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Modele semiphénoménologique de I’interaction nucléon —
nucléon

par A. Houriet et X. Bagnoud

Institut de Physique Théorique, Université de Fribourg

(2.VI1.1976)

Abstract. A nucleon with isobars is used to elaborate a model of the nucleon—nucleon interaction at
low energy (Ecy < 160 MeV). Three free parameters only are introduced among which f?, the pion-
nucleon renormalized coupling constant. The model establishes a very good coordination for deuton and
p-p scattering-polarization measurements ('K, !D,, 'G, phase shifts), and permits the determination of
/72 for every independent experimental value, For 21 such values, we obtain the mean value { 2> = 0.0785
with Af? = 0.0024 (3%).

1. Origines et buts du travail

Les mesures relatives au systéme de deux nucléons se sont multipliées au cours
des dix dernieres années. Elles sont de plus en plus précises [1-4] et elles conduisent
a une nouvelle détermination de f%, la constante renormalisée de I'interaction pion-
nucléon, avec un résultat proche de celui que fournit la diffusion pion-nucléon:
£;2 = 0.08 [5]. On sait que f,? est calculée & partir de I'interaction périphérique des
deux nucléons, lorsque domine, selon I'image classique, I’échange d’un seul méson n
(potentiel de forme OPE). Mais cette interaction est trop faible pour expliquer le
déphasage expérimental de 'G,, beaucoup trop faible aussi pour lier le deuton ou
prévoir les déphasages expérimentaux 'K, et 'D,. On a tenté de la compléter [6],
mais souvent on préfére analyser et coordonner les résultats expérimentaux a 'aide
de potentiels phénoménologiques [7]. Leur défaut essentiel est de multiplier les
paramétres que 1’on fixe en minimalisant 2 .

Notre modéle est caractérisé par trois paramétres indépendants. Il utilise & abord
la constante de couplage renormalisée f,? et permet de la déterminer a partir de chaque
mesure (ce qui n’implique pas, de notre part, I’affirmation que d’autres constantes de
couplage négligées ici ne jouent aucun rdle dans I'interaction nucléon—nucléon). Dans
ce travail, 21 mesures (deuton, diffusion 'K, ' D, et 'G, entre 0 et 320 MeV,,, ) ont
éte retenues et analysées séparément a partir du modéle. Chacune fournit une valeur
admissible de £,%. Sil’on attribue a chacune de ces 21 mesures le méme poids, on peut
calculer la valeur moyenne < f2) et I’écart quadratique correspondant A /7. Voici la
meilleure distribution statistique que nous ayons obtenue (cf. (5.3)):

(fFF =0.0785  Af? = 0.0024 (ou 3%) (1.1)
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Ce résultat fut pour nous inattendu (le modéle ne comportant que trois parametres
dont £,%). Nous analyserons donc les idées directrices qui y conduisent.

La présence d’états isobariques dans le deuton [8, 9], suggérée par des ex-
périences récentes, constitue probablement un ¢lément décisif pour toute théorie de
I’interaction nucléon—nucléon. De tels états, s’ils existent, doivent étre associés aux
niveaux de résonances du nucléon [8, 10], largement explorés au cours des dix
derniéres années. Mais ces résonances, bien connues jusqu’a 1 GeV, tant en ce qui
concerne leurs nombres quantiques que leurs modes de désintégration, sont si
nombreuses et leur dynamique si complexe qu’il parait raisonnable d’adopter le point
de vue pessimiste selon lequel une connaissance exhaustive des hadrons est indis-
pensable pour comprendre I'interaction nucléon—nucléon. Cette opinion, réaliste si
I’on considére le probléme dans son ensemble, ne devrait cependant pas exclure la
recherche de solutions partielles, aux buts limités, comme celle que nous proposons
il

Une constatation que nous avions faite il y a quelques années [11]") situera
I’origine de ce travail. En intégrant phénoménologiquement, de maniére tres simpli-
fiee, les états A(1236) dans la théorie de I’interaction nucléon—nucléon, on avait établi
que le deuton comportait des isobares AA dont la probabilité était d’environ 0.7%.
On avait souligné I'importance pour le calcul du moment magnétique du deuton.
Mais I'intérét majeur du modéele était de fournir deux déterminations nouvelles de la
constante de couplage f,*. En effet, a c6té de la masse de A(1236), choisie phénoméno-
logiquement, le modeéle ne comprenait que deux parameétres: f;? et la dimension du
cceur nucléonique dur r,. (Il s’agissait d’une coupure brutale des potentiels, remplacés
par un potentiel infini, pour des distances r entre les deux nucléons inférieures a r,).
Pour des valeurs admises de r,, comprises entre 0.5 et 0.6 f, le deuton, comme la
diffusion 'S, a énergie 0, avait donné deux déterminations de > compatibles avec
celles de la diffusion pion-nucléon [5]. Cependant, a ces deux résultats intéressants,
on pouvait objecter:

a) que leur extension a la diffusion nucléon—nucléon pour des énergies E,,, com-
prises entre 0 et 320 MeV se révélait décevante: la dispersion des valeurs f;?
-obtenues était large et défavorable.

b) qu’ils reposaient sur un nucléon a cceur dur de dimension 0.5f < r, < 0.6 f. Or
I’étude des noyaux lourds fixe la limite supérieure d’un ceeur dur a 0.2 f[12].

