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Selfadjointness and invariance of the essential spectrum for
the Klein-Gordon equation

by R. Weder')

Universiteit Leuven and Eidgendssische Technische Hochschule Ziirich

(23. VI. 1976)

Abstract. We consider the selfadjointness and the invariance of the essential spectrum of the Hamil-
tonian of the Klein-Gordon equation. We prove that the Hamiltonian has a selfadjoint extension such that
the essential spectrum coincides with the spectrum of the unperturbed Hamiltonian. We consider a large
class of electromagnetic and scalar potentials. In particular we can have potentials of Coulomb type if the
coupling constant is not too big. We can even consider magnetic potentials which are divergent at infinity.

1. Introduction

In a previous paper [ 1] we developed the scattering theory for the Klein-Gordon
equation [2]:

5 2 n
(i 5 bo) Y(x, 1) = [_Z (D; — b)* + m* + qg]l//(x, ),
1=J

xeR" teR D; = —i(d/dx;), by(x) is the electric potential, b,(x), 1 < i < n, the
magnetic potential, and g,(x) is the scalar potential. We followed the usual procedure
of considering an equivalent equation which is first order in time, in the Hilbert
space of vector valued functions which have finite energy. We proved existence and
completeness of the wave operators, the intertwining relations and the invariance
principle as well. In this paper we consider the problem of the selfadjointness and the
invariance of the essential spectrum of the Hamiltonian in the case where local
singularities of Coulomb type are allowed.

In Section I (Theorem I) we construct a selfadjoint extension, H, of the Hamil-
tonian such that the essential spectrum coincides with (—oo, —m] U [m, o). In
particular we can have singularities of Coulomb type if the coupling constant is not
too big.

In Section II we give conditions in the magnetic field that allow us to perform a
Gauge transformation in the magnetic potential. In particular we consider magnetic
potentials which are divergent at infinity.

Concerning the literature: we will only mention the more recent results [8],
[91 and [10], where a list of references is given.

) Postal address: Celestijnenlaan 200 D, 3030 Heverlee, Belgium.
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Lundberg [8] considers the case n = 3, b(x) = 0,1 < i < 3 and

i) g.(x) and b3(x) square integrable -
ii) by(x) and g(x) behave as O(|x| 73 ~¢), ¢ > 0 for |x| > o

iii) de(— bt + q)|f]* = —aJ(|Vf|2 + m?|f]P) @x with0 < a < 3,

feCy.

In [9] Eckardt considers the case n = 3, b(x) = 0, 1 < i < n. He assumes (iii)
of [8] and

i) M2, = sup JI | l(»|*|x = ¥y ™4 *dy < o0
x—y|<l1

xeR"

where p is any one of b} and ¢,, and « € (0, 1].

i) M, () =j P x = 5 dy ——
[x—y| <1 x| =
Kako in [10] considers the case » = 3 and b,(x), 0 < i < 3, and g, bounded and
satisfying

) bl < O, 0<i<3
ii) by, 1 < i< 3are differentiable and |6/0x; b,| < Cl|x|~*~¢
iii) |qs| C‘x| 2=

Our conditions in any one of b,, 0 < i < n and ¢g,(x) are weaker than the conditions
of [8], [9] and [10].

In Section II (see also the conclusions) we give a representation of the Klein-
Gordon equation as an equation which is first order in time, with a Hamiltonian
which is selfadjoint in a Hilbert space, with positive metric, where a position operator
and a (positive!) probabitity density is defined (it is often said in the literature that
such a representation does not exist). We prove also that if the wave operators exist
the scattering matrix is free of Klein paradox. It seems that this representation has
not been noticed before in the literature. In fact the Hamiltonian contains a square-
root operator which is usually rejected as intractable or expanded in series in the
text books on quantum mechanics.

