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New free energy and susceptibility inequalities for
the Ising-, XY- and Heisenberg-models and

the problem of phase transition

by N. Szabo

Département de Physique Théorique, Université de Genève, 1211 Genève 4 - Switzerland

(10.VHI.1977, rev. 10.X.1977)

Abstract. For the rf-dimensional spin j Ising free energy and susceptibility upper and lower bounds
have been constructed in the case of ferromagnetic and antiferromagnetic, nearest neighbour coupling.
In the antiferromagnetic case the bounds belonging to the free energy or partition function are generated
with help of the related chemical potential In (ZA/ZA_ x). These bounds prove the existence of the free
energy of antiferromagnetic type in the thermodynamic limit. If the coupling is the ferromagnetic type,
then the rf-dimensional free energy or susceptibility is bounded from above or from below by lower
dimensional ones. For dimensionality d > 2 the bounds are also 2-dimensional, which prove the existence
of finite magnetization (broken phase) below the transition temperature and that by Szegö-Kac theorem.
These results have been applied to the rf-dimensional, quantum Heisenberg- and AT-models and to the
rf-dimensional AT-model with homogeneous or inhomogeneous magnetic field in the z-direction. Assuming
ferromagnetic coupling, the existence of finite magnetization is proved in these d > 2-dimensional quantum
models.

1. Introduction

The partition function ZA of the Ising model can be handled also by the standard
cluster integral treatment of the imperfect gas. To obtain an alternating series of
upper and lower bounds for the free energy of the Ising model with antiferro coupling
one must make purely mathematical considerations for the expansion of ZA. The
mathematical tool [1] to the constructions of the bounds is given by the application
of Lieb's inequalities [2] to the Ising model. The interest in the bounds lies in the fact
that they allow to make strict conditions for continuous phase transition in the
quantum mechanical XT-model with inhomogeneous magnetic field in the z-
direction [3].

The mathematical preliminaries to the program can be formulated in a lemma :

Let/fc be a set of real functions, k 1, 2,..., 7Y such that 0 > fk > — 1 for all k.
If we define the function

I(s) ft (1 + sfk) £ s"An({fn}) (1.1)
k=l n=0

with

A,({/„})= E 4-••/*.. ^o i (1-2)
{ki,..,k„ì

where we sum over all distinct «-tuples kx,..., kn.
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One has

Lemma 1.1. IfO < s < 1 then holds

M

I(s) $ £ s»An({fk}) (1.3)
n=0

where 0 < M < N and the > sign is validfor odd M and < sign for even M.

The proof of this Lemma is given in references [1,2] and will not be considered here,
but we will apply directly the theorem to the problems studied in the next section.

If the/t — s in equation (1.1) are all positive semidefinite then all the inequalities
in (1.3) become lower bounds. This situation is also of interest for the Ising model
with ferromagnetic coupling. In this case one can derive lower bounds for the
partition function and susceptibility. The lower bound to the af-dimensional partition
function is given by lower dimensional ones, which is the case also for the susceptibility.

Similar considerations have been made by Guerra, Rosen and Simon [4], see
also reference [5]. In this latter case, upper bounds to the partition function and to
the susceptibilities can be constructed with help of the Cauchy-Schwarz inequalities.
These bounds are given also by lower dimensional systems.

Let us introduce here the ö?-dimensional, infinite lattice by Zd and a bounded
region in Zd by Adi, dx < d. Further, the configuration energy HAd of the Ising
model with constant, nearest neighbour coupling is defined as

#Ad i E vu[2nk- IJ[2«,- 1,], (1.4a)
{k,l)CAd

and

(v > 0 n.n. antiferro-couplingl „
vki { n c ,• }onZd (1.4b)

(v < 0 n.n. ferro-couphng J

in the region Ad-nk takes the values {0, 1} for all ke Ad. The lattice spin ak on site k
is defined by

°k 2nk - \k. (1.5)

The configurational energy equation (1.4) has a term which is bilinear in nk and is the
interesting one for our considerations in the next sections. In the equations (1.4 and
1.5) the indices k and / denote rf-dimensional vectors: k {kx,k2,..., kd). The
unit cell of Zd is a hypercube; along the edges of the unit cell the interaction strengths
are equal. We assume periodic boundary condition on Ad, which are essential in the
third and fourth section.