Depuis lors, une autre objection sérieuse a surgi: était-il raisonnable de ne
retenir que les seuls états A(1236) parmi toutes les résonances connues du nucléon [13]?
Cette difficulté a longuement pesé sur notre recherche: s’il est relativement facile
d’intégrer de maniére simplifiée les états A(1236) a un modeéle d’interaction de deux
nucléons, I’adjonction en plus d’autres résonances conduit trés vite a un probléme
mathématique inextricable (2 lui seul A(1236) ajoute a I’état de diffusion ' D, 7 états
isobariques et conduit & un systéme de 8 équations différentielles couplées du
deuxi¢me ordre!). Une analyse, fondée sur de nombreux calculs, nous a convaincus du
bien-fondé des hypothéses suivantes, lorsque E,, < 320 MeV:

1) la contribution de A(1236) est déterminante pour les singulets pairs (L pair,
S=0,T=1).
2) elle demeure trés importante pour les triplets pairs (L pair, S = 1, T = 0).

') Dans ce travail, la référence [11] sera désignée par (I).
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Ce travail repose sur ces hypotheéses et les résultats numériques semblent les confirmer.

Le cceur dur de (I) est remplacé par un ceeur mou qui introduit un parametre o
caractérisant I’extension spatiale du nucléon (cf. (2.26 et 2.27)). Cette modification, a
elle seule, nous a contraints a abandonner et a remplacer tous les algorithmes de (I).
Nous avons constaté que 1’adjonction complémentaire d’un ceeur dur résiduel de
dimension r, < 0.2 f améliorait trés sensiblement tous les résultats. Ainsi notre
modéle comprendra: la constante /2, un ceeur mou (parameétre «) et un cceur dur
~(parametre r,). Il nous fournit pour chaque mesure indépendante une détermination
de f;? et cela pour tout couple de valeurs o et r,.

Nous avons retenu 21 mesures considérées comme indépendantes:

1) les caractéristiques du deuton: énergie de liaison &, moment quadrupolaire Q,
portée effective p,(—e, —¢).

2) les déphasages 'K, aux énergies E,,, = 8, 30, 60, 100, 140, 200, 320 MeV ainsi
que p,(0). (Nous avons constaté que a, = —17 + 1 f conduit & la’'méme valeur
de f;* que le déphasage 'K, 3 8 MeV et, a cause de cela, nous ’avons éliminé.)

3) les déphasages ' D, (1K,) aux énergies 60, 100, 140, 200, 320 MeV,,,, .

4) les déphasages 'G, aux énergies 100, 140, 200 et 320 MeV,,,

Un nombre plus grand de mesures de diffusion réparties uniformément entre 8 et
320 MeV ne changerait pas appréciablement le résultat (1.1).

Puisque les déphasages publiés 'K, D, et G, différent suivant les analystes,
nous avons utilisé deux versions particuliérement représentatives, celle de Livermore
[2] et celle de Yale [3]. Chacune des 21 mesures des deux versions a été analysée et
pour chaque couple « et r, elle a fourni une valeur de f;>. Pour I’analyse de Livermore
comme pour celle Yale, on a ainsi construit la grille des valeurs moyennes ¢ /2 et
celle des écarts quadratiques A £,* en fonction des paramétres a et r,. Chacune des deux
grilles A f,* de Livermore et de Yale posséde un minimum et, ce qui est remarquable,
pour les mémes valeurs de a et r,. A ce minimum correspond pour chacune des deux
analyses une valeur moyenne < f,2). On trouve:

analyse de Livermore

(f2 = 0.0783 x =108
Af? = 00025 PO . —o019f (1.2
analyse de Yale
{fAy = 0.0788 a = 10.8 ’
Af2 = 0.0038 PO, —019f (1.3)

Ainsi lorsque Af? est minimum, les deux versions qui parfois différent sensible-
ment ('K,, 'D, et 'G, a 320 MeV,,, par exemple), analysées selon notre modéle
donnent pratiquement la méme valeur moyenne < /), trés proche des détermina-
tions usuelles, et cela pour des valeurs identiques des paramétres o et r.. L’écart
quadratique: 3.2%, pour Livermore, 4.8% pour Yale, suggére que chacune des mesures
utilisées peut étre considérée comme une mesure de f;%. (La différence que I’on notera
entre les Af? de (1.1) et (1.2) provient du fait que (1.2) est tiré d’une exploration
générale de la grille Af? de Livermore (cf. (5.1 et 5.2)) tandis que (1.1) représente un
calcul de précision aux environs du minimum de Af?.)