II. Selfadjointness and essential spectrum

We consider the Klein-Gordon equation [2] with electro-magnetic potential
bi(x), 0 < i < n and scalar potential g,(x):
a 2 n
(ia — bo(x)) YU(x, 1) = I:Z (D; — b)* + m? + qult//(x, f) (1.1)
' i=1

0
R, teR, D.= —i—
xelR, tek. 4 lax

As in-[1] we consider an equivalent equation which is first order in time, we define

Ji =¥, 0,0, = igllf(x, ) and f= fl).

2
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Then (1.1) is equivalent to the following equation i(0/dt)f = hf, where

Dh) = {feCy? |lf,e ¥£* and Qf, € ¥?} (1.2)

g(x) =g, — b5, Q= 2b,

Cy is the space of infinitely differentiable functions of compact support on R", and
C52 = C§ @ CP.
Let us first consider the free case, i.e., ¢g(x) =0, b(x) =0, 0 < i< n. Asis
well known the energy integral
2
} (1.3)

B = [ {5 10l + ol + |2

is conserved in time. We associate with (1.3) a scalar product, the ‘energy scalar
product’

(f,9)o = _Zl (Dif1, Digy) + m*(f1, g1) + (f2.92) fg€ CT*. (1.4)

Let 5, be the completion of Cg*? with this norm.

Let S denote the space of Schwartz, and H, the Sobolev space of order s, s € R,
i.e., the completion of C§ with the norm || f|, = (1 + {*)¥2Ff|, fe C§ where F
denotes the Fourier transform, and | || the .#? norm.

The norm (1.3) is equivalent with the norm of H, ® #?, and they coincide as
sets. In this case the Klein-Gordon equation is equal to

0 0 1
; — H - 1.5

We denote by a(A), o,(A4), and o,.(A4) the spectrum, the essential spectrum and the
absolutely continuous spectrum of a selfadjoint operator 4, [3]. We have

Theorem 1. H,, is selfadjoint in #, with domain D(H,) = H, ® H, and is
essentially selfadjoint on CZ*2. It is absolutely continuous and o(Hy) = (— o0, —m]
U [m, c0).

Proof: See [1] Q.E.D.

Let us consider again the interacting case. The energy of the field is given by

2
} (1.6)
where g(x) = q, — b2.
As in the free case we associate with the energy integral a sesquilinear form, ‘the
energy sesquilinear form’

(f9)e= i ((D; — b)f1,(D; — b)g,) + ((m2 + f1> 91) + (f2, 92) (1.7)

f,geCg-2.

B ' d
E(y) = f d"x {ZII(Di — bW + (m* + g|Y]* + Y W
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The operator 4 is symmetric in the energy sesquilinear form, i.e.,

. 9 = (s h@e, [, g€ D(h),

but the form (-, -)g will not be positive in general.

We will introduce an assumption assuring that the energy sesquilinear form is
positive:

A,: There is a constant ¢ > 0 such that

Jq_(x)lﬂX)lz d"x < Y |D.fI* + (m* — 9l fI* feCq
p=z]
by g* we denote the positive and negative parts of g(x).

Lemma 1.2. If A, is satisfied we have
(LDe= e (fuf) + (f /) feC?

Proof: See [1] Lemma 2.1. Q.E.D.

Then (-, +)g is a norm. We denote by # the completion of Cg? with that norm.
Before we give a necessary and sufficient condition for 4, to be satisfied let us

see what it means for an electric potential of Coulomb type, i.e., g(x) = 0 and
bo(x) = e/|x|.
A, 1s satisfied if

& j # 2 dx < J (k? + DERR)? dk, feCs

but by Hardy’s inequality for n > 3
1 2
fw—z | Ax)|* d"x < (——2—) Jk2|Fﬂk)|2 d"k,
)x| n—2

Then A, is satisfied if |e| < (n — 2)/2.
It is known that the constant in Hardy’s inequality is the best possible. In the

usual system of unities this means, forn = 3, Z < 68.5, where Z is the atomic number.
Let us define [5]

, 1
B,(g) = inf Sup- J|q( Wloy (x — YW( ) dy,

>0 x

where ¢, ,(x) is the inverse Fourier transform of (2r)~"*(4 + [¢{|*)™', A > 0. Then

Lemma 1.3. 4, is satisfied if and only if B,(q”) < 1 for some 1 < m?*.
Proof: See [1], Lemma 1.1. Q.E.D.

