)

1s a representatlon of the stabilizer #(3) which extends L, m,; (in the sense that
m.j | (3) = Lm,;)- Due to the irreducibility of L,, ;, the representation T so defined
1s umque up to a phase factor.
When constructing the representation 7, it is advantageous to use a parametriza-
tion of SL(2, R)* related to the Iwasawa decomposition of SL(2, R):

cos —sinO@\/u O 1w
N - 5.3
a(0, u, v) (Sil’l 0 CcoS 9) (0 u- 1)(0 1) (5.3)

feR, ueR*, veR.

This decomposition of SL(2, R)* into three one parameter subgroups makes it
possible to express the intertwining operators 7(¢) as a product of 3 unitary operators

T(a(0, u, v)) = T,(0)T,(w)T5(v).

The operators T,(u) and T;(v) are easy to find; by restricting the expression
(4.7) for L;, ;to o = 0(0,u, 0) and to o = 0(0, 1, v), we can verify directly that

(T2 )(p) = |u|*”f(up) (5.4)

and

(T5()f)(p) = ™21 f(p) (3-5)

m]’
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satisfy the intertwining condition (5.1) and define a unitary representation for the
subgroups {a(0, u, 0)} and {¢(0, 1, v)} of SL (2, R)*. The construction of 75(0) is
more awkward. Let us first remark that when restricting L, ; to ¢ = o(2km, 1, 0),
the corresponding operator 7,(2kn) must be a multiple of "the identity (from thls
follows that Ker IT will be represented in L, ; by phase factors). Secondly, when
restricting L, ;to ¢ = o(n/2 + 2km, 1, 0), we obtaln

(L, & 3., )F)(P) = €™ @D ()RS — ma).

Comparing this expression with the one for L, ; (4.3), we easily see that the
corresponding operator 75(n/2 + 2kn) must be, up to a phase factor, a Fourier
transform %, :

A

(:rg(g + 2k1r) f)(p) = MF LN = B2 L d3q e~ 1P af(q).  (5.6)

b
Finally, recalling that any element (a d)’ d # 0 of SL(2, R) can be decomposed as
&

o D60 7o) Do

o 1/\o y*/\1  o/lo 1/\-1 o)

- 1t 1s possible, once

cos @ —sin 6

(sin 0 oS B)

© is written in this form, to construct the operator T5(6), for 8 # k=, as a product of
operators (5.4), (5.5) and (5.6)

o+ e10)- 1)

We thus obtain

iA(0) :
TON®) = g JW d*q exp [m(cos o(lpl* + fa?)

|27em sin 6

- 2P'q)}f (@. G.7)

One checks directly that 7,(6) satisfies the intertwining condition (5.1) for any
factor A(6); it remains to examine if, for a judicious choice of this factor, 0 +> T5(6)
defines a (continuous) representation of the subgroup {¢(0, 1,0)|6 e R}. This
requires

(a) T5(0)T50,) = T30, + 0,)
(b) lim T4(0) = T,(kr) exists (strongly).

0 — kn

Putting the expression (5.7) in the condition (a), we obtain the equation

AB) + AG,) — A, + 0,) = —% sig (m sin 6, sin 6, sin (0, + 6,))
(mod 2n).
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By inspection, one assures oneself that a solution is given by
. . (. 0 3. .
A@) = g sig (m) (51g (sm 5) + 5 Sig (sin 9))- (5.8)

Using this factor and the limit
ei(Sn/4} sig(e)

f(p) = lim Wf d’q e”12917Rlf(q)
R3

£=0

(more precisely the strong limit id = lim,_, #T,(e)# ') in condition (b), we obtain

(Ts(km) f)(p) = eCrD=iatmf((—T1)kp). (5.9)

Thus T, turns out to be a faithful representation of the double covering of
SO(2) and a ‘two valued representation’ of SO(2); we shall see in Section IX that
the 4n-periodicity of the evolution operator for a harmonic oscillator is a consequence
of this representation. Let us mention that the solution (5.8) is not unique ; however
one can show that no factor A(f) exists making it possible to obtain a ‘single valued
representation’ of SO(2).

Collecting the partial results (5.4), (5.5), (5.7) and (5.8), we can write down the
‘extended’ representation L? . ; (5.2). In order to deduce from it the expressions for
the infinitesimal generators (2 3) in this representation, we make the identification

I 06, u, ) 1> ucos® wuvcosf —u-! sinb _f(a b
I usin@® wvsind +u" ' cos@/ \c d

ei(A(a’) +mé)

|2zmec|?