68 A. Houriet et X. Bagnoud H P A.

2: Le modéle

Pour choisir et construire un modéle, il faut d’abord en fixer les caractéristiques.
Ce sera notre premiere étape.

a) Le nucléon en plus des états de spin et d’isospin, j = t = 1 possédera les états
isobariques j = ¢ = 3, capables de représenter A(1236). Le potentiel statique
utilisé devra comprendre des éléments de matrice couplant entre eux les états
j=t=4etj=1=3

b) Le potentiel ne dépendra que de la constante £, de I'interaction pion-nucléon.

c) Le potentiel périphérique aura la forme générale OPE.

d) On n’introduira pas la dynamique des états j = ¢ = 3 et, dans cette perspective,
on limitera I'utilisation du modéle a des énergies inférieures & 160 MeV dans le
C.M. (E,;, = 320 MeV). On peut alors ignorer ou négliger la production des
pions.

e) Le nucléon possédera un cceur mou complété par un cceur dur de dimension
r. < 0.2 f(réalisé par la coupure des potentiels pour des distances r des nucléons
inférieures a r, et leur remplacement par un potentiel répulsif infini).

Certaines des approximations a couplage fort de la théorie des champs quantifiés
nous paraissent propres a servir de cadre a une premiére réalisation du modéle. En
effet, malgré les critiques justifiées qu’on peut leur faire, elles possédent des éléments
utilisables, surtout si on les manie avec souplesse en leur apportant des compléments
phénoménologiques. Leur avantage est d’avoir fait ['objet de nombreuses études et
d’offrir un cadre mathématique connu. Il ne nous parait pas utile d’en rappeler tous
les détails que I’on trouvera dans de nombreuses publications [14]. Par contre, il est
necessaire d’indiquer les points sur lesquels nous nous écarterons des théories a
couplage fort, soit en les modifiant, soit en les complétant par des éléments phénomé-
nologiques. Ce sera notre deuxiéme étape.

A. Le nucléon

Il est représenté par une fonction de source U(x — x,) qui le localise aux environs
de x; et qui posséde les propriétés suivantes:

Ux — x;) = U(lx — x,])

2.1)
jdv Ux —x,) =1
Sa transformée de Fourier v(Kk) est définie par
(k) = Jdv Ux — x,) e®x% 2.1

Le nucléon posséde quatre états de spin et de charge auxquels sont attachés les
opérateurs usuels o; et 7,. L’interaction choisie du nucléon avec le champ mésonique
pseudoscalaire mixte ¢,(x) est fixée par ’hamiltonien |
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HWY =

Z J‘dvlinazz & (pa(fuz - A)(Pa:|
+\/_() Y og JdvU(x—xl)az“ (2.2)

a,j=1 J

N |

L’approximation a couplage fort calcule les solutions |k) et I’énergie E, de
I’équation

HOkY = EJk> 2.3)
en les developpant suivant les puissances décroissantes de /2, le premier terme étant

proportlonnel a f 2. Si E, désigne I’énergie minimale du systéme (2.2), on trouve aux
environs de ce minimum une suite d’états propres

l-]’m;t>t3> t=] Q:t3 +7 '2%,3533-“ (24)

Jj désignant le spin et m sa composante z, ¢ I’isospin et Q la charge. L’énergie en est
donnée par

E,
Ej=E +a;=E +[jG+1)-3175 (2.5)
et 'on a en particulier
E1/2 = Eo E3/2 - Euz = E, (2-5’)

Il est naturellement tentant d’utiliser ce qui précéde pour représenter A(1236). Pour
cela il faut choisir

E. ~ 300 MeV (2.6)

C’est une hypothése phénoménologique. En effet, ce terme calculé a I'aide d’un
couplage fort posséde une valeur différente de (2.6). Mais dans la série des termes
représentant E,, c’est le troisiéme (il est proportionnel a /~2). Si 'on admet que sa
forme quantique, conditionnée par les groupes d’invariance de H® (2.2), est vrai-
semblable, il est moins raisonnable d’en admettre la valeur numérique. Une deuxiéme
hypothése phénoménologique consiste & ignorer les états j = ¢ > 3

B. Le systéme de deux nucléons

Chaque nucléon est représenté par une fonction de forme U(x — xy) N = 1,2
le localisant aux environs de X,. On a choisi pour I’hamiltonien du systéme H®

3
H? = —;- Y jdv[ni + o — A)%}
a=1
2 3

N=1gq,j=1 J
I1 fournit une énergie 2E, lorsque la distance
r = |x| X =X, — X, (2.8)

devient infinie. Cette énergie du systéme est complétée par un terme principal en f>
lorsque r est fini. Ce terme sert a définir I’énergie potentielle de deux nucléons
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2 3
x, — x;) = _#(g) Z (ele)'V(l))(eiz)'v(z))W(xz - X;) (28)
a=1
= ulx”—x’|
W(x, — x;) = Jdv’ dv" U(x' — x1)——— U(xX" — x3) (2.10)
ulx" = x|

Les opérateurs e!!) et e*) qu’on trouve dans (2.9) sont caractéristiques des approxi-
mations a couplage fort. Ils proviennent de la régle selon laquelle (cf. par exemple [15])

oM — (e, (2.11)

f2-

On décompose le potentiel (2.9) en potentiel central et tensoriel:

V(z) = /,Lf—2 [3QZ(2) + 99%(z)] 2.12)

Z = ux z = |z (2.13)
21 (* kadk [k 1 [ oo [k

F(2) = EE[ L v ®)sin (f) - L k dk v*(k) sin (f)] (2.14)
2(d*> 1d\1(*° kdc , .. (kz

g(Z) = — (dz = “Z- (_i;) 2 J.O m v (k) sSin (j) (215)

