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Modèle semiphénoménologique de l'interaction nucléon -
nucléon

par A. Houriet et X. Bagnoud

Institut de Physique Théorique, Université de Fribourg

(2.VI. 1976)

Abstract. A nucléon with isobars is used to elaborate a model of the nucleon-nucleon interaction at
low energy (£CM < 160 MeV). Three free parameters only are introduced among which/,2, the pion-
nucleon renormalized coupling constant. The model establishes a very good coordination for deuton and
p-p scattering-polarization measurements (»K0, »D2, »G4 phase shifts), and permits the determination of
fj for every independent experimental value. For 21 such values, we obtain the mean value </r2> 0.0785
with A/r2 0.0024 (3%).

1. Origines et buts du travail

Les mesures relatives au système de deux nucléons se sont multipliées au cours
des dix dernières années. Elles sont de plus en plus précises [1-4] et elles conduisent
à une nouvelle détermination de/r2, la constante renormalisée de l'interaction pion-
nucléon, avec un résultat proche de celui que fournit la diffusion pion-nucléon:
f2 0.08 [5]. On sait que/r2 est calculée à partir de l'interaction périphérique des
deux nucléons, lorsque domine, selon l'image classique, l'échange d'un seul méson n
(potentiel de forme OPE). Mais cette interaction est trop faible pour expliquer le
déphasage expérimental de 1G4, beaucoup trop faible aussi pour lier le deuton ou
prévoir les déphasages expérimentaux lK0 et lD2. On a tenté de la compléter [6],
mais souvent on préfère analyser et coordonner les résultats expérimentaux à l'aide
de potentiels phénoménologiques [7]. Leur défaut essentiel est de multiplier les

paramètres que l'on fixe en minimalisant xfh.-
Notre modèle est caractérisé par trois paramètres indépendants. Il utilise d'abord

la constante de couplage renormalisée/,.2 et permet de la déterminer à partir de chaque
mesure (ce qui n'implique pas, de notre part, l'affirmation que d'autres constantes de
couplage négligées ici ne jouent aucun rôle dans l'interaction nucléon-nucléon). Dans
ce travail, 21 mesures (deuton, diffusion lK0, 1D2 et ^GA entre 0 et 320 MeVlab) ont
été retenues et analysées séparément à partir du modèle. Chacune fournit une valeur
admissible de/.2. Si l'on attribue à chacune de ces 21 mesures le même poids, on peut
calculer la valeur moyenne </2> et l'écart quadratique correspondant A/2. Voici la
meilleure distribution statistique que nous ayons obtenue (cf. (5.3)):

/ffy 0.0785 Af2 0.0024 (ou 3%) (1.1)
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Ce résultat fut pour nous inattendu (le modèle ne comportant que trois paramètres
dont/2). Nous analyserons donc les idées directrices qui y conduisent.

La présence d'états isobariques dans le deuton [8, 9], suggérée par des
expériences récentes, constitue probablement un élément décisif pour toute théorie de
l'interaction nucléon-nucléon. De tels états, s'ils existent, doivent être associés aux
niveaux de résonances du nucléon [8, 10], largement explorés au cours des dix
dernières années. Mais ces résonances, bien connues jusqu'à 1 GeV, tant en ce qui
concerne leurs nombres quantiques que leurs modes de désintégration, sont si

nombreuses et leur dynamique si complexe qu'il paraît raisonnable d'adopter le point
de vue pessimiste selon lequel une connaissance exhaustive des hadrons est
indispensable pour comprendre l'interaction nucléon-nucléon. Cette opinion, réaliste si
l'on considère le problème dans son ensemble, ne devrait cependant pas exclure la
recherche de solutions partielles, aux buts limités, comme celle que nous proposons
ici.

Une constatation que nous avions faite il y a quelques années [11]1) situera
l'origine de ce travail. En intégrant phénoménologiquement, de manière très simplifiée,

les états A(1236) dans la théorie de l'interaction nucléon-nucléon, on avait établi
que le deuton comportait des isobares AA dont la probabilité était d'environ 0.7%.
On avait souligné l'importance pour le calcul du moment magnétique du deuton.
Mais l'intérêt majeur du modèle était de fournir deux déterminations nouvelles de la
constante de couplage//. En effet, à côté de la masse de A(1236), choisie
phénoménologiquement, le modèle ne comprenait que deux paramètres : ff et la dimension du
cœur nucléonique dur rc. (Il s'agissait d'une coupure brutale des potentiels, remplacés
par un potentiel infini, pour des distances r entre les deux nucléons inférieures à rc).
Pour des valeurs admises de rc, comprises entre 0.5 et 0.6 f, le deuton, comme la
diffusion 1S0 à énergie 0, avait donné deux déterminations de/2 compatibles avec
celles de la diffusion pion-nucléon [5]. Cependant, à ces deux résultats intéressants,
on pouvait objecter :

a) que leur extension à la diffusion nucléon-nucléon pour des énergies £jab com¬
prises entre 0 et 320 MeV se révélait décevante : la dispersion des valeurs ff
obtenues était large et défavorable.

b) qu'ils reposaient sur un nucléon à cœur dur de dimension 0.5 f <, rc <, 0.6 f. Or
l'étude des noyaux lourds fixe la limite supérieure d'un cœur dur à 0.2 f [12].