2. Upper and lower bounds for the partition function with v > 0

In the bounded region Ad we define the partition function of HAd equation (1.4)
by

ZAd 2"*« Tr {exp (- /?77A°d)/Ad (nx,..., nAa)} (2.1)

where
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K ì E vkl[_\k-Ank], (vkl>0), (2.2)
{k.UeMd)

/A>lJ--,«Ad)= û [!+/«]¦ (2-3)
{k,l)EA(d)

The/W are the Mayer functions belonging to the model equation (1.4) :

fu exp [-4/tou/itn,] - 1. (2.4)

In view of the definition equation (2.1), the free energies PAd and FAd_ x fulfil the
relation

exp[-/?(FA -F. J] (2.5)

for large A. In the circular bracket of the above equation (2.5), the difference
FAd — FA _ x corresponds a chemical potential of the system in view of

d^Ad _ ,• F\d P\d-A
dA,

~~ (2.6)

Because Ad is large, A corresponds to the one of FAd_ x. On the other hand, one has

^a„= E lF*-Fx-iï, x,AdCZ". (2.7)
x=l

Our aim is to construct upper and lower bounds to the free energy per site

/= lim xF^
by virtue of equations (2.5-2.7). Let us at first collect some results concerning the
partition function and free energy :

Theorem 2.1. If the coupling constant of HA vkl > 0 equation (1.4), then Ht
relatedpartition function ZAdhas the alternating boundproperties

^Ad < Zfia-l

ZAd > Ch(ßzv)ZAd_x -|exp fjß(fz - 2)v]Sh(2ßv)ZAd_2

'Aj

(2.8a)

(2.8b)

ZAd < Ch(ßzv)Z.Ad-1 exp [J5(|z - 2)v]Sh(2ßv)ZAd_2

+ y exp [ß& - A)v]Sh2(2ßv)ZAd_3 (2.8c)

etc.

(z: number ofnearest neighbours) ; further the free energy per sitef limAd_00 \/Ad
FAa satisfies

In '— /— _ Ì
2a V Aa2 a

<ßf<ln b^

Ya
/_*ì_r
4a2 a

(2.9)
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for certain parameter values ßv, ß [_kBT]~1. a andb are:

a | exp [j8(§ z - 2)v]Sh(lßv) and è CA(jßzt;).

The alternating bound property inequalities (2.8) can be established as follows:

From the definition equation (2.3) one has

/Ad(nj,...,«Ad) JJ (1 +/iJ)/Ad-i(«2,...,«Ad). (2.10)
3=2

Since /Ad_A > 0 for A 0, 1, 2,.. Ad — 1 and/, satisfies the inequality

0>/y>-l, (2.11)

then it follows by lemma 1.1

hd<hd-i (2.12a)

/Ad>(l+ I/ujv. (2.12b)

/ Ad Ad \
lAd< U + £flj+ IfIk fi, 7Ad-l

\ j=2 {W} /(tf> 7 Ad_1 (2.12c)

etc.