Q — z (el). e?) (2.16)

(1), )( e
® = Z & 2Nz 2.17)

z 3

Les opérateurs (2.16) et (2.17) sont bien connus. Avec les notations de M. Fierz [16],
ona

e = X,; (2.18)
®+%:T (2.19)

Pour définir la constante de couplage renormalisée f;2, on procéde comme suit:
si ’on choisit pour E, une valeur infinie, on constate aisément que V' (2.12) prend la
forme OPE lorsque r est grand. Cela fixe par correspondance

=149 (2.20)

On introduit pour ’ensemble de deux nucléons I’opérateur isobarique phéno-
meénologique du systéme a partir de (2.5)

ol = 0, + o, (2.21)

Cela permet d’écrire ’hamiltonien du systéme de deux nucléons dans le C.M.

H= -

M + w;, + w;, + V(2) (2.22)



Vol. 50, 1977 Modéle semiphénoménologique de I'interaction nucléon—nucléon 71

ou M* désigne la masse réduite du systéme des deux nucléons NN (ou des con-
figurations NA et AA).

Ce modéle est non-relativiste. Plusieurs travaux ont démontré 'importance de
corrections relativistes [17] et ont tenté d’en dégager la forme. On doit admettre que
seule une théorie relativiste de I'interaction, qui n’est pas réalisable actuellement, en
déterminera les terms exacts. Compte-tenu de cette situation, nous avons essayé de
corriger phénoménologiquement (2.22) en modifiant (2.9) de la maniére suivante:
nous avons admis que la constante d’interaction renormalisée > (2.20) dépendait de
I'énergie E (énergie dans le C.M. du systéme, E.,, = E,,,/2 dans les processus de
diffusion) suivant la formule:

M 2
HEon) = LH0)| ———— 2.23
2B = O 34 5 | e2)
ou M désigne la masse du nucléon. Cela signifie qu’a la place de (2.9) nous utiliserons
le potentiel

_ frz(ECM) . 1 1 2) (2)
V) = —p( 7 ) ¥ (e VOe VW) (2.24)
a=1

Cette correction phénoménologique est importante (cf. conclusions). Mais, a notre
avis, malgré son efficacité, elle ne doit pas étre surestimée. (C’est pourquoi nous
n’avons pas jugé bon de I’exprimer en fonction de I’énergie totale s du systeme dans
le C.M.) Précisons aussi que, lorsqu’il sera question dans ce travail de la constante
2, nous entendrons toujours:

2 =10 (2.25)

I1 reste & introduire le cceur dont les propriétés ont été fixées sous e. Nous avons
choisi comme fonction de source

Uz) = Ce (2.26)

ou a est un parameétre numérique qui en définit I’extension. On sait que pour les états
a L pair du systeme de deux nucléons, (2.26) détermine dans (2.24) un potentiel ré-
pulsif mou. Il a été complété par un cceur dur de dimension r, < 0.2 f obtenu en
remplagant (2.24) par un potentiel infini pour r < r,. Contrairement a ce que 1’on
pourrait imaginer, la forme de la fonction choisie pour (2.26) est secondaire, seule son
extension est déterminante (travail a paraitre). Cette extension peut étre définie par

(x* = 3(1.4)? é (2.27)

3. Le deuton

Parmi les nombreux tests auxquels on soumet tout modele, le deuton occupe une
place privilégiée, d’abord en raison de la précision des mesures, ensuite parce qu’il
permet d’explorer I'interaction nucléon—nucléon dans une région étendue de I’espace,
enfin parce qu’il permet de fixer les constantes phénoménologiques qui caractérisent
le modéle. ‘

Nous avons retenu les trois mesures principales du deuton: 1’énergie de liaison
¢ [18], le moment quadrupolaire Q [19, 20] et la portée effective p,(—e, —¢) [18].
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& = 2.224 644 + 0.000 046 MeV
0 = (2.860 + 0.015)-1072" cm? [19] (.1)
p, = 1.756 £ 0.006 f

Elles servent a déterminer, a ’aide du modéle, la meilleure combinaison des trois para-
métres a (2.26), r, et £ (2.20). On les calcule d’abord en donnant a ¢ la valeur ex-
périmentale (3.1). Pour

o = 11 .
r. = 0.20071 f 2) (3.2)
f? =0.0784
on trouve
&n = 8exp :
O = (2.854)-107 %7 cm? (3.3)
P = 1772 f

Le calcul est conduit de la maniére suivante: a I’hamiltonien (2.22) correspond
I’équation de Schrodinger

HY) = E|Y) (3.4)

dont on recherche I’état d’énergie minimale. C’est un probléme bien connu [16, 21].
On definit les intégrales premiéres du systéme:

S =j, + j, lespin total (3.5)
T =1t, +t, I isospin total (3.6)

J=L+ S le moment cinétique total dans le C.M., L désignant le (3.7)
moment orbital dans le C.M.

