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On the description of classical Einstein
relativistic two-particle systems

by Terje Aaberge

Départment de Physique Théorique, Université de Genéve, CH-1211 Geneve 4, Suisse

(20. IX. 1977)

Abstract. We start by considering the system of one free particle, and give a sufficiently general
description of this system to include the center of mass of systems of several particles. We then pass to the
system of two particles. We define the coordinates separating the center of mass and the internal system,
and we discuss the dynamics. Finally we outline the construction of a more restrictive two-particle theory,
and study some consequences of the definition of a particle in an external field as a two-particle system
in the limit where the mass of one of the particles becomes infinite.

1. Introduction

An attempt to construct a general Hamiltonian formalism on the theory of
Special Relativity encounters two obstacles. The first of these is related to the fact
that the Hamiltonian formalism for the description of several particles presupposes
the existence of a universal dynamical time serving as a parameter measuring the
evolution of and correlation between the states of the individual particles. The second
problem concerns the separation of coordinates into center of mass coordinates and
internal coordinates for systems of two or more particles, and entails a reconciliation
of the linear structure imposed by the conservation of ‘four-momentum’ law with
the hyperbolic structure of the Einstein addition of velocity law.

The first difficulty is disposed of by the introduction of invariant time. Such a
time concept is, in fact, available in the theory of Special Relativity if one accepts to
take as invariant time the time of what Einstein calls the stationary systems [1, 2].
To avoid the second problem we have chosen a state-space which is sufficiently big to
accept a linear (affine) action of the inhomogeneous Lorentz group. Certainly, in this
way, ‘states’ are introduced which are not physical, and to get rid of them we postulate
constraints. Throughout, definitions are chosen such that we, in special cases, obtain
known results. Moreover, the theory is formulated in such a way that the Galilean
theory is obtained in the limit where ¢ — 0.

The coordinates used throughout, are not the usual coordinates of Minkowski
space-time and momentum-space. In fact, it turns out that there exist other sets of
coordinates, which are more appropriate for the discussion of the particle dynamics,
in the sense that the basic definitions are more easily established and interpreted in
these coordinates.

Before passing to the description of the one-particle system, we thus consider the
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relation between the usual coordinates (a¢*, b*) = usual (four-momentum, four-
position)'), and a set of coordinates which will be basic in the further description
(p*, ¢"*) and which will be denoted (four-‘momentum’, four-‘position’).

In terms of the coordinates (a”, b*) the state-space chosen is characterized by,

Q = {(a* b*, 1) e R’ | ¢°* — 2> > 0 and ¢° > 0}

where 7 denotes the invariant time. The action of the proper Lorentz group SO(3, 1)
on Q is defined by

a* — A0, uta’
b* — A0, u)ib®

THT

where A is the usual representation of SO(3, 1) on IR*, isometric with respect to the
Minkowski-metric

~1.0 0 0
0100
gou=_] 00 10
000 1

The coordinates (p*, ¢*, t) are defined by the diffeomorphism
(alu, bu’ T) = (pu’ qﬂ’ t)
with
(p°, p) = (@° — mc, a)
(@°, @) = (b° — ¢, b)
=7

m 1s a constant, the ‘kinematical’ mass of the particle.

The above action of SO(3, 1) is easily transformed to the coordinates (p*, ¢*, ?);
we obtain

pt— A0, u)ip* + mv*(u)
q" — A0, w)tg" + tv*(u)
t—1t

v*(u) = (c(y — 1), yw), y=(1 — u?-/cz)—l/z

is what appears in this theory as the four-velocity of a free ‘elementary’ (4 = 0)
particle moving with velocity u (equation 9).

2. The one-particle system

A classical Einstein relativistic particle of kinematical mass m > 0, is a physical
system associated [5].