Multiplying equation (2.12a) with 2 Ad exp — ßHAd) and taking the trace over the
gained expression, one gets the inequality (2.8a). Similarly one gets

ZAd > 2-*«Tr {exp(-^//°d)/Ad_1} + 2"A*Tr {exp (-ßH°)zfX2IAd_2}
(2.13)

by inserting

/UVi>/»Vj (2-14)

into inequality (2.12b). Inequality (2.14) follows by inequalities (2.11-2.12a). The
inequality (2.13) immediately results from (2.8b). On the right hand side of inequality
(2.8c) the first two terms are derived along inequalities (2.12b-2.14), as we have done
for the inequality (2.8b). The last term of inequality (2.8c) is gained by the inequality

2-A*TrLp(-ßH°Ad)ZfXkfulAd-i\
1 {kl)

2-^Tr{exp(-^//°>(z - l)fX2fx3IAd.x}
< 2-A"Tr {exp(-jW/°d)z(z - l)/12/13/Ad-3} (2-15)

and the evaluation of the right hand side of equation (2.15) proves the inequality
(2.8c).

The second part of the Theorem 2.1, inequality (2.9) follows from the inequalities
(2.8b-2.8c). It holds
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1 >b?eF± — a "Ad-2 b exp
"Ad ^ — a exp 2Ä" (2.16a)

< b exp

+ 2 a2 exp

^ J
3

— a exp

/tev exp

VAd_

'A (2.16b)

by applying equations (2.5-2.6). The above inequality of second degree is solved
easily for the unknown variable

exp

One gets

In

~ßs-Y
JAd

2a
+ 'Aa2

dF
< ß -^ < In

JAd

b_

2a 'Aa2

From here the inequality (2.9) follows by integration over Ad

(2.17)

3. Bounds on the ferromagnetic partition function and susceptibility

The basis of Theorem 2.1 are the inequalities (2.12), which are a consequence
of the Lemma 1.1. As it has been pointed out in section 1, the upper bounds of
Lemma 1.1 change to lower ones, because/ > 0 for vu < 0.

This has the consequence that the inequalities equation (2.12) become lower
bounds,

^("^•••.«aJ > /Ad-l("2>-->«Ad)

'a>1> ••>»Ad) > f 1 + E/uj 7Ad-l («2'---."A,,)

7A>1>- • -, «Ad) > 1 + E/U + I/u/u) 4d-l(«2>- • ¦) nAd)

(3.1)

etc.

in the ferromagnetic case, which is on the other hand a consequence of equation
(2.10) and of the inequality

fki exp l-Aßvklnknt] - 1 > 0 (vkl < 0). (3.2)

From the above inequalities (3.1-3.2) it is clear that the partition function ZAd is
bounded from below by ZAd_n, Ad> n > 1. So far the dimensionality of the system
has not been considered explicitly; we will take this into account now. The model (1.4)
with vkl < 0 is defined in the bounded region Ad <= Z". The hypercube Ad has a
hypersurface Ad_x.
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For the subspaces Adi and Adi with d dx + d2 the inequality (3.1) can be

generalized so that it has the consequences :

Theorem 3.1. Let Adi and Adi with dx d — 1 and d2 1 two bounded subsets

ofZd, so that Aj Ad_ x Ad <=. Zd. Then it holds

*Ad> fl^-tC/) (3-3)
7=1

where Nd is a lattice point in the dih one dimensional subspace with the cyclic boundary
condition Nd + \ \. Further, the partition function ZAd fulfils the inequalities

> (ZAd_,)A>(d) > (ZAdJ^^d-S- ¦ ¦ > (ZAi)-^.o>; (3.4)

and the d-dimensional susceptibility belonging to ZAd is bounded from below by a

sequence of lower dimensional susceptibilities, which belong to ZA and ZAi :

dhili \v)> (d- l)xd-x(qx \v)>(d- 2)xd_2(qx \v)> •¦¦> xYQi | »)¦ (3.5)

Xd(qx | v) is the l-dimensional Fourier-transform of

ß^k^d 0<ff(M2...M°W..*d)><i:
1

hili I v) t-EexP iiaiiRki-RhW<.ai.k1k2...kd)(J{hk2...kd)'>d (3.6)
/vt ti

where k and I are d-dimensional vectors as indicated, < • ¦ • }d a d-dimensional average
andß =\_kBTyl.