Le potentiel (2.12) est manifestement invariant de parité: les états a L pair et impair
sont séparés. L’état général |¥) de (3.4) est décomposé suivant les fonctions spin-
angles |S5 L9 jla .]2>

Fs1,(r) .
¥ = ¥ SRS L, o) (3.8)
SLjij2 r
L’analyse du systéme montre qu’a coté des composantes S, et *D; du deuton on
trouve les états isobariques de charge 2 et d’énergie 2E, ~ 600 MeV. On vérifie sans
difficulté que ces états, notés selon la nomenclature habituelle, sont:

3G 3D** TD** TGA* (3.9

Onaignoré’état *D¥* dont la probabilité est négligeable. La recherche mathématique
des solutions de (3.4) a présenté des difficultés. Tous les algorithmes qui se révélerent
s1 efficaces dans (I), lorsque le cceur est dur, ont di étre remplacés. On a largement
testé ceux qui ont €té mis au point:

a) sur le deuton a deux composantes (sans isobare) ou ils se sont révélés plus
maniables et aussi précis que ceux proposés par Lovitch et Rosati [22].

%) Les cinq décimales attribuées a r, relévent d’exigences dues a la technique de programmation choisie
et non d’une précision numérique nécessaire.
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b) sur le deuton a isobares et ceeur dur pour lequel ils conduisent plus rapidement
aux résultats publiés dans (I).

Table I
Valeurs du moment quadrupolaire Q et de la portée effective p, du deuton, calculées a partir du mode¢le,
pour différents paramétres « et r, caractérisant le ceeur et pour différentes constantes de couplage f.2.

Q (10727 Ppr P pssr Prgi*
r.(f) o : o (cm?) | p, () (7o) (%) (%) (7o)
10.0 0.0826 2.956 1.808 5.794 0.411 0.228 0.032
0.17214
10.5 0.0796 2.877 1.786 5.679 0.422 | 0.230 0.032
11.0 0.0768 2.803 1.759 5.572 0.432 0.232 0.032
0.20071 11.0 0.0784 2.854 1.772 5.697 0.436 0.184 0.033
0.14357 11.0 0.0754 2.751 1737 5.443 0.427 0.292 0.030

On reléve que la valeur de f? (f? = 0.0784) obtenue pour « = 11.0 et r, =
0.20071 f est en excellent accord avec la constante £,* de la diffusion pion-nucléon [5]

0.003
(f? =0.810 + 0.0 048, f? = 0.0816 + 0.0029). Elle fournit de trés bonnes valeurs

de Q et p,. Le table I montre qu’a la valeur expérimentale de p,, comme aussi aux
valeurs plus anciennes de Q [20], correspondent des valeurs acceptables de f?2,
obtenues avec des paramétres « et r, voisins de (1.1). Le modéle établit donc une
bonne coordination théorique entre ¢, Q et p,, et cela pour des valeurs f? proches de
celles de la diffusion pion-nucléon. Pour savoir si ce résultat tient 4 un heureux hasard

ou s’il est lié aux caractéristiques du modéle, il convient d’étendre les tests aux
mesures de diffusion.

4. Les états singulets pairs

Dés que I’on souhaite élargir le test du deuton il faut recourir aux expériences de
diffusion—polarisation effectuées avec deux nucléons. Leur analyse habituelle sous
forme d’ondes partielles se traduit par des déphasages donnés en fonction de I’énergie.
En conformite avec ce qui fut exposé aux sections 1 et 2, nous nous bornerons a des
énergies 0 < E,,, < 320 MeV et nous choisirons les déphasages des singulets pairs
'K,, 'D, et 'G, (S = 0, T = 1) pour les raisons suivantes:

a) Les déphasages 'K,, 'D, et 'G, proviennent de la diffusion—polarisation p—p
et sont mesurés précisément dans le domaine d’énergie considéré. (Méme si les
analyses de Livermore [2] et de Yale [3] différent encore quelque peu pour
certaines énergies, 320 MeV par exemple.)

b) Ces déphasages différent trés largement (y compris 'G,) de ceux que donnerait
un potentiel OPE. IIs permettent donc de tester le potentiel proposé (2.24).

c) Dans’analyse des expériences, ces déphasages sont peu sensibles a I’élimination
préalable des déphasages périphériques réalisée a 1’aide d’une approximation
OPE [23].
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d) Il n’existe pas de potentiel d’interaction spin-orbite comme cela semble étre le
cas pour les déphasages *P. (Dans toute théorie & potentiel statique, un tel
potentiel nécessite de nouvelles constantes phénoménologiques.)

L’extension logique du test consiste a calculer les déphasages 'K, 'D, et 'G, a
partirde (3, 4, . . ., 8). Puisqu’ il s’agit de diffusion p—p il faut ajouter a I’hamiltonien
(2.22) le potentiel coulombien avec les modifications bien connues qu’il entraine pour
la recherche des déphasages [24].