(Lg,j(és av,.s, O.)f)(p) =

X J‘ d3q exp [ZL (alp)* — 2p-q + d|q)*) + iq-a] D(s)f(R;'(q + mv)).  (5.9)
R3 mc

This integral operator must be taken in its generalized sense ([14] page 494); for
o = o(km, u, v) it becomes

2
(Ly?q,j(fg a,v,s,0)f)p) = exp[ (k + mé + _Ipll + (—l)kup a):l

x D) f(R;H((=1D'p + mv)). (5.9)
The I.U.R. of the little group SL(2, R)* of the stabilizer are known: they were
classified and constructed by L. Pukansky [12]. Let us simply mention here that
their classes are completely characterized by a couple (g, /), where q is the value of
the Casimir operator of 4£(2, R) and 4 is some real number closely related to the
spectrum of one of its infinitesimal generators, similarly as in the SL(2, R) case [13].
Since the orbits are here reduced to a point, the induced representations of ¥ (3)

are simply given by

Uy jan = LS, ® 22, (5.10)

where 20 , denotes the lifting to #(3) of a LU.R. 2, , of SL(2, R)*.

It can be verified directly from the expression (5 9) for LY . ; that these induced
representations define projective representations of #(3) and that there exists a
one-to-one correspondence between the classes (m, j, g, &) of LU.R. of #(3) and the
corresponding projectively equivalent classes of P.I.U.R. of ¥ (3).
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We shall see that these representations exhaust the list of the P.I.U.R. of #(3)
for which the extension group is not trivially represented. Because of their physical
importance, we return to them in Section IX.

We finish this section by giving the list of the infinitesimal generators (2.3) in

these representations; more exactly we give the associated self-adjoint generators
—it, £ € 3(3).

Jy = ip,0; — p30,) + £,
Jy, = i(p30, — p,03) + £,
Jy = i(p,0, — P20, + X3

1
G, =5—Ip* + 9.

: 3
m
G_ —5A+g_
K, = —imd, k=123
Py = py
M = m.

({Z;} is a basis in the D; representation and {g., go, g} is a basis in the &, , repre-
sentation.)

The Lie algebra 3(3) has 3 fundamental invariant operators:
M

2
S2=(J+-1~P><K) _ 32432452
m

| 3i 1 1
G*=|G,——(PK-= 2 - —P2 )| G —K?
(0 =m(Bx=32)) +2{(00 - 5P (o- + %),
=g5 + 2{g+.9-}+,
the eigenvalues of which, in the representations (m, j, g, h) are given by —m,

j(j + 1) and g.

VI. Class 2

In the orbit O, we choose the point (p, q) = ((0, 0, p), (0, u, 0)) and, for this
class, the representative L, , = L, given by (4.4a)

(L,(& a,v, ) )(R) = e'®PaTRIVF(RIR). (6.1)

Since the classes [L, ,] are defined by the couples (p, q) modulo a rotation
(Lrp,rq ~ Ly, o), the stabilizer I', of [L,] is

r,L=G6G30K

where the little group K = {6(0, 1, 0) = 6(0) | 0 € R} is the subgroup of SL(2 R)*
introduced by (5.3).
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By restricting ¢ to (8, 1, 0) and (p, q) to ((0, 0, w), (0, &, 0)) in (4.8) we obtain

(Li(E 3, v, ) )(R) = RROPat KO RIIR) 6.2
where
1 0 0
R(O) =lcos@ —sinf 0]
sin 0 cos O 1

One verifies easily that the unitary operators
(T(0)f)(R) = f(RR()) (6.3)

intertwine the representations (6.1) and (6.2) and define a representation of K. An
extension of L, to I', is thus given by

LY: (h, 6(8)) — T(O)L,(h), he G'(3). (6.4)

- The LLU.R. of K are one dimensional and labelled by a real number «; o(0) —-
e®. The representation %,., of I, associated to the stabilized point ((0, 0, p),
(0, u, 0)) 1s thus

(L8, 7, 5, GO J(R) = €70 & RROP2RROSf(RARR(D)). (6.5)

The orbit O, ~ F(3)/T . =~ SL(2, R)/SO(2) can be realized by a sheet of the
hyperboloid:

H ={(x,y,20eR’ |z 21, —x* — y* + 22 = 1},
The group #(3) acts on H? via the SO(2, 1) transformations:
T(0): X — (0)XTI(0) !
where I1: (0, 0,0, 1, 6) — I1(0) € SL(2, R) and
(x,y,z)HX=( A Z)-
X —z y

The invariant measure on the orbit is therefore given bydu = z” ' dx dyanda sectlon
A: H2 — (3), such that T(A): (0, 0, 1) > x is for example

1
Ax = (0, 0, 0, 1, O'(Ea 3 —y))
2 Jx+z

with respect to the decomposition (5.3) of SL(2, R)*.
The representation of .#(3) induced by .%, , and A, is thus

(Uu,a(fa a,v,s, U)F)(R, X) — gu,a(A;l (é, a, v, s, O—)'AT(a’)’lx)
x F(R;'RR(0(s, x)), T(c) " 'x) (6.6)

where F e L*(SO(3) x H?; dR du) and 6(o, x) is defined by
Agt 0 A -1 = 0(0(o, X), 1, 0).