Depuis lors, une autre objection sérieuse a surgi: était-il raisonnable de ne
retenir que les seuls états A( 1236) parmi toutes les résonances connues du nucléon [13]?
Cette difficulté a longuement pesé sur notre recherche: s'il est relativement facile
d'intégrer de manière simplifiée les états A(1236) à un modèle d'interaction de deux
nucléons, l'adjonction en plus d'autres résonances conduit très vite à un problème
mathématique inextricable (à lui seul A(1236) ajoute à l'état de diffusion lD2 1 états
isobariques et conduit à un système de 8 équations différentielles couplées du
deuxième ordre Une analyse, fondée sur de nombreux calculs, nous a convaincus du
bien-fondé des hypothèses suivantes, lorsque EXab < 320 MeV :

1) la contribution de A(1236) est déterminante pour les singulets pairs (L pair,
S 0, T 1).

2) elle demeure très importante pour les triplets pairs (L pair, S 1, T 0).

') Dans ce travail, la référence [11] sera désignée par (I).
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Ce travail repose sur ces hypothèses et les résultats numériques semblent les confirmer.
Le cœur dur de (I) est remplacé par un cœur mou qui introduit un paramètre a

caractérisant l'extension spatiale du nucléon (cf. (2.26 et 2.27)). Cette modification, à

elle seule, nous a contraints à abandonner et à remplacer tous les algorithmes de (I).
Nous avons constaté que l'adjonction complémentaire d'un cœur dur résiduel de
dimension rc < 0.2 f améliorait très sensiblement tous les résultats. Ainsi notre
modèle comprendra: la constante/2, un cœur mou (paramètre a) et un cœur dur
(paramètre rc). Il nous fournit pour chaque mesure indépendante une détermination
de/2 et cela pour tout couple de valeurs a et rc.

Nous avons retenu 21 mesures considérées comme indépendantes:

1) les caractéristiques du deuton: énergie de liaison e, moment quadrupolaire Q,
portée effective p,( - s, - s).

2) les déphasages % aux énergies £lab 8, 30, 60, 100, 140, 200, 320 MeV ainsi
que ps(0). (Nous avons constaté que as —17 + 1 f conduit à la même valeur
de/2 que le déphasage 1K0 à 8 MeV et, à cause de cela, nous l'avons éliminé.)

3) les déphasages 1D2 (lK2) aux énergies 60, 100, 140, 200, 320 MeVlab.
4) les déphasages 'G* aux énergies 100, 140, 200 et 320 MeVlab.

Un nombre plus grand de mesures de diffusion réparties uniformément entre 8 et
320 MeV ne changerait pas appréciablement le résultat (1.1).

Puisque les déphasages publiés lK0, lV>2 et JG4 diffèrent suivant les analystes,
nous avons utilisé deux versions particulièrement représentatives, celle de Livermore
[2] et celle de Yale [3]. Chacune des 21 mesures des deux versions a été analysée et
pour chaque couple a et rc elle a fourni une valeur de/2. Pour l'analyse de Livermore
comme pour celle Yale, on a ainsi construit la grille des valeurs moyennes </2> et
celle des écarts quadratiques A/2 en fonction des paramètres a et rc. Chacune des deux
grilles A/2 de Livermore et de Yale possède un minimum et, ce qui est remarquable,
pour les mêmes valeurs de a et rc. A ce minimum correspond pour chacune des deux
analyses une valeur moyenne </2>. On trouve:

analyse de Livermore

</2> 0.0783 a 10.8

A/2 0.0025
POUr

re 0.19f
(1'2)

analyse de Yale

</2> 0.0788 a 10.8

A/2 0.0038
POUr rc«0.19f

°'3)

Ainsi lorsque A/2 est minimum, les deux versions qui parfois diffèrent sensiblement

('Kq, *D2 et XG4 à 320 MeVlab par exemple), analysées selon notre modèle
donnent pratiquement la même valeur moyenne </2>, très proche des déterminations

usuelles, et cela pour des valeurs identiques des paramètres a et rc. L'écart
quadratique : 3.2% pour Livermore, 4.8% pour Yale, suggère que chacune des mesures
utilisées peut être considérée comme une mesure de/2. (La différence que l'on notera
entre les A/2 de (1.1) et (1.2) provient du fait que (1.2) est tiré d'une exploration
générale de la grille A/2 de Livermore (cf. (5.1 et 5.2)) tandis que (1.1) représente un
calcul de précision aux environs du minimum de A/2.)
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2. Le modèle

Pour choisir et construire un modèle, il faut d'abord en fixer les caractéristiques.
Ce sera notre première étape.

a) Le nucléon en plus des états de spin et d'isospin, j t \ possédera les états
isobariques y t f, capables de représenter A(1236). Le potentiel statique
utilisé devra comprendre des éléments de matrice couplant entre eux les états

j t ±etj
b) Le potentiel ne dépendra que de la constante /2 de l'interaction pion-nucléon.
c) Le potentiel périphérique aura la forme générale OPE.
d) On n'introduira pas la dynamique des états y' t § et, dans cette perspective,

on limitera l'utilisation du modèle à des énergies inférieures à 160 MeV dans le

CM. (£lab 320 MeV). On peut alors ignorer ou négliger la production des

pions.
e) Le nucléon possédera un cœur mou complété par un cœur dur de dimension

rc < 0.2 f (réalisé par la coupure des potentiels pour des distances r des nucléons
inférieures à rc et leur remplacement par un potentiel répulsif infini).