L’analyse des fonctions de diffusion |¥), E > 0 de (3.4), ou ’on a ajoute le
potentiel de Coulomb, montre qu’a coté des fonctions oscillantes principales 'K,
'D, et 'G, apparaissent des états isobariques du type NA et AA. Notés suivant la
nomenclature usuelle (’astérisque désignant les états NA, le double astérisque les
états AA), ces états complémentaires sont:

pour 'K,: °D¥ IS¥* SDx=* (4.1)
pour 'D,: S% SDf °Gf IDy* S DI Gy 42)
pour 'G,: °G} °D}f °I¥ 'Gi* °Gi* °Di* I (4.3)
Table I1

Déphasages d.(E = E,,;) en fonction de f?, calculés a partir du modéle et comparés aux résultats ex-
périmentaux de Livermore et de Yale (« = 11.0, r, = 0.20071 f)

b d3 830 80 8100 140 300 6320
0.075 | 56.60 | 45.15 | 33.38 | 22.07 | 13.48 | 3.58 —10.02
0.078 | 66.70 | 50.37 | 37.05 | 24.83 | 1572 | 5.34 —8.84
'K, 0.081 | 77.93 | 5599 | 40.98 | 27.79 | 18.13 | 7.23 -7.56
Analyse de L. 55.48 | 46.70 | 35.84 | 25.04 | 16.84 | 7.12 —8.60
Analyse de Y. 5544 | 46.22 | 3546 | 2555 | 17.65 | 7.33 —8.38
0.075 0.91 2.09 3.66 5.12 | 6.92 9.03
0.078 0.96 2.22 391 5.49 7.45 9.74
'D, 0.081 1.01 2.36 4.18 5.90 | 8.03 10.50
Analyse de L. 0.92 212 3.73 522 | 110 9.58
Analyse de Y. 1.10 2.35 3.63 5.13 | 6.95 10.23
0.075 0.39 0.57 | 0.81 1.25
0.078 0.41 0.60 | 0.85 1.33
(2 0.081 0.43 0.63 | 0.90 1.40
Analyse de L. 0.44 0.64 | 091 1.37
Analysede Y. 0.41 0.61 0.99 1.15




Vol. 50, 1977 Modéle semiphénoménologique de I'interaction nucléon—nucléon 75

Les algorithmes mis au point pour rechercher les solutions de diffusion de
I’équation de Schrodinger (3.4) (dans laquelle on a ajouté le potentiel de Coulomb
décrivant la répulsion p—p) se sont révélés trés efficaces. Ils permettent la détermina-
tion des déphasages avec une précision comparable a celle que ’on obtient pour les
calculs du deuton.

Dans une premiére étape on a calculé les déphasages 'K, ' D, et !G, en choisis-
sant pour « et r, la combinaison déterminée 4 ’aide du deuton (3.3) et en variant /2.
On obtient ainsi la table II.

Un premier examen du tableau montre qu’avec des constantes /> voisines de
celle que fournit le deuton (f*), = 0.0784, on peut représenter tous les déphasages
expérimentaux de 'K, 'D, et 'G,. Cette constatation suggére un test tout a fait
nouveau du modeéle, test que nous allons exposer.

Les 17 déphasages expérimentaux 'K,, 'D, et 'G, retenus, les trois mesures
liées au deuton &, Q, p, auxquelles on joindra p, vont étre considérées comme 21
mesures indépendantes, destinées & déterminer statistiquement f2. Ayant fixé un
couple de valeurs a et r,, on recherche pour chacune de ces 21 mesures la valeur
théorique de la constante de couplage fournie par le modéle. On définit aussi la
moyenne partielle a énergie fixe:

[f;-z]E = %{frz(lKo) + ﬁz(lDz) + fr2(1G4)} (4.4)

Table III
Valeurs de la constante f; calculées a partir du modéle et correspondant aux 17 déphasages expérimentaux
choisis. (&« = 11.0, r, = 0.20071 f)

E, lab
(MeV)

8 30 60 100 140 200 320

'K, 0.0748 | 0.0759 | 0.0769 | 0.0781 | 0.0793 | 0.0809 | 0.0785

Livermore| 'D, 0.0754 | 0.0756 | 0.0757 | 0.0757 | 0.0759 | 0.0774
'G, 0.0824 | 0.0826 | 0.0819 | 0.0799
Valeurs moyennes [ /*], 0.0787 | 0.0792 | 0.0795 | 0.0786

'K, 0.0749 | 0.0756 | 0.0768 | 0.0785 | 0.0800 | 0.0812 | 0.0790

Yale D, 0.0872 | 0.0812 | 0.0766 | 0.0750 | 0.0751 | 0.0798
1Gy 0.0779 | 0.0794 | 0.0869 | 0.0710
Valeurs moyennes [ f,*]; 0.0776 | 0.0781 | 0.0810 | 0.0766

L’adaptation des grandeurs ¢, Q, p,(—¢, —¢) du deuton aux valeurs expérimentales
respectives fournit trois valeurs différentes de la constante de couplage f

énergie de liaison e: f? = 0.0784
moment quadrupolaire Q: f? = 0.0782 (4.5)
portée effective p,: f* = 0.0789
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Pour le calcul de 'S, 4 énergie zéro?), on détermine la constante de couplage qui fixe
la portée effective [25] p, = 2.84 + 0.003 f. On obtient dans ce cas:

2 = 0.0740 (4.6)

L’ensemble des valeurs (Table III (4.5 et 4.6)) fournit, pour chacune des analyses
expérimentales de Livermore et de Yale, une valeur moyenne et un écart quadratique.