') For an alternative formulation of a relativistic dynamics employing the coordinates (a*, b*, 1), see
[3,4].
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(1) the state space
Q={(p" ¢ DeR’|(p° +mc)> —p*> >0andp® > —mc} =T x R
and phase space:
(I, = dp, A dg").
(i) the observables ‘momentum’, ‘position’ and time defined by the following
functions on Q
prp* ¢ 1) = p*
q“(p*, ¢*, 1) = ¢"
Hp's g% ) =
(i) and the following action of the kinematical symmetry group
G =S0(@3,1) x R
the Lorentz transformations {(0, u)}:

p* — A0, u)ip® + muv*(u)

g" — A0, w)tg" + tw*(u)
t—t (2)

the ‘spatial’ translations {a*}:

(D

Pl pt
qu — qu + a*
€)

t—1

the time translations {7} :
P pt
q“—q"
t—>t + 1. (4)
There also exists another set of ‘natural’ symplectic coordinates on I". These
coordinates will be denoted ()*, x*), and they appear in the following construction.
Consider the function

1
Am(p*, q*, t) = ;\/(p° + me)? —p2 —m

on I'. It is Lorentz-invariant, because the form

(p° +me)* — p?
is invariant under the given action (2) of G, and its interpretation follows from the
observation that Amc is the p° of the center of mass frame of reference of the particle,

1.e.
(Amc, 0) = L™ (p*Yep* + mw*(p*)

for

By — pe B(pBY — gl pc ).
L(p*) A(p"-l—mc) and wH(p*) =  +me
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The coordinates (y, x) are defined by the symplectomorphism?)

p’—=>y° = Am
p—y=p

/.0 2 2
o o_\/(p + me) - P 5 5
q° = x 5 me q°c (5)
VX =0

whose inverse is

yor>p° = \/pz + (Am + m)?c®> — mc

Y—~q=p
o o /P (Am +m)ietx°
X =q = =
(Am + m)c c
P 0
—x +
R s (Am +m)c2x

One should notice that the form of x* is partly determined by the choice of y* and the
condition that the application should be a symplectomorphism, i.e.

w(p*, 4") = w()*, x*).

The action (iii) of SO(3, 1) can easily be transferred to the coordinates (y, x).
On y it is given by

Am — Am

. . (1 v .
Pl p't = A, u), (Z» \/pz + (Am + m)*c®> — m, p) + myu';

and x* transforms according to

x* > Z(Am, p, A(0, w));x” + 9*(Am, p, u)t (6)
for

X(Am, p, A(0)); = AO);

X(Am, p, A(w))2 = 1

Am +m ut

P2+ (dm +mP ¢
2(Am, p, A(w)), =0

Z(Am, p, Aw)); =

. . 1w p'w
Z(Am, p, A(w))}, = &' + —
(Arm, p, A(W); SRR e c\/FZ + (Am + m)?c?

) In the quantum case x turns out to be the Newton-Wigner position operator.
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and

(Am + m)(y — 1)c —p'(y — 1) o yu)-

T“(Am, p, u) = ’
Ham, p, 0 (\/p’2 + (Am + m)*? /p? + (Am +m)*c?

Moreover, the translations ¢* € R* read

. . (Am + m)c? .

x° = x° + > > 4
\/p + (Am + m)“c

X—>X +a— P P

a
\/pz + (Am + m)?c?

The dynamics of a one-particle system is by assumption described by the
Hamilton equations

p,u = _aqu%(pua qﬂ’ t)
g" = op, A (p*, g, 1)

The Hamiltonian 2 moreover, is assumed to be of such a form that the covariance
condition

¢"(A(0, w)[p* + mv*(w), A0, w)iq*, 1) = A6, uyiq*(p", ¢", 1) + v* (w)

is satisfied. In the case of a free particle (0g,# = 0) thus, the most general Hamilton-
ian satisfying the covariance condition is of the form
B p _P 'p i Bl
H(p" q" ) === T f(Am(p", 4", 1)

where fis an arbitrary differentiable function of Am, i.e. foAm is a Lorentz invariant
function of p*. We will assume that f = # is a constant (> —3mc?) denoting the
internal energy of the system. Furthermore, we postulate a relation expressed by the
constraint

H = p° ' (7)

1.e.

p° = /p* +2mh + m?:c* — me

which couple the center of mass of the particle with its internal ‘structure’ in such a
way as to satisfy the Einstein law

ey = Amc?

where Am is interpreted as the mass defect of the center of mass, and &, denotes the
energy of the center of mass frame,

Ecn = H (1% 0, 1).