Certaines des approximations à couplage fort de la théorie des champs quantifiés
nous paraissent propres à servir de cadre à une première réalisation du modèle. En
effet, malgré les critiques justifiées qu'on peut leur faire, elles possèdent des éléments
utilisables, surtout si on les manie avec souplesse en leur apportant des compléments
phénoménologiques. Leur avantage est d'avoir fait l'objet de nombreuses études et
d'offrir un cadre mathématique connu. Il ne nous paraît pas utile d'en rappeler tous
les détails que l'on trouvera dans de nombreuses publications [14]. Par contre, il est
nécessaire d'indiquer les points sur lesquels nous nous écarterons des théories à

couplage fort, soit en les modifiant, soit en les complétant par des éléments
phénoménologiques. Ce sera notre deuxième étape.

A. Le nucléon

Il est représenté par une fonction de source U(x — xx) qui le localise aux environs
de x, et qui possède les propriétés suivantes:

U(x - xx) U(\x - xA)
r)

dv U(x — xx) 1

Sa transformée de Fourier vQa) est définie par

v(V) dv U(x - xx) eHi*-iû (2.1')

Le nucléon possède quatre états de spin et de charge auxquels sont attachés les

opérateurs usuels Oj et xx. L'interaction choisie du nucléon avec le champ mésonique
pseudoscalaire mixte cpjx) est fixée par l'hamiltonien
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1 3

dv *i + cpx(p2 - A)cpx

'*#i."- dv U(x — Xj) (2.2)

L'approximation à couplage fort calcule les solutions \ky et l'énergie Ek de

l'équation

H^\ky Ek\ky (2.3)

en les développant suivant les puissances décroissantes de/2, le premier terme étant
proportionnel à/2. Si E0 désigne l'énergie minimale du système (2.2), on trouve aux
environs de ce minimum une suite d'états propres

\f,m;t,t3y t=j Q h + 7 1152> 2' 2» ¦ ' (2.4)

j désignant le spin et m sa composante z, t l'isospin et Q la charge. L'énergie en est
donnée par

Ej E0 + coj E0 + \J(j + 1) - f] ^
et l'on a en particulier

¦^1/2 E0 E3/2 — El/2 Er

(2.5)

(2.5')

Il est naturellement tentant d'utiliser ce qui précède pour représenter A(1236). Pour
cela il faut choisir

300 MeV (2.6)

C'est une hypothèse phénoménologique. En effet, ce terme calculé à l'aide d'un
couplage fort possède une valeur différente de (2.6). Mais dans la série des termes
représentant Ek, c'est le troisième (il est proportionnel à/-2). Si l'on admet que sa
forme quantique, conditionnée par les groupes d'invariance de H(1) (2.2), est
vraisemblable, il est moins raisonnable d'en admettre la valeur numérique. Une deuxième
hypothèse phénoménologique consiste à ignorer les états j t > f.

B. Le système de deux nucléons

Chaque nucléon est représenté par une fonction de forme U(x — xN) N 1,2
le localisant aux environs de xN. On a choisi pour l'hamiltonien du système H(2)

1 3

am j Z
z a=l

dv «I + ctlP2 - &)cpx

4*{{\ ì Ì of>C Lu(x-xN)
W jv=i «,j=i J

depo,

dX:
(2.7)

Il fournit une énergie 2E0 lorsque la distance

r \x\ x x2 - x, (2.8)

devient infinie. Cette énergie du système est complétée par un terme principal en/2
lorsque r est fini. Ce terme sert à définir l'énergie potentielle de deux nucléons
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V(x2 - xf) -pU)2 E (e<1)-V<1>)(e<2>-V<2')^(x2 - xx) (2.9)
vv 1=1

W(x2 - xf) dv'dv" U(x' - xf)e-r%, -, U(x" - x2)
p\x — x I

(2.10)

Les opérateurs e*,1' et e*,2' qu'on trouve dans (2.9) sont caractéristiques des approximations

à couplage fort. Ils proviennent de la règle selon laquelle (cf. par exemple [15])

uj '¦ot

/2^00
-ie™)j

On décompose le potentiel (2.9) en potentiel central et tensoriel:

/2
V(z) p — \3Çl^(z) + 9®<$(z)]

z px z |z|

(2.11)

(2.12)

(2.13)

&(z)
21

n z

^ k dk ln (kz\ 1 A fkz
—n -n vl(k) sin — ~ k dk vHk) sin —

o p2 + k2 \p) p2 }0 \p

?(=)-2(d2 ldYr kdk
n \dz2 z dzj z

^ 0 p2 + k:

" E (e^-ei2')
u=l

3 (e^'-zXe^'-z) O

k z2 3

v2(k) sin
kz

(2.14)

(2.15)

(2.16)

(2.17)

Les opérateurs (2.16) et (2.17) sont bien connus. Avec les notations de M. Fierz [16],
on a

ejp — x„j

o + I=r
(2.18)

(2.19)

Pour définir la constante de couplage renormalisée/2, on procède comme suit:
si l'on choisit pour Er une valeur infinie, on constate aisément que V (2.12) prend la
forme OPE lorsque r est grand. Cela fixe par correspondance

/2=/2/9 (2.20)

On introduit pour l'ensemble de deux nucléons l'opérateur isobarique
phénoménologique du système à partir de (2.5)

co^ coJt + coJ2 (2.21)

Cela permet d'écrire l'hamiltonien du système de deux nucléons dans le CM.
A

H
2M* + (oh + coJ2 + V(z) (2.22)
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où M* désigne la masse réduite du système des deux nucléons NN (ou des
configurations AA et AA).

Ce modèle est non-relativiste. Plusieurs travaux ont démontré l'importance de
corrections relativistes [17] et ont tenté d'en dégager la forme. On doit admettre que
seule une théorie relativiste de l'interaction, qui n'est pas réalisable actuellement, en
déterminera les terms exacts. Compte-tenu de cette situation, nous avons essayé de

corriger phénoménologiquement (2.22) en modifiant (2.9) de la manière suivante:
nous avons admis que la constante d'interaction renormalisée/2 (2.20) dépendait de
l'énergie ECM (énergie dans le CM. du système, ECM — £ub/2 dans les processus de
diffusion) suivant la formule :

fi(Ecu) fr2(0)
M

M + £cm.
(2.23)

où M désigne la masse du nucléon. Cela signifie qu'à la place de (2.9) nous utiliserons
le potentiel

V(x) -p(f-l^) £ (e/>.V<i>)(e<2>-V<2>)mx) (2.24)
\ P 7a=l

Cette correction phénoménologique est importante (cf. conclusions). Mais, à notre
avis, malgré son efficacité, elle ne doit pas être surestimée. (C'est pourquoi nous
n'avons pas jugé bon de l'exprimer en fonction de l'énergie totale s du système dans
le CM.) Précisons aussi que, lorsqu'il sera question dans ce travail de la constante
fj2, nous entendrons toujours:

/2=/2(0) (2.25)

Il reste à introduire le cœur dont les propriétés ont été fixées sous e. Nous avons
choisi comme fonction de source

U(z) C e'**2 (2.26)

où a est un paramètre numérique qui en définit l'extension. On sait que pour les états
à L paix du système de deux nucléons, (2.26) détermine dans (2.24) un potentiel
répulsif mou. Il a été complété par un cœur dur de dimension rc < 0.2 f obtenu en
remplaçant (2.24) par un potentiel infini pour r < rc. Contrairement à ce que l'on
pourrait imaginer, la forme de la fonction choisie pour (2.26) est secondaire, seule son
extension est déterminante (travail à paraître). Cette extension peut être définie par

<x2> =|(1.4)2- (2.27)
a

3. Le deuton

Parmi les nombreux tests auxquels on soumet tout modèle, le deuton occupe une
place privilégiée, d'abord en raison de la précision des mesures, ensuite parce qu'il
permet d'explorer l'interaction nucléon-nucléon dans une région étendue de l'espace,
enfin parce qu'il permet de fixer les constantes phénoménologiques qui caractérisent
le modèle.

Nous avons retenu les trois mesures principales du deuton: l'énergie de liaison
e [18], le moment quadrupolaire Q [19, 20] et la portée effective p,(-s, -s) [18].
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e 2.224 644 ± 0.000 046 MeV
Q (2.860 ± 0.015)-10~27 cm2 [19] (3.1)
p, 1.756 ± 0.006 f

Elles servent à déterminer, à l'aide du modèle, la meilleure combinaison des trois
paramètres a (2.26), rc et/2 (2.20). On les calcule d'abord en donnant à e la valeur
expérimentale (3.1). Pour

(3.2)
a

rc

11

0.20071 f
0.0784

'2)

on trouve

%
ôth
Pa,

P°exp
(2.854)-
1.772 f

10 27 cm2 (3.3)

Le calcul est conduit de la manière suivante : à l'hamiltonien (2.22) correspond
l'équation de Schrödinger

Hyvy E\wy (3.4)

dont on recherche l'état d'énergie minimale. C'est un problème bien connu [16, 21].
On définit les intégrales premières du système :

S ji + J2 le spin total (3.5)

T tx + t2 l'isospin total (3.6)

J L + S le moment cinétique total dans le CM., L désignant le (3.7)
moment orbital dans le CM.