Livermore: {f?> = 0.0780  Af? = 0.0025 4.7)
Yale: (f2 = 00784 Af? = 0.0038 4.8)

Ce résultat intéressant (on notera aussi la remarquable coincidence des valeurs
moyennes [ f2] (4.4) associées aux analyses faites 4 une seule énergie) peut donner
lieu a la critique suivante: il est essentiellement tributaire du choix des valeurs fixes
o = 11etr, = 0.20071 f choisies a partir du deuton. Que devient-il si I’on varie ces
paramétres ? Pour y répondre nous avons élargi encore une fois notre recherche. Nous
avons choisi une grille de valeurs « et ., et nous avons répété le calcul précédent pour
chaque couple « et r,: détermination des valeurs f,*> pour chacune des 21 mesures
individuelles, calcul de la valeur moyenne, calcul de I’écart quadratique. On obtient
ainsi une grille de valeurs moyennes et d’écarts quadratiques donnés en fonction des
deux parametres « et r,

SDr) A ) (4.9)

La section suivante est réservée a I’exposé des résultats et a leur discussion.

5. Résultats et conclusions

On a réalisé une explorarion étendue de { /> et de Af;? en fonction des deux
parametres a et r, qui caractérisent le ceeur dans notre modéle. Le but était de con-
stater I’existence d’un minimum de Af;?, en fonction de « et r,, de le localiser et d’en
étudier le voisinage.

Afin de tenir compte des analyses différentes de Livermore et de Yale, établies a
partir des données expérimentales [2, 3], il nous a paru nécessaire de réaliser deux
grilles indépendantes, I’'une pour Livermore (Table V), I’autre pour Yale (Table V),
que I’on trouve ci-dessous et qui servent de base a nos conclusions.

Pour chaque couple de valeurs « et r,, on a indiqué: la valeur moyenne < f?) et
’écart quadratique Af,> correspondant (calculés & partir des 21 données des analyses
de Livermore ou de Yale). On a ajouté ’erreur relative de Af;> en %,.

On constate d’abord qu’il existe un minimum de ’erreur relative pour chacune
des deux analyses. Ce qui est surprenant, c’est que la position de ce minimum est la
méme pour ’analyse de Livermore et pour celle de Yale. De plus, bien que les écarts
quadratiques différent pour les deux versions, les deux surfaces Af?> possédent la
méme structure. Enfin, les valeurs moyennes < f*> aux environs du minimum sont
pratiquement les mémes et surtout ces valeurs recouvrent les valeurs usuelles de f>
fournies par la diffusion pion-nucléon et les déphasages périphériques [2, 5, 26].

Pour chacune des deux grilles, on a déterminé par interpolation quadratique les
coordonnées du minimum ainsi que les valeurs correspondantes de { /> et de Af;?, et
on a calculé aux environs du minimum une valeur plus précise de { f*>:

%)  Diffusion n—n.
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Position et caractéristiques du minimum de la grille de Livermore

a = 10.8 {FE> = 0.0783

r.=0.19f Af? = 0.0025 (5.1)
Position et caractéristiques du minimum de la grille de Yale '

o= 10.8 {fE = 0.0788

r.=019f Af? = 0.0038 (5.2)
Valeur particuliére de < f;*> aux environs du minimum

a = 10.5 (A = 0.0785

r. = 0.17214 Af? = 0.0024 (353)

Ainsi, malgré les différences parfois sensibles des deux versions de Livermore et
de Yale, leur analyse a I’aide de notre modele conduit aux mémes valeurs < /;*>_., ,
Opin € (7. )min €t confirme les déterminations obtenues a I’aide du deuton. De plus,
I’écart quadratique aux environs du minimum (3.2%, pour Livermore, 4.8% pour
Yale) parait valider ’hypothése émise a la section 4: le modéle coordonne les données
analytiques de Livermore ou de Yale de maniére suffisamment précise pour que I’on
puisse utiliser chacune de ces données individuelles pour déterminer la constante de
couplage renormalisée /2. La publication prochaine d’une analyse plus étendue,
relative & ’ensemble des données des singulets et triplets pairs (L pair, S = 0, 1)

Table IV

Valeurs moyennes { f;) et écarts quadratiques Af? calculés a partir du modéle et a I'aide de I’analyse de
Livermore
r{f) 9 10 11 12
0.08643 ?5088% + 0.0047
0.11500 ?5017% + 0.0040
0.14357 ?5"_)58%5; + 0.0047 ?3987;’(; + 0.0044
0.17214 (()5?28% + 0.0026 ?7037?; + 0.0053
0.20071 ?90_,?51) + 0.0082 ?3927%9) + 0.0025
0.22928 ?7018j‘; + 0.0059 ?4(.)57%9; + 0.0034
0.25786 ?6028%3 + 0.0050
0.28643 ?5097%(; + 0.0047
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Table V

Valeurs moyennes { /) et écarts quadratiques Af;> calculés & partir du modéle et a I'aide de I’analyse de
Yale

o
re (f) 9 10 11 12
0.08643 (()603}6) + 0.0056
0.11500 ?6(.)47029) + 0.0050
0.14357 ?6-‘_)88;)3) + 0.0057 ?7.9/07)54 + 0.0053
0.17214 ?4(,)78%3 + 0.0038 &9/:)34 + 0.0059
0.20071 ?908855) + 0.0087 ?4087% + 0.0038
0.22928 l()’}%s;; + 0.0066 ?5967;’3; + 0.0043
0.25786 ?7.9/08)15 + 0.0057
0.28643 ?(g% + 0.0054

confirme ce résultat (sur la base de 50 a 60 données tirées de I’expérience et pour le
méme domaine d’énergie allant de 0 a 320 MeV ;).