In fact, in the coordinates (x, y) the Hamiltonian reads

mzcz

A
H(Am, p, x*) = ¢i/p* + (Am + m)*c — (Am + m)c? — —5,.— T4
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while the constraint (7) take the form

Am?* 4
Am + Yo = 'C—j‘ (8)

With the given choice for a Hamiltonian, the equations of motion for a free
particle are

=2
o0x
oA
D — _——_—0
P 0x
. o Am +m , Am + m "
x° = — = ¢t — e
dAm m VP +(Am 4 m)*c?
% — oH pc

op  /p® + (Am + m)3c?,
Thus, parametrizing the solutions by the velocity u, we obtain

Am = m(/1 + 24/mc* —1)

p=(Am +myyn, y=(1— u?/c?)"1?

o y—1  Am\ ,
=|f— —
X ( ; )c(t to)

X =u(t — t,) +a;
or in the coordinates (p, q),

P = (Am + m)(c(y — 1), yw) + (Amc, 0)

q' = (((1 + %) y — 1) e, (1 + —Anl?) yu) + (0, a) 9)

Moreover, the total energy is

2

Am + m)c?
Ly Bm et

~ 2m 1 — u?/c?

Notice that x in the above solutions does not depend on m and Am, but that q does.

According to this description, it seems reasonable to consider x as the observable
describing the position of the particle in real space. This follows from the form of the
solutions as well as from the covariance of x, which transforms by a ‘Lorentz—
Fitzgerald’ contraction under a special Lorentz transformation. In fact, let x = a
denote the position of a particle at rest; then by (6),

, Y a-u
X=X =a— ———utuw

y—1 ¢
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or

x'=a.1 —u?/c? +wt

X' = a
is the position in a frame moving with velocity u. Notice that since £(Am, p, A(n)), =
0, x transforms independently of x°. The coordinates ¢g* moreover, are by assumption
the coordinates in which the interactions are local.

3. The two-particle system

A system of two particles of restmasses m, > 0 and m, > 0 is by hypothesis
described by the state-space

Q= {(pt.qt.05. 45, 0T, xT, xR} =T, xR,

The observables momentum and position for the individual particles are defined as
for the one-particle system (1). Moreover, the action of G on Q is given for the
individual particles as in (2) to (5).

A system of coordinates which will be useful in the description of such a com-
posite system are the ‘barycentric coordinates’ of the center of mass frame of reference.
These coordinates are defined by the application

(PY. 91, P5. q5) — (P, Q% P", ¢*)

where P, Q are the coordinates describing the center of mass (m, > m,)

Pt =pi +rh
1
F‘z [ +m M
0 m—"—l * m, (my g4 292>

+ My pye — myp1)L(PY +P3)LT (P + pDPNa: — 4)
and (p, q) are the coordinates which describe the internal system

my p, — m, Py
m, +m,

p* =L (pi +p3),

g = L™ (pi +py)igs — q})

for

Pc
b4ty = L(P*) = A ——C
L+ ) = 1 = A7)

L* =3 L.

4

The application thus defined is a symplectomorphism with respect to the
canonical symplectic form

® = dp,, A dg{ + dp,, A dqh
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on I'|,. The inverse is given by

| — s P* — L(P")*pY
Py .t 15 (P*)op
m
qf = Q" + p, L™ (P)SL(P*)P'ig" — ——2— L(P")q"
m; +m,
" : (10)
4= "2  pr oy [(PH)EpY
Ps m, + m, (P*)sp
m
¢4 = Q" +p, L™ (P L(P*)' g — ——— L(P*)!q".