Let us introduce

Si(g) = sup J lg(p)|o,, 2(x — p) dy.
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We have B,(q) < S,(q). Then 4, is satisfied if S;(¢7) < 1 for some A < m?. In the
case of a scalar potential of Coulomb type, i.e. by = 0, g, = ¢/|x|, this gives, for
n=3e<2m.

Let us introduce some notations [4]. For a > 0 let

o) =" 0<a<n,
=1- oL == 1,
=1, o>~
N, s:q) = f lg(x — y)lzwa( y) dy.
[y| <a
N a, J(Q) = Sup a,d, x(Q) (q) = x(q)

Na(q) = Na,l(q)'

We denote by N, the set of functions g such that N, (q) < .
We introduce a new assumption

1) b(x)eN,, 1< nandifn > 2, N, ,b) 555

2) q(x) = q4(x) + qc(x) e N,, and if
n>2,N, sq,|"") 55509x) = 0ifn < 2, and
g.(x) = — €*/|x]?, |e| (n — 2)/2ifn > 2.

-0

Lemma 1.4. If A, and A, are satisfied there exist two constants C,, C, > 0 such
that

ClANT + 1207 < (L)e < CUAIT + 1417,
Proof:

(£L)e= Z I(D; — b1 1I? + (m + @)fy, f) + (f2, f2)

< Cl(llflllf + IIL£21).
where we applied Hardy’s inequality and Lemma 2.2 of [1]. Finally

(.. 2 Z ID.f111% — 2 Z ID AN B fill = & If 15 — KA -
2 2
- (ﬁ) DALEVAS
then
2e \? 2 2 2
L=z —|——5] JIAli + 141" < (/.. )e + 112117

hence (£, /), = C,(If113 + | f2]?), for some C, > 0. Q.E.D.

This implies that the norm of 3 is equivalent to the norm of H, ® #? and they
coincide as sets.
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We need the following assumption:
A,: :
Na ) + Ny o(|gs|V?) —— 0,1 <i<n

| %[ = o0

Lemma 1.5. Let A, be satisfied. Then [ (see 1.2) has a self-adjoint bounded below
extension, denoted by L, (a ‘quadratic form extension’). If A, is also satisfied the
essential spectrum of L coincides with [m?*, o).

Proof: We define the sesquilinear form
I(f,9) = Y. (D; — b)f, (D; — b)g) + (m* + @) fg), frgeCY.
i=1

As in Lemma 1.4 we have

1< ClfI? fecCe, C>0
and
1 —alf12 <I(ff) + K, f), feC®,e< 1.

Then / extends to a closed, symmetric, bounded below form with domain H,.
The associated selfadjoint operator is the extension of L that we need.

If A, is also satisfied we prove as in Theorem 1 of [6] that the essential spectrum
of L coincides with [m?2, o). Q.E.D.

Note that if A, is also satisfied L > & > 0. Then /L is selfadjoint, positive, with
domain D(,/L) = H,. Moreover it is essentially selfadjoint on C¥, and ¢,(,/L) =
[m, c0). The energy norm is given by

(f,)e = (\/pr \/La g,) + (f2,92), fogeHg.
We define

yo L[vE 1
V2L -1
U is a unitary operator from # onto # = ¥* @ %> Let H, be
0 1
%=1 of

then
" T
H, = UH =|:\/ 0}

0 —JL

D(H,) = H, ® H,. Also let

0 0
V- [0 Q}
then

i 1 =1
V= Q[_ J, 0 = 2by(x).
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We will prove that H = A, + Vis selfadjoint in # with domain D(H) = H, ® H,.
Then A (see 1.2):
0 1 0 0
=10+l of
will have a selfadjoint extension, H,
H=U'HU=H,+V, DH =DL)® H,.
To do that we introduce the following assumptions:

Ay: by =bl +b5, bleN, andif n>2
Ny fb6) == 0. bi(x) =0 if n<2

e n—2
n = 3by(x) = —> where |el < .
o ™ 4 =55

A4: Nz’x(b(l)) —> 0.

| x|~ 0

Theorem 2. Let A, A, and A5 be satisfied. Then h (see 1.2) has a selfadjoint
extension, H, with domain D(H) = D(L) ® H,. If A, and A, are also satisfied the
essential spectrum of H coincides with (— co, —m] U [m, o0).

Proof: Let us define
V = V1 + Vz,
where
. 1 -1 _ 1 -1
V, = 2bl(x) and V, = 2b3(x) .
-1 1 -1 1
Then

I I?lfuz = Sj'b(1)|2|f1 —fzil dx <
<16 j BYRAAE + 1) dx <

< 16160 f117 + 1160 £211%)-

But for any ¢ > 0
oo fill < ellfilly + KIAl, i=1,2

by Lemma 2.2 of [1].

Then for any ¢ > 0 there is a K such that

IV.f1 < elV/LAI + WLLD + KA A+ 140D

Thus ¥, is A, bounded with relative bound zero.
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We must prove that

V217 < el A f1? + KIFIP

for some ¢ < 1 and any fe Cg 2. It follows from an easy calculation that this is true
if
2

1 ] .
mf + 1 g2 1% < e Y (D; — B I2 + KIFI2),
=
for any fe Cy. But by A, Hardy’s inequality, Lemma 2.2 of [1] and Lemma 1.2,
page 168 of [4], this is true.
Then ¥ is H,-bounded with relative bound less than one. Hence H is selfadjoint
with domain

DH)=H, ® H,.
Moreover V, is H,; compact (see Lemma 2.3 of [1]) Then
ae(ﬁL + I71) = Ge(ﬁL) = (—OO, —m] U[ma OO)

Moreover since V, is H; + ¥V, bounded we have:
H-2)'—H, +V, -2 " =

= @A-27

|x[*
1
= [lem (H - 2)” :|

which is a compact operator. Then
o, (H)= (=00, —m]U[m, o) Q.E.D.

The condition |e| < (n — 2)/2,/17 is not optimal.

III. Gauge invariance

As in [1] we give conditions in the magnetic field that allow us to perform a
Gauge transformation in the magnetic potential b(x), 1 < i < n. We assume, for
simplicity, that » > 2 and that b(x) € ¥? .., 1l < i <n.

We denote

M, (q9) = Supjl | lg(x — p)||¥]* " dy
x yl<1

M, , is the set of functions g such that M, ,(g) < co. We also say that g is locally in
Ma if%qe M,  for every % € Cy.

We introduce the followmg assumption A;: Let b(x) 1 < i < nbelocally M, ,
and suppose that (Rot b);; is a locally Holder continuous tensor such that

CHl(x) = '[|Dl-bj — Dybjr' " dy <
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for every x, where | < i, j < n,r = |x — y|. Then (see Lemma 2.1 of [6])
T 0 |
by=b + —o¢(x), 1 <i<n
ox;

where

0
bl(x) = K | (Rot b),;( =— r*~" | dy,
0x,

P(x) = J(bi — b)) dS’, K = —T(@n)/2(n _ 2)7/? '
c

C 1s any curve from a fixed point to x (the integral is independent of the curve) and
the summation convention is used.
We introduce the following assumption :

A7
1) ClieN, and N,,Ct g 0

2) q(x) = q;(x) + gq.x), lch|1/2 €N, and N, a(}‘h|”2)

: e’ n—2
qc(x)=—|;|—2’ \e\s( 5 )

We define 5 ; to be the completion of Cy*? with the norm (1.7) but with b instead
of b;. The Kleln-Gordon equation with b]r is equal to

0 0 1
laf= hTf7 hT = l:lT Q:I

= Z (D; = b)* + m* + q(x),  Q = 2by(x) 2.1)