Au vu des résultats précédents (5.1, 5.2 et 5.3), on pourrait étre tenté d’attribuer
au couple (a),;, et (r.)..;, une réalité objective. Nous ne pensons pas qu’il faille franchir
ce pas. L’ensemble (), et (r.),;, constitue sans doute une représentation adéquate
du phénomene ‘cceur nucléonique’ pour les ondes partielles a L pairs et dans I'inter-
valle d’énergie utilisé. Mais la structure déja explorée du nucléon s’est révélée beau-
coup trop complexe pour que I’on puisse se contenter d’une simplification aussi
draconienne.

On peut critiquer le postulat d’équiprobabilité que nous avons appliqué aux
différentes données des deux analyses de Livermore ou de Yale. On sait bien que les
mesures du deuton, comme aussi certains déphasages sont connus avec une précision
beaucoup plus grande que d’autres que nous utilisons. Un examen approfondi a
confirmé ce qui semble plausible: des moyennes pondérées appliquées aux différentes
mesures ne donneraient pas des résultats sensiblement différents de ceux qui pré-
cedent. Notre calcul statistique qui pénalise les bonnes mesures a pour effet d’exa-
gérer Af,%.

En ce qui concerne les éléments phénoménologiques, on peut les classer en deux
groupes: A) ceux qui influencent de maniére décisive les résultats, B) ceux dont la
variation ne modifie pratiquement pas ces mémes résultats.

A. Deux hypothéses phénoménologiques se réveélent indispensables: la des-
cription du cceur a I’aide des deux parameétres a et r, (r, < 0.2 f) et 1a loi de variation
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de f;? en fonction de I'énergie Eqy (2.23). (Si I’on admet une valeur £ indépendante
de Ecy, la représentation des données analytiques de Livermore ou de Yale nécessite
plusieurs paramétres supplémentaires [27].) A notre avis, il ne faut pas interpréter ce
fait en attribuant a (2.23) un contenu définitif. La variation de f? en fonction de Egy,
représente probablement, de maniére simplifiée mais efficace, les corrections rela-
tivistes dans le domaine des énergies envisagées. '

B. Parmi les facteurs phénoménologiques moins importants nous. citerons:

1) la valeur de E, (2.6) (il s’est avéré que le modeéle ne donne pas des résultats
sensiblement différents lorsqu’on varie E, de 10%).

2) le choix pour la masse des mésons 7 de la valeur moyenne des masses des trois
mésons 7.

3) Iintroduction explicite de la masse A(1236) dans le calcul des masses réduites
M* de I’équation de Schrédinger (3.4).

Quant aux états isobariques construits a ’aide de A(1236), il semble que ce soit
leur virtualité qui est importante. Dans (I), lors de I’étude du singulet 'S, on avait
négligé les états isobariques AA, ne retenant que les états d’excitation NA. Cette
recherche a montré qu’une telle simplification entrainait des différences numériques
non négligeables.

Il convient d’insister sur la nécessité d’appliquer aux systémes de deux nucléons
envisagés ici des algorithmes basés sur le schéma de Rarita-Schwinger. Une longue
expérience nous a prouvé qu’un calcul de perturbations appliqué aux isobares conduit
souvent a des résultats erronés. Les algorithmes mis au point pour calculer les dif-
féerents résultats de ce travail sont totalement différents de ceux de (I). Ils feront
’objet d’une publication séparée.

Si I'on considére enfin les nombreuses recherches expérimentales destinées a
¢tablir I'existence d’états AA dans le deuton, il ressort de nos calculs (Table I) que
ces états possedent une probabilité totale inférieure a 0.7%,. De plus, ils sont fortement
diversifiés. Leur détection expérimentale est probablement plus délicate qu’on ne
’avait prévu.

En conclusion, il nous parait nécessaire d’insister éncore une fois sur le coté
inattendu des résultats. Une recherche plus étendue touchant 'ensemble des états
singulets et triplets pairs (S = 0, 1; L pair), avec 50 4 60 mesures indépendantes, les a
confirmés. Le modéle ne comprend que 3 paramétres dont f2. La coordination qu’il
¢tablit entre toutes les mesures a L pair peut difficilement étre attribuée au hasard.
Cependant, nous n’avons pas trouvé jusqu’ici de justification théorique entiérement
satisfaisante a cet état de fait, si peu conforme a la réalité complexe du nucléon.

Le Dr. Achour, directeur technique du Centre de calcul de Fribourg, nous a
souvent aidés de ses conseils, ce dont nous le remercions vivement. -
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