Special cases: Assuming A1 U) AX for ally 1,..., dthen the 3- and 4-dimen-
sional partition functions fulfil the inequalities

ZA3 > (ZA2)A' > (ZAi)A>, (3.7)

Zaa > (2A3)Al > (ZA2)A? > (ZAi)A? (3.8)

and the associated susceptibilities obey the relations

3z3(<7i I v) > 2x2(qx \ v) > Xl(qx I v), (3.9)

424tei I ») > 3^3foi I v) > 2x2(qx | v) > xx(qx I »). (3.10)

Proof: The assertion equation (3.3) can be established by splitting up the model
configuration energy equation (1.4) into two contributions:

#Ad - #A<- + HKl (3.11)

where //Ad-i and HAi are:

#a<-> I E «VrP"* - lt,][2«(, - 1,,], (3.12a)
k',V

^a. i E «Vi-P«*» - lt»][2«r - lr] (3.12b)
k", I"
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withfc' [kx,...,kd_x,kd /,},/' {lx,...,ld_x,ld kd},k" {kx lx,...,
kd-i — h-D kd} and /" {/t kx,..., ld_x kd_x, ld}. The above equations
(3.12) contain constant nearest neighbour coupling.

Now we can define /Ai, belonging to HAi, by the expression :

/a'= EI (1 +/*.,.) >1. (3.13)
{k'Ti

From equations (3.11-3.12) it follows that /Ad can be expressed as a product from
/Ai andT^-i:

/a^Wa'-l (3-14)

where /Ad-, is defined similarly as /A, equation (3.13) by HAd-,. The definition
equation (3.12) and the fact/k„,„ > 0 tells us:

'Ad>/Ad-f (3-15)

Note that HAl and HAd-, do depend on the volume A,, as HAd does. Therefore, this is
also the case for /A, and /Ad-i. It follows directly from the above equations that the
inequality

Tr {exp (-ßHAd)} > Tr {exp (-ßHAd_x)} (3.16)

is satisfied. Now i/Adl resp. HAi contain 1- resp. (d - l)-dimensional dummy
summation. Therefore, the first inequality of (3.4) follows: ZAd > (ZAd_1)Al(d), and
the sequence of the inequalities (3.4) follows by recurrence relation.

The sequence of inequalities (3.4) is also equivalent to

^-ln ZAd > -^-\nZAd_x > -LlnZAd_2 >• •• > -^-lnZAi, (3.17)

d

where we used Ad Yl A1(J)

j'=i
Using the identity

1 1 f1
T" ln ZAd T- E dXvkY(7kaYd(Xv)
'V Ixdk,lJO

T E f dXvkl TrJ^Xv)*^} (3.18)
/Vd k, I JO

and the translation invariance of the system one obtains the sequence ofsusceptibility
inequalities (3.5) by the facts:

àqiÔ_qi>0, (3.19a)

exp {-ßHAd} > exp{-ßHAd_Y > ¦ ¦ ¦ > exp {-ßHAi}. (3.19b)

The equations (3.15-3.19) prove Theorem 3.1.
Let us show that the d-dimensional partition function ZA<1 and its related susceptibility

can be bounded from above by lower dimensional ones.

One has :
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Theorem 3.2. Let HAd HAd_x + HAi in the sense of equations (3.11-3.12).
Then:

~ In ZAd (v) < -jJ— In ZAd., (2.) + ~ In ZAl (2,) (3.20)

and the susceptibilities Xdili I v)> Xd-1 (#t I 2t>) a«d Zi ili I 2») satisfy the inequality

d-Xdili \v)<(d- Y)Xd-ii<li I 2v) + xx(qx I 2p). (3.21)

Proof: By Cauchy-Schwarz inequality one has

ZAd(v) < [ZAd_1(2i))]1'2A'.[ZAi(2t;)]1/2A-'-1 (3.22)

and (3.21) follows immediately, because ZAx is defined with an x-dimensional
configuration energy. The equations (3.6) and (3.18-3.19) with the positive definity
ofvqx(qx: x-dimensional wave vector) leads to the inequality (3.21), where we used
again translation invariance.