The kernel of this representation U, , contains the extension subgroup
{(£,0,0, 1, 1)}; it is therefore an I.U.R. of. V(3)* which gives, as is easy to check,
aP.ILU.R. of #(3) (a true LU.R. if & = 2kn).




246 M. Perroud H.P. A

The pairs (u, o), u > 0, « € R, characterize the P.I.U.R. of these Class 2 repre-
sentations of .¥(3).

When trying to give a physical interpretation to this class of P.I.U.R., we are
faced with the same difficulties as in the case of the true I.R. of the Galilei group.
The localizability conditions of A. S. Wightman [15] are not satisfied and we could
present the same arguments here as given by E. Inonu and E. P. Wigner [16] for the
Galilei group. We shall not go into this any further here; let us simply mention that
by reducing these representations with respect to the Galilei group, only true repre-
sentations appear in the decomposition. The same is true for the two following
classes.

VII. Class 3

In the orbit O, we choose the point (p, g, v) = (0, 1, v) and for this class the
representative L is given by (4.4b):

(L,(& a, v, 85)f )(z) = YT 0Df(R 7). (7.1)

The stabilizer of this class (0, 1, v) is

r,=G'3)0ON,
with the little group

= {0(2km, 1, 1), teR} ifv#0

N, = {o(kn, 1, 1), teR} ifv=0.
(The difference between the case v = 0 and the cases v # 0 is due to the fact that
L ~ L_ 1fv;é0wh11eL i, i 07

o lv?»y restr1ct1ng o in (4.9) to the elements of N and (p, g, v) to (0, 1, v) we see that

= L ifv # 0, while L differs from L, by the exponent which changes its sign.
The intertwining operators can then be chosen as the identity operator if v # 0
and as

(T(a(km, 1, 0)f)(2) = f((—1)2)

ifv = 0. TheI.U.R. of N are one dimensional and characterized by two real numbers
o and f.

o(nm, 1, 1) '™ e'fe
(n=2k ifv #0, n==k ifv =0).
The representation of the stabilizer I', of the point (0, 1, v) is thus
L, 5 5(& A, ¥, 5, 0(nm, 1, 1)) f)(z) = e brrCORVEASIS(—1)"RT 7). (7.2)
The orbit O, = F(3)/T, ~ SL(2, R)/N. where

, =1y 0 1 7 _ i _ m
Nv—{( 0 (—1)”)(0 1), n=2k ifv+#0, n=k 1fv—0}

is different forv # 0 orv = 0.

For v # 0, the orbit is realized_by the punctured plane R} with Lebesgue
measure as invariant measure. Then #( 3) acts through the transformatlons I1(c) of
SL(2 R); a choice of section A: R2 — #(3) is for example

=(0,0,0,1,6(0, r, 0))




Vol. 50, 1977 Projective representations of the Schridinger group 247

where (r, 0) are the polar coordinates of X (the stabilized point is realized in R2 by
(1, 0)). The representation of & (3) induced by &, , ; and A, is thus

(U, (B, 2, Vv, 5,0)F)(z,x) = &, o y(A;"-(£ a, v, 5, 0)
X An- ) FRS 12, T(0)™1%) (7.3)

where Fe L*(S? x R2; dQ dx).
The index o does not appear in the induced representation because the section
was chosen so that

ALt 0 Apy-1x = 0(0, 1, 1(0, X)).

For v = 0, the orbit is realized by O, ~ R2/e, where ¢ is the equivalence
relation Xe — X; the invariant measure and the action of SL(2, R) on R2 pass to the
quotient ([x] — [II(o)x]) and a section A: [x] > F (3) is for example g1ven by

[x] = (03 03 09 19 0(99 r, O))

where r = |x| and 6 is the polar angle, 0 < 0 < = of one of the elements X or —X
of the class [x]. The induced representation of #(3) associated with % , ; and Ay,
is thus

(U, 5(¢, 2, v, 5, 0)F)(z, [X]) = &, (A - (&, a, ¥, 5, 0)
X Ay~ 1) F((— 1)°R; 'z, [TI(0) ™ *x])
where ¢ = ¢(o, [X]) = 0 or 1 is defined by
Anl 0 Apyy-1xq = 0(e(o, [xXD, 1, 1(0, X)).