-0

D(hy) = {fECBO’ZUTf1 e#? and Qf,e %7

Then as in Lemma 1.5 we prove that /- has a selfadjoint extension L. Asin Theorem 2
we prove that L has a selfadjoint extension with domain D(H;) = D(L;) ® H,.
We define [1]

Hy={fe¥* suchthat f= U"'fT forsome fTe#}
with the scalar product

(/9 = (ST, g0 where U7'fT(x) = e #9f T(x)
U is a unitary operator from # ; onto J#; by construction. Since

(D; + b))Uf = (D; + b) €*¥f(x) = U(D; + by,
H i is the completion of U~ 1CZ:% with the scalar product (1.7). Then

- Theorem 3.If Ay, AT, AT and A, are satisfied h(see 1.2) has a selfadjoint extension,
Hin #g. If A, and A, are also satisfied then

o(H) = (—o0, —m]|U[m, o).
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Proof: We define
H=U'HU.

‘We only need to prove that H is an extension of L. But

R 0 O _ 0 0
=0 [LT Q}U'[U“LTU Q}

so we must prove that L = U~ !'L,.U is an extension of /. But if fe D(/), then

(UIf, Ug) = 3. (D, — BV, (D, ~ BDUg) +

+ (m* + q9)f, 9) = I;(Uf, Ug), UgeCyg.
then fe D(Ly) and L, Uf = Ulf, i.e.
If = U 'LUf = Lf, Q.E.D.

Conclusions

We derived two representations of (1.1) as an equation which is first order in
:'me. Namely

[0 1

i,

:l: fe’;fE

and

e LT I

f = (fi)eyf = 92z 92,
¥

They are unitary equivalent. The second one has the advantage that the scalar

product in the Hilbert space where the representation is given does not depend on the

interaction, and is more suitable for the physical interpretation. In the free case we

have
0 . —=A + m? 0 .
0 -./——A+m2f’

We see then that the f,, f_ are the usual positive and negative energy components
(this is sometimes called the free particle representation, see [7]). We can define a
position operator as multiplication by x; and | f, (x)|? and | f_(x)|? can be interpreted
as the (positive!!) probability density for particles with positive and negative energy
respectively. The negative energy solutions are interpreted in terms of antiparticles
in the usual way. ~

If bo(x) = 0, i.e., if we only have scalar and magnetic field the Hamiltonian H
is stilldiagonal, and the positive and negative energy solutions evolve in an independent
way.
However, if the electric field is different from zero, the Hamiltonian is not



Vol. 50, 1977 Selfadjointness and invariance of the essential spectrum 115

diagonal anymore. But if the wave operators exist (see [1]) and the intertwining
relations are satisfied, i.e., y(H)w, = w, WY(H,), we have

S'l’(Ho) = w’iwm‘//(Ho) == d/(Ho)S-

Then the scattering matrix commutes with any Borel function of the free Hamiltonian,
in particular with the projectors onto the positive and negative energy subspaces,
and asymptotically there is no Klein paradox.

Of course this representation is possible only if 4, is satisfied, i.e., if the external
fields are not too strong. But in fact a description of a relativistic spin zero particle
by a one particle quantum mechanical equation is only expected to hold for weak,
slowly varying external fields (see [2] page 199).

We have seen then that the Klein-Gordon equation gives, for weak fields, a
relativistic quantum mechanical description of a spin zero particle with a selfadjoint
Hamiltonian, in a Hilbert space, with positive metric, where a position operator and a
(positive!) density of probability is defined (it is often said in the literature that such
a representation does not exist).

It seems that this representation has not been noticed before in the literature.
In fact the Hamiltonian A contains the operator \/L which is usually rejected as
intractable or is expanded in series in the text-books in quantum mechanics.

It should be noted that /L is not a local operator, but the equation i(d/01) f = Af
is local because it is equivalent to the Klein-Gordon equation (1.1.) which is local.
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