Le potentiel (2.12) est manifestement invariant de parité: les états à L pair et impair
sont séparés. L'état général |XF> de (3.4) est décomposé suivant les fonctions spin-
angles \s, L,j\,j2y

rr>= I FsLhh(r)\s,L,juj2y (3.8)
sLj,j2 r

L'analyse du système montre qu'à côté des composantes 3SX et 3DX du deuton on
trouve les états isobariques de charge 2 et d'énergie 2Er ~ 600 MeV. On vérifie sans
difficulté que ces états, notés selon la nomenclature habituelle, sont :

3S** 3D*# 7D** 7G#* (-39)

On a ignoré l'état 3D** dont la probabilité est négligeable. La recherche mathématique
des solutions de (3.4) a présenté des difficultés. Tous les algorithmes qui se révélèrent
si efficaces dans (I), lorsque le cœur est dur, ont dû être remplacés. On a largement
testé ceux qui ont été mis au point :

a) sur le deuton à deux composantes (sans isobare) où ils se sont révélés plus
maniables et aussi précis que ceux proposés par Lovitch et Rosati [22].

2) Les cinq décimales attribuées à rc relèvent d'exigences dues à la technique de programmation choisie
et non d'une précision numérique nécessaire.
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b) sur le deuton à isobares et cœur dur pour lequel ils conduisent plus rapidement
aux résultats publiés dans (I).

Table I
Valeurs du moment quadrupolaire Q et de la portée effective p, du deuton, calculées à partir du modèle,
pour différents paramètres a et rc caractérisant le cœur et pour différentes constantes de couplage/,2.

rc(f) a fj
S (IO-27)

(cm2) P,(0
P'dV
(%)

P'Df*
(%)

pisr
(%)

PiGf
(%)

0.17214
10.0 0.0826 2.956 1.808 5.794 0.411 0.228 0.032

10.5 0.0796 2.877 1.786 5.679 0.422 0.230 0.032

11.0 0.0768 2.803 1.759 5.572 0.432 0.232 0.032

0.20071 11.0 0.0784 2.854 1.772 5.697 0.436 0.184 0.033

0.14357 11.0 0.0754 2.751 1.737 5.443 0.427 0.292 0.030

On relève que la valeur de /2 (fj2 0.0784) obtenue pour a 11.0 et rc
0.20071 fest en excellent accord avec la constante/2 de la diffusion pion-nucléon [5]

(f2 0.810 ± 00040,/2 0.0816 ± 0.0029). Elle fournit de très bonnes valeurs

de Q et pt. Le table I montre qu'à la valeur expérimentale de pt, comme aussi aux
valeurs plus anciennes de Q [20], correspondent des valeurs acceptables de ff,
obtenues avec des paramètres a et rc voisins de (1.1). Le modèle établit donc une
bonne coordination théorique entre e, Q et pt, et cela pour des valeurs/2 proches de
celles de la diffusion pion-nucléon. Pour savoir si ce résultat tient à un heureux hasard
ou s'il est lié aux caractéristiques du modèle, il convient d'étendre les tests aux
mesures de diffusion.

4. Les états singulets pairs

Dès que l'on souhaite élargir le test du deuton il faut recourir aux expériences de
diffusion-polarisation effectuées avec deux nucléons. Leur analyse habituelle sous
forme d'ondes partielles se traduit par des déphasages donnés en fonction de l'énergie.
En conformité avec ce qui fut exposé aux sections 1 et 2, nous nous bornerons à des
énergies 0 ^ EUb < 320 MeV et nous choisirons les déphasages des singulets pairs
1K0, 1D2 et XG4 (S 0, T 1) pour les raisons suivantes:

a) Les déphasages 1K0, *D2 et JG4 proviennent de la diffusion-polarisation p-p
et sont mesurés précisément dans le domaine d'énergie considéré. (Même si les
analyses de Livermore [2] et de Yale [3] diffèrent encore quelque peu pour
certaines énergies, 320 MeV par exemple.)

b) Ces déphasages diffèrent très largement (v compris 1G4) de ceux que donnerait
un potentiel OPE. Ils permettent donc de tester le potentiel proposé (2.24).

c) Dans l'analyse des expériences, ces déphasages sont peu sensibles à l'élimination
préalable des déphasages périphériques réalisée à l'aide d'une approximation
OPE [23].



74 A. Houriet et X. Bagnoud H. P. A.

d) Il n'existe pas de potentiel d'interaction spin-orbite comme cela semble être le
cas pour les déphasages 3P. (Dans toute théorie à potentiel statique, un tel
potentiel nécessite de nouvelles constantes phénoménologiques.)

L'extension logique du test consiste à calculer les déphasages 1K0, 1D2 et *G4 à

partir de (3, 4,..., 8). Puisqu' il s'agit de diffusion p-p il faut ajouter à l'hamiltonien
(2.22) le potentiel coulombien avec les modifications bien connues qu'il entraîne pour
la recherche des déphasages [24].