Contrary to the case where v # 0, it is not possible to choose here a section
which makes the index g superfluous.

TheI.U.R. of #(3)* and the P.I.U.R. of ¥ (3) of this Class 3 are thus characterized
by the couples (v, B),v=1,1,..., feRor, ifv = 0 by (o, ), , B R.

VIII. Class 4

Here the orbits are reduced to a point and the action of . #(3) is trivial ; we obtain
immediately the induced representation of #(3) (or of #(3)*).

Upan =D;®@ D, (8.1)
that is the tensor product of an I.U.R. of SU(2) and an I.U.R. of SL(2, R)*.

IX. The wave functions

By reducing the Class 1 P.I.U.R. (5.10) with respect to the Euclidean group, it
1s easy to show that the criteria of localizability [15] are satisfied. Actually the
situation is analogous to the one for the (m, j, U) representations of the Galilei
group [7]: the position operators associated with each (m, j, g, #) representation are
given by

1
Q=K = —id, k=123 (9.1)

From this follows at once the standard interpretation of the generators P, and J,
as the linear momentum and angular momentum of the system and the identification
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of the characteristic number j with the spin of the system. The interpretation of the
other generators and of the remaining characteristic numbers of the representation
depend on a dynamical postulate for the system, i.e. the choice of a law of evolution
t — U(t), where U(?) is a one parameter group of unitary transformations. By the
Stone theorem, we know that this is equivalent to giving a Hamiltonian operator H.
The choice for such an operator is a priori arbitrary and does not depend on the
considered group. The choice of H as the generator of the temporal translations in
the case of the (m, j, U) representations of the Galilei group, for example, is not
imposed at all by considerations of relativisitc consistencies: the Galilei group acts
correctly and irreducibly on the Hilbert space of the system independently of the law
of evolution; it is only a postulate and the definition of a free (or isolated) elementary
system. From this follows the interpretation of m and U as the mass and the internal
energy for such a system. By choosing this same generator in the &#(3) case, 1.e. by
setting
H=0G,
where G, is given in (5.11), we obtain

itH —itH __
e P e = P,

; - ‘ t
e:tHle itH _ Qk _ EPJU

i.e. the dynamics of a free three dimensional system with mass m. The two other
generators G, and G_ of the subgroup SL(2, R) give by virtue of (5.9)

ei.uGoPk e—iuGo - B”Pk

ei.uGoQk e—i.uGo — e—.qu
e*6-p e %0~ = P, — imQ,
eilG-Qk e—ilG- — Qk'

These two subgroups appear as scale and gauge groups. The Hamiltonian is not
invariant under their action; they define conjugacy classes of Hamiltonians distinct
from the usual one generated by the pure Galilei transformations

. . 1
eV Kl WK = —|p + mv|? + g,.
2m

Except for the appearance of scale and gauge transformations, the situation
seems very analogous to that for the Galilei group. However there exists a serious
difficulty of interpreting the representations (m, j, ¢, h) in the general case as an
elementary system. Let us recall that the Hilbert space of these representations is the
space of the normalizable functions

[iR > C¥* @ #,

where A is the space of the Z_ , representatlon of SL(2, R)*. With the exception of
the trivial representation %, ,, this space is never of finite dimension. For such a
representation, the system would possess, in addition to the spin, an infinite number
of degrees of internal freedom. Moreover the interpretation of the numbers ¢ and 4
together with the parts g, , g, and g_ of the generators of SL(2, R) would be difficult;
we do not try to adapt a physical model to these representations: let us simply
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mention that in reducing them with respect to the Galilei group, the ‘internal’ space
# decomposes into a direct integral of one dimensional spaces, labelled by the
internal energy.

From now on, we limit ourselves to (m, j, 0, 0) representations which we are going
to realize on the space of wave functions y(x, 7).

By virtue of (9.1), we see that the realization of these projective representations
of #(3) for which the position operators are ‘diagonal’ is simply obtained from (5.9)
by a Fourier transformation:

L A R

A 5 im , 5
= W N d3y exp -—Z—b(a}yl — 2x-y + d|x|* — 2bv-(y — a)
x DAR)f(R"'(y — a). (9.2)

Here A(o) is a factor analogous to (5.8) and D {R), when j is a half integer, is a choice
of one of the two values of the representation.
The evolution operator

. ~ 1 —t
Un=e™=10,,001
() e m,1(7 2 7(0 1))

is of course the usual propagator

—i(3n/4) sig(mt)

WO = e|2nm_1t|3/2 .[IR-"*’ ds)’ e(imfzﬂlx_nyf(Y)-

‘Let us now recall the construction of the space of wave functions.