The proof of this proposition follows from the way this application is constructed.
In fact, I',, is naturally identified with the cotangent bundle 7*M of the momentum
space

M = {(p{,p5)eR®| (p} +myc) —p? >0 and p} > — me, i=1,2}
and the symplectic form @ = —do where

0 = gy, dpy t 4, dph.
Moreover, the application

¢:(p4, Ps) = (P, p¥)

is a diffeomorphism. In fact, ¢ is the composite map

no_ i
m, p, m, p
m; +m,

(pﬁ',p’i)+—>(p‘{ + ph,

yPs mzpi)

H>(p‘i +p4, L™ (p} + 14 T
1 2

Thus, introducing the notation

4+
w' = pi, wt = ph

— d+p _ 0
x* = g, x*TH =44
ot = P“, U4+'“ — pu
W= =gt

b

— — v — v

uu - plu - gavpl= u4+,u - g,uvp29etc'

for u = 0, 1, 2, 3, we can write

v = ¢
W= ¢ %0?) a=0,1,2,...,7

o = X, du*
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Moreover, with this notation,

YO, ) = ( o )(qba(u“))xﬁ

X%, %) = ( "’”) @),
and'we may compute

a -1
Y, (U, x*) dv*(u*) = x* ( gb” )("’“(U“)) dj(u’)

= ( ¥y )(¢a(m))( ‘i’a) i
= _x'B (au” ) (u"’) du’

r— &
= x, du’,

which proves that our application is a symplectomorphism.
The transformation properties of the coordinates (P, Q, p, ¢q) under the inhomo-
geneous Lorentz-group SO(1, 3) x R* are easily determined,

Pt A0, u)i P* + (m; + m,)v*(u)
' =A@, ) p
q" — A, ) q"
where 0, = 6,,(0, u, P*) is the angle of the rotation
A@,)y = L™HA@®, u)y P* + (m; + my)o"(W); A0, w); L(P*).

The transformation law for Q* is somewhat more complicated and we will not write
down the explicite expression for the transformed of Q*; we notice however, that it is
linear in Q* and ¢*.

It follows thus that the center of mass is defined in much the same way?) as the
particle of restmass M = m,; + m, ; in fact,

(P° + Mc)> — P2 = (AM + M)*c* >0 and P°> — Mc

onI';, and 0" € R*. We can thus define (X, Y)-coordinates for the center of mass in
the same way as for the one-particle system (5), and determine their transformation
properties. It turns out that the transformation properties of X are more complicated
in this case than in the one-particle case. Without giving the explicit expression we
notice only that X transforms independently of X° and ¢°.

The dynamics of a two-particle system is by assumption described by the
Hamilton equations. Moreover, we consider Hamiltonians of the form

PEP
%(Pua Q”:p'ua q t) - 2M# i3 é(p‘u ﬂa t) (11)

*)  Except for the transformation properties of Q". The transformed of Q" depends on the internal
coordinates.
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and impose the constraint

a( P, O, p*, ¢, t) = H (P*, Q" p*, ¢", t) — P°c = 0, (12)
i.e.
AM? 7
AM + = —.
2M c?

We also postulate a second constraint
ml - m2 ﬂ(p#’ q#a t)
Mc . J1 +24(p*, g%, 1)/ Mc?

Notice that while (12) couple the motion of the center of mass to the internal system,
(13) is a constraint on the internal degrees of freedom only.

The form (11) of the Hamiltonian follows from the covariance conditions on the
motion of the individual particles, and the assumption that the center of mass behaves
as a free particle and moreover, does not influence the motion of the internal system.
The only a priori conditions we have on the form of 4 however, is that it should be
invariant under rotations, and that in the case of no interaction,

u
”2":‘ + 4 +4,

= 0.

B(P", O, p*, ¢*, t) = p° —

Ap*, 44 1) =

where m = mm,/(m, + m,) and %4,, %, are the constants denoting the internal
energies. Thus in this case,

PP, 3 p"‘pﬂ

P® O". p*. g* e
L%( ’Q’p’q’t) 2M zm

+ 4, 4,

or,

PP, 4 P5Ps,

+ 4, +4,.
2m, 2m, v

H(pL, gy, P, 45,0 =

Moreover, the constraints (12) and (13) imply the constraints

Ami 4
Ropi, b, o i
A 2m,
Am3 4
R, s o s
" T o, T &

In fact, the form of the constraints (12) and (13) has been suggested by the free
particle case.
A class of internal Hamiltonians to consider are those of the form