L'analyse des fonctions de diffusion |*P>, E > 0 de (3.4), où l'on a ajouté le

potentiel de Coulomb, montre qu'à côté des fonctions oscillantes principales 1K0,
lD2 et *G4 apparaissent des états isobariques du type AA et AA. Notés suivant la
nomenclature usuelle (l'astérisque désignant les états AA, le double astérisque les
états AA), ces états complémentaires sont:

XKo 5n* lo**s0 5p«** (4.1)

'D2 5Sf 5D* 5Gf 1D|* 5e** 5D** 5G|* (4.2)

XG4 5G% 5D* 5t**4 1G** 5G%* 5V>%* 5t**l4 (4.3)

Table II
Déphasages ôE(E £lab) en fonction de /r2
périmentaux de Livermore et de Yale (a 1

calculés à partir du modèle et comparés aux résultats ex-
1.0, rc 0.20071 f)

fj °8 °30 5°60 °100 °140 °200 °320

0.075 56.60 45.15 33.38 22.07 13.48 3.58 -10.02

0.078 66.70 50.37 37.05 24.83 15.72 5.34 -8.84

'K„ 0.081 77.93 55.99 40.98 27.79 18.13 7.23 -7.56

Analyse deL. 55.48 46.70 35.84 25.04 16.84 7.12 -8.60

Analyse de Y. 55.44 46.22 35.46 25.55 17.65 7.33 -8.38

0.075 0.91 2.09 3.66 5.12 6.92 9.03

0.078 0.96 2.22 3.91 5.49 7.45 9.74

'D2 0.081 1.01 2.36 4.18 5.90 8.03 10.50

Analyse deL. 0.92 2.12 3.73 5.22 7.10 9.58

Analyse de Y. 1.10 2.35 3.63 5.13 6.95 10.23

0.075 0.39 0.57 0.81 1.25

0.078 0.41 0.60 0.85 1.33

'G4 0.081 0.43 0.63 0.90 1.40

Analyse deL. 0.44 0.64 0.91 1.37

Analyse de Y. 0.41 0.61 0.99 1.15
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Les algorithmes mis au point pour rechercher les solutions de diffusion de
l'équation de Schrödinger (3.4) (dans laquelle on a ajouté le potentiel de Coulomb
décrivant la répulsion p-p) se sont révélés très efficaces. Ils permettent la détermination

des déphasages avec une précision comparable à celle que l'on obtient pour les
calculs du deuton.

Dans une première étape on a calculé les déphasages lK0, JD2 et 'G2 en choisissant

pour a et rc la combinaison déterminée à l'aide du deuton (3.3) et en variant/2.
On obtient ainsi la table II.

Un premier examen du tableau montre qu'avec des constantes /2 voisines de
celle que fournit le deuton (f2)d 0.0784, on peut représenter tous les déphasages
expérimentaux de ^q, 1D2 et lGA. Cette constatation suggère un test tout à fait
nouveau du modèle, test que nous allons exposer.

Les 17 déphasages expérimentaux lK0, lV>2 et *G4 retenus, les trois mesures
liées au deuton s, Q, pt auxquelles on joindra ps vont être considérées comme 21

mesures indépendantes, destinées à déterminer statistiquement f2. Ayant fixé un
couple de valeurs a. et rc, on recherche pour chacune de ces 21 mesures la valeur
théorique de la constante de couplage fournie par le modèle. On définit aussi la
moyenne partielle à énergie fixe :

U2ÌE ïifX^o) +/,2(1D2) +/2(1G4)} (4.4)

Table III
Valeurs de la constante/,2 calculées à partir du modèle et correspondant aux 17 déphasages expérimentaux
choisis, (a 11.0, rc 0.20071 f)

\(MeV)
8 30 60 100 140 200 320

'K0 0.0748 0.0759 0.0769 0.0781 0.0793 0.0809 0.0785

Livermore 'D2 0.0754 0.0756 0.0757 0.0757 0.0759 0.0774

'G4 0.0824 0.0826 0.0819 0.0799

Valeurs moyennes [fJlE 0.0787 0.0792 0.0795 0.0786

'K» 0.0749 0.0756 0.0768 0.0785 0.0800 0.0812 0.0790

Yale 'D2 0.0872 0.0812 0.0766 0.0750 0.0751 0.0798

'G4 0.0779 0.0794 0.0869 0.0710

Valeurs moyennes [fJlE 0.0776 0.0781 0.0810 0.0766

L'adaptation des grandeurs s, Q, pt( — e, —s) du deuton aux valeurs expérimentales
respectives fournit trois valeurs différentes de la constante de couplage/2

énergie de liaison s :

moment quadrupolaire Q :

portée effective pt :

f2 0.0784
/2 0.0782
/2 0.0789

(4.5)
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Pour le calcul de 1S0 à énergie zéro3), on détermine la constante de couplage qui fixe
la portée effective [25] ps 2.84 ± 0.003 f. On obtient dans ce cas:

/2 0.0740 (4.6)

L'ensemble des valeurs (Table III (4.5 et 4.6)) fournit, pour chacune des analyses
expérimentales de Livermore et de Yale, une valeur moyenne et un écart quadratique.