Let # be a Hilbert space for a physical system and U(z) = e~ ¥ be an evolution
law. A wave function with initial state f' € # is defined by ¥(¢) = U(r)f, for any ¢ in
R; thus it is a function ¥: R — 5 satisfying the Schrédinger equation

(W8)(0) = Hy@).

Since U(¢) is unitary,

W@ | ¢(0) = @©) | y(O0) = (f ]9

and this property makes it possible to provide the set S} of these functions with a
Hilbert space structure by setting

W | d) = W) | o).

This Hilbert space is referred to as the space of wave functions for the Hamiltonian H.
From this construction follows at once that the operator

T:# - Sy;  (TNO = VOf 9.3)
is an isometry with the inverse

T 1.8, — T~ Y = y(0). (9.3)
Then, if U(g) is a unitary representation of a group acting on 5, the representation

U(g) = TU(9)T " 9-4)

is also unitary and acts on Sp,.
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In our case, the Schrédinger equation is
) A
latw(xa t) = -2— l)b(xa t)
m
since the wave functions are defined as

o -(o.foan ) o

| fe LZ(R3,CZf+1).
The representation of #(3) on Sy is, by virtue of (9.3), (9.3") and (9.4):

(nforn(t oo (enfonr; )

H. P A

x ﬁm,](a, v, R, (‘c’ 3))7"- Ilp)(x).

By (2.4) and (2.5) we have:

oor(o T))oewn( o)

-G(ER e (2

fones] _m))
)

and thus

eiAe) im c ..
(U (a v R, ( ) )(x )= —ief a|3/2 p{_—ct + a(i [%/°

—b

IV[? — v-x + (—ct + a)a- v)}
"X — (—ct +a)a— (dt — b)y) dt —b

X Dj(R)l/J(

—ct + a —ct +

- 0
2 04 dt—b v.v. R, ct + a B
—ct+a g (—ct + a)

)- 9.5)
d

For j = 0, up to some changes of notation we recognize here the representation

found by U. Niederer [1].

All the above holds for the Hamiltonian of an isolated system; we can realize
this construction of wave functions for any choice of a one parameter group of

evolution. By choosing for example
- cos wt sin w!
un =0, 1(0, 0, I,( ) )), w >0,
: —sin wt  cos wt
we get the Hamiltonian for a harmonic oscillator

H = w(G, G)_m( A + M?w?x|?)
with M = m/w > 0.
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Since, by (9.2)

eiA(wt)

U |2nm ™! sin wi|*?

% L3 d3y exp [2 51- (cos wa(fy]* + [x]*) — 2x- Y)] fy)

we see, taking into account the expression (5.8) for A(wi), that U(?) = U(t + 4(kn/w));
from this periodicity condition follows the particular spectrum of H.

Using the same techniques as for the free Hamiltonian, we obtain the repre-
sentations of %(3) on the space of wave functions of the harmonic oscillator. For
J = 0, they are the representations given by U. Niederer [2].

Conclusion

The classification and the physical analysis of the P.I.U.R. of the Schrédinger
group is very similar to that for the Galilei group; except for the Class 1 repre-
sentations for which the factor is not trivial, the other representations have no
immediate physical interpretation. However, for the Class 1 representations the
situation is not as clear as it is for the Galilei group: the appearance in the general
case of an infinite number of internal degrees of freedom makes doubtful the useful-
ness of defining an elementary system by such representations. Contrary to the
Galilei group, the Schrodinger group is not really a kinematical group for space-
time: its action on E; x R is only defined locally. It is of course possible to find
homogeneous spaces of dimension 4 for &(3): they are the spaces of constant curva-
ture, the nonrelativistic contreparts of the de Sitter spaces; but we know that the
interpretable kinematical groups for these spaces are the Newton groups [5] which
are only subgroups of #(3).

The situation of %(3) as opposed to the Galilei group is analogous to the con-
formal group O(4, 2) as opposed to the Poincaré group: The introduction of these
groups is somewhat artificial since it rests on a particular realization of the Hilbert
space of the system: it would for instance be very difficult to define them in the
‘p-representation’. What is more, they are only subgroups of the group of canonical
transformations of a quantum system. Other subgroups, such as the group W, []
Sp(3) generated by the Lie algebra of the polynomials of degree <2 in p,, ¢; and 1
[17] might be considered much more 1mportant than &(3), simply because it is
larger but it is still a Lie group!
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