(p* — A*(q¢", 0)(p, — A,(4", 1)

+ V(g", o).
. Vig", t)

’g(Pu, q’ua t) =

In particular,

P — A" 0?  (p° — V(g 1)
2m 2m

(", 4", 1) = + Vigh 0 (14)
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is assumed to describe a system of two charged particles interacting via the electro-
magnetic field (V(¢° + ct, q), A(¢° + ct, q) while Hamiltonians of the form

_ 2 o2
(P — A@Q D))" P~ Vi, 1)
2m 2m

02

AP q, 1) =

(15)

J4
= h(p,q, 1) — T

relates to a Galilean model described by 4 an Einsteinian model.

4. The restricted two-particle theory

When o and g are constants of motion (6¢4°%4 = 0, 0,4 = 0), it is sufficient to
impose the constraints on the initial conditions. In this case thus, we can formulate
an alternative and in many respects equivalent classical theory by the following
construction.

In terms of the coordinates (Y*, X*, p*, g"), the phase space (I';,, w) is char-
acterized by

1
Ty, = {(Y“, X' P4 ¢ DeRC[AM > — M and - (AM + M)’

p__up” and "L (AM oy _ M+ M
~ o >0 M(A + M)c > p° > M(A )¢

w=dY, ndX" +dp, n dg".

Now, Y* X, p*, q transforms independently of X° and ¢° under an inhomogeneous
Lorentz transformation. Thus, the quotient I',,/~ obtained by identifying points
which differ only with respect to the values of the coordinates X° and ¢° is Lorentz
invariant. Moreover, by introducing the constraints & = 0 and §# = 0 we obtain a
Lorentz invariant phase space (I',,, @),
1_‘12 = {(Y: X, pa q) € IRIZ}
o =dY;, n dX' +dp, A dg

1

on which the dynamics is described by Hamiltonians of the form

A Y, X,p, q) = ¢i/P? + (AM(p, @) + M)*c? — Mc?

\yhere AM(p, q) is determined by the constraints a« = 0, f = 0. For example (15)
gives

AM(p, q)
4mh m M — 2m 4p? \ 12 =12
=M|[][]1] 2—(1(1 —_——h + —— —1 -1}
(( Tme T M(( o " Mzc“)
In this formalism however, any trace of the one-particle coordinates are lost,

except in the free case. Moreover, it becomes impossible to give explicitly the action
of SO(3,1) on the internal coordinates; it becomes highly non-linear.
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The restricted theory is equivalent to the theory constructed by Bakjamin and
Thomas [6].

5. Particle in an external field

A particle in an external field is by definition a system of two ‘particles’ in the
limit where the mass of one of the ‘particles’ (the ‘field-generating device’) becomes
infinite.

Consider the description of the two-particle system in the coordinates (Y*, X*,
P, ¢"). The objects p*, g*, AM, X and # are uneffected by the process of taking the
limitm, — oo ;moreover, theobjects P/M, o, f§, Pc/(P° + Mc)are well-defined in this
limit,

P
lim ﬂ =TU, I'=(1 — Uz/cz)—uz

) 7%
lim azoc’zAM—(—:i
) A
lim g =8 =p°— —
ny— © ¢
) P

Im ——=U

mi—wo P+ M¢ a
A particle in an external field is thus described by the state-space
Q = {(p* ¢", 1) e R®}
on which the inhomogeneous Lorentz group acts by the rotations 6,, defined by the

velocity U of the center of mass, i.e. the field-generating device.

The dynamics is described by the Hamiltonian #4, and the motion is submitted
to the constraint

When o' is a constant of motion, we can consider the corresponding restricted
theory, and introduce the constraint o' = 0 in the Hamiltonian. For # of the form
(14), this gives

%= c/(p* — A@@)? + m*3 — me* + V(g).

Remark

The theories constructed in the last two paragraphs are not subtheories of the
original theory, but appear as independent theories, some of whose predictions co-
incide with those of the original theory. In particular, one should notice that while
the position q of the original theory is a space-time position, the q in the restricted
theories is a Newton—Wigner-like position.
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