Livermore: </2> 0.0780 A/2 0.0025 (4.7)

Yale: </2> 0.0784 A/2 0.0038 (4.8)

Ce résultat intéressant (on notera aussi la remarquable coïncidence des valeurs
moyennes [/2] (4.4) associées aux analyses faites à une seule énergie) peut donner
lieu à la critique suivante : il est essentiellement tributaire du choix des valeurs fixes
a 11 et rc 0.20071 f choisies à partir du deuton. Que devient-il si l'on varie ces
paramètres Pour y répondre nous avons élargi encore une fois notre recherche. Nous
avons choisi une grille de valeurs a et rc, et nous avons répété le calcul précédent pour
chaque couple a et rc: détermination des valeurs/2 pour chacune des 21 mesures
individuelles, calcul de la valeur moyenne, calcul de l'écart quadratique. On obtient
ainsi une grille de valeurs moyennes et d'écarts quadratiques donnés en fonction des
deux paramètres a et rc

</2>(a, rc) A/2(a, rf) (4.9)

La section suivante est réservée à l'exposé des résultats et à leur discussion.

5. Résultats et conclusions

On a réalisé une explorarion étendue de </2) et de A/2 en fonction des deux
paramètres a et rc qui caractérisent le cœur dans notre modèle. Le but était de
constater l'existence d'un minimum de A/2, en fonction de a et rc, de le localiser et d'en
étudier le voisinage.

Afin de tenir compte des analyses différentes de Livermore et de Yale, établies à

partir des données expérimentales [2, 3], il nous a paru nécessaire de réaliser deux
grilles indépendantes, l'une pour Livermore (Table IV), l'autre pour Yale (Table V),
que l'on trouve ci-dessous et qui servent de base à nos conclusions.

Pour chaque couple de valeurs a et rc, on a indiqué: la valeur moyenne </2> et
l'écart quadratique A/2 correspondant (calculés à partir des 21 données des analyses
de Livermore ou de Yale). On a ajouté l'erreur relative de A/2 en %.

On constate d'abord qu'il existe un minimum de l'erreur relative pour chacune
des deux analyses. Ce qui est surprenant, c'est que la position de ce minimum est la
même pour l'analyse de Livermore et pour celle de Yale. De plus, bien que les écarts
quadratiques diffèrent pour les deux versions, les deux surfaces A/.2 possèdent la
même structure. Enfin, les valeurs moyennes </2> aux environs du minimum sont
pratiquement les mêmes et surtout ces valeurs recouvrent les valeurs usuelles de /2
fournies par la diffusion pion-nucléon et les déphasages périphériques [2, 5, 26].

Pour chacune des deux grilles, on a déterminé par interpolation quadratique les
coordonnées du minimum ainsi que les valeurs correspondantes de </2> et de A/2, et
on a calculé aux environs du minimum une valeur plus précise de </2> :

3) Diffusion n-n.
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Position et caractéristiques du minimum de la grille de Livermore

a 10.8 </2> 0.0783

re 0.19f A/.2 0.0025

Position et caractéristiques du minimum de la grille de Yale

a 10.8 {ffy 0.0788

rc 0.19f A/.2 0.0038

Valeur particulière de </r2> aux environs du minimum

a 10.5 </2> 0.0785

rc 0.17214 A/2 0.0024

(5.1)

(5.2)

(5.3)

Ainsi, malgré les différences parfois sensibles des deux versions de Livermore et
de Yale, leur analyse à l'aide de notre modèle conduit aux mêmes valeurs </2>min
<xmin et (rc)min et confirme les déterminations obtenues à l'aide du deuton. De plus,
l'écart quadratique aux environs du minimum (3.2% pour Livermore, 4.8% pour
Yale) paraît valider l'hypothèse émise à la section 4: le modèle coordonne les données
analytiques de Livermore ou de Yale de manière suffisamment précise pour que l'on
puisse utiliser chacune de ces données individuelles pour déterminer la constante de
couplage renormalisée fj2. Va publication prochaine d'une analyse plus étendue,
relative à l'ensemble des données des singulets et triplets pairs (L pair, 5 0, 1)

Table IV
Valeurs moyennes </,2> et écarts quadratiques A/,2 calculés à partir du modèle et à l'aide de l'analyse de
Livermore

9 10 11 12

0.08643
0.0812 + 0.0047
(5.8%)

0.11500
0.0776 + 0.0040
(5.1%)

0.14357
0.0845 + 0.0047
(5.5%)

0.0750 + 0.0044
(5-8%)

0.17214 0.0807 + 0.0026
(3.2%)

0.0729 + 0.0053
(7.3%)

0.20071
0.0881 + 0.0082
(9.3%)

0.0779 + 0.0025
(3.2%)

0.22928
0.0840 + 0.0059
(7.1%)

0.0759 + 0.0034
(4.5%)

0.25786
0.0810 + 0.0050
(6.2%)

0.28643
0.0790 + 0.0047
(5.9%)
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Table V
Valeurs moyennes </r2> et écarts quadratiques Afj calculés à partir du modèle et à l'aide de l'analyse de
Yale

^^ a
rc (f ^\ 9 10 11 12

0.08643
0.0816 + 0.0056
(6.9%)

0.11500
0.0779 + 0.0050
(6-4%)

0.14357
0.0843 + 0.0057
(6.8%)

0.0754 + 0.0053
(7%)

0.17214
0.0810 + 0.0038
(4.7%)

0.0734 + 0.0059
(8%)

0.20071
0.0885 + 0.0087
(9.8%)

0.0784 + 0.0038
(4.8%)

0.22928
0.0843 + 0.0066
(7.8%)

0.0763 + 0.0043
(5.6%)

0.25786
0.0815 + 0.0057
(7%)

0.28643
0.0794 + 0.0054
(6.8%)

confirme ce résultat (sur la base de 50 à 60 données tirées de l'expérience et pour le
même domaine d'énergie allant de 0 à 320 MeVlab).

Au vu des résultats précédents (5.1, 5.2 et 5.3), on pourrait être tenté d'attribuer
au couple (a)^in et (rc\n,n une réalité objective. Nous ne pensons pas qu'il faille franchir
ce pas. L'ensemble (ay,^ et (rAm constitue sans doute une représentation adéquate
du phénomène 'cœur nucléonique' pour les ondes partielles à L pairs et dans l'intervalle

d'énergie utilisé. Mais la structure déjà explorée du nucléon s'est révélée beaucoup

trop complexe pour que l'on puisse se contenter d'une simplification aussi
draconienne.

On peut critiquer le postulat d'équiprobabilité que nous avons appliqué aux
différentes données des deux analyses de Livermore ou de Yale. On sait bien que les

mesures du deuton, comme aussi certains déphasages sont connus avec une précision
beaucoup plus grande que d'autres que nous utilisons. Un examen approfondi a

confirmé ce qui semble plausible : des moyennes pondérées appliquées aux différentes
mesures ne donneraient pas des résultats sensiblement différents de ceux qui
précèdent. Notre calcul statistique qui pénalise les bonnes mesures a pour effet d'exagérer

A/2.
En ce qui concerne les éléments phénoménologiques, on peut les classer en deux

groupes: A) ceux qui influencent de manière décisive les résultats, B) ceux dont la
variation ne modifie pratiquement pas ces mêmes résultats.

A. Deux hypothèses phénoménologiques se révèlent indispensables: la
description du cœur à l'aide des deux paramètres a et rc (rc ^ 0.2 f et la loi de variation
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de/2 en fonction de l'énergie ECM (2.23). (Si l'on admet une valeur/2 indépendante
de ECM, la représentation des données analytiques de Livermore ou de Yale nécessite
plusieurs paramètres supplémentaires [27].) A notre avis, il ne faut pas interpréter ce
fait en attribuant à (2.23) un contenu définitif. La variation de/2 en fonction de ECM

représente probablement, de manière simplifiée mais efficace, les corrections rela-
tivistes dans le domaine des énergies envisagées.

B. Parmi les facteurs phénoménologiques moins importants nous citerons:

1) la valeur de Er (2.6) (il s'est avéré que le modèle ne donne pas des résultats
sensiblement différents lorsqu'on varie Er de 10%).

2) le choix pour la masse des mésons n de la valeur moyenne des masses des trois
mésons n.

3) l'introduction explicite de la masse A(1236) dans le calcul des masses réduites
M* de l'équation de Schrödinger (3.4).

Quant aux états isobariques construits à l'aide de A(1236), il semble que ce soit
leur virtualité qui est importante. Dans (I), lors de l'étude du singulet ^o, on avait
négligé les états isobariques AA, ne retenant que les états d'excitation AA. Cette
recherche a montré qu'une telle simplification entraînait des différences numériques
non négligeables.

Il convient d'insister sur la nécessité d'appliquer aux systèmes de deux nucléons
envisagés ici des algorithmes basés sur le schéma de Rarita-Schwinger. Une longue
expérience nous a prouvé qu'un calcul de perturbations appliqué aux isobares conduit
souvent à des résultats erronés. Les algorithmes mis au point pour calculer les
différents résultats de ce travail sont totalement différents de ceux de (I). Ils feront
l'objet d'une publication séparée.

Si l'on considère enfin les nombreuses recherches expérimentales destinées à
établir l'existence d'états AA dans le deuton, il ressort de nos calculs (Table I) que
ces états possèdent une probabilité totale inférieure à 0.7%. De plus, ils sont fortement
diversifiés. Leur détection expérimentale est probablement plus délicate qu'on ne
l'avait prévu.

En conclusion, il nous paraît nécessaire d'insister encore une fois sur le côté
inattendu des résultats. Une recherche plus étendue touchant l'ensemble des états
singulets et triplets pairs (S 0, 1 ; L pair), avec 50 à 60 mesures indépendantes, les a
confirmés. Le modèle ne comprend que 3 paramètres dont/2. La coordination qu'il
établit entre toutes les mesures à L pair peut difficilement être attribuée au hasard.
Cependant, nous n'avons pas trouvé jusqu'ici de justification théorique entièrement
satisfaisante à cet état de fait, si peu conforme à la réalité complexe du nucléon.

Le Dr. Achour, directeur technique du Centre de calcul de Fribourg, nous a

souvent aidés de ses conseils, ce dont nous le remercions vivement. •
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