The two above stated Theorems 3.1 and 3.2 have consequences: Let us denote

-ßfä(v)= lim —In ZAd(v)
Ad-, co »

the thermodynamic limit of the free energy per site and ZAd is defined with the
configuration energy equation (1.4). Then:

Corollary 3.3. The d-dimensional free energy per site fd equation (3.23) of the
ferromagnetic Ising model with constant nearest neighbour coupling fulfils the sequence
of inequalities:

- Wd-i(2v) - Wii2v) > -/%(») > ~ßfd-x(v) > > -ßfx(v), (3.24)

and therefore the free energy per sitefd(v) is finite and the inequalities (3.5) and (3.21)
remain in the thermodynamic limit.

This corollary follows from the Ising and Onsager solutions of the 1- and
2-dimensional Ising models.

4. Applications

Finally, in this section we consider some further consequences of our results.
Let us consider the properties of positive definite functions at first.

A function f(x) is called positive definite if it is continuous on lRd and has the

property

E P„/(*„ - *v)7> 0 (Z^elR") (4.1)
H, veZd

for any points x e WLd, and any numbers pß e Çd. Each function/(x) with the above
properties is positive definite. This fact is related to Fourier-Stiltjes integrals, e.g.
each characteristic function

f{x) exp (ixq) dV(q) (4.2)

is positive definite. There holds
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Theorem 4.1. [6] : Let p(q) be periodic, positive definite and integrable (over the
d-dimensional Brillouin-zone). In order that f(x) can be represented over lRd by the
expression

/(*) eixqp(q) dq (Zd c IRd) (4.3)

it is necessary and sufficient for f(x) to be positive definite.

It is the direct consequence of the above theorem that the inequalities equations
(3.5) and (3.21) remain valid in direct space also. One has :

Corollary 4.2. In any d-dimensional spin \ Ising ferromagnet with constant
nearest neighbour interaction

id- iK^kl...kd^kd.l)^k,...kd.1id-l)'>d-ii2v) + <\akiahyx(2v)

>^W,...*d_lM<W..*d-iid>>>) (4-4)

>(d-\) <^kl...kd.2kd.l)^kl___kd_iU^yi_x(v) > > <»»,»,,>,(») > o.

Therefore, the d-dimensional spin \ Ising correlation function of ferromagnetic type
is positive on a one-dimensional line and is bounded from below by a sequence of lower
dimensional, positive definite correlation functions. The positive definity of the correlation

function is a special case of Griffith's first inequality [7]. Further, the lower
dimensional upper bound of the d-dimensional Ising correlation function of
ferromagnetic type proves the existence of the higher dimensional system.

The 2-dimensional lower bound to the d-dimensional correlation function
proves the existence of finite magnetization in the d-dimensional spin \ Ising system
of ferromagnetic type by the Szegö-Kac theorem [8] :

2
lim (ak„aryd(v) > - lim <[°klkokih}2(v) > 0

Jtd-Id-»o> a k2-l2-*°o

for appropriate choice of the nearest neighbour coupling constant v. The Szegö-Kac
theorem is discussed in the Appendix.

We are now ready to apply the above Theorem 4.1 and the Corollary 4.2 to the
d-dimensional quantum XY- and Heisenberg models. For the free energy and
susceptibility of these models singular upper and lower bounds have been given in
d-dimension [9]. The bounds were given by the d-dimensional spin \ Ising model free
energy and susceptibility of ferromagnetic type. Let us define the Fourier transform
of the correlation functions by

Xf(qx | Xv) Tr {pA^)aqfitqi}, oe x, y, z (4.5)

for the d-dimensional Heisenberg model and by

2Ì%1|A») Tr{p"'(A«)^1d'_,1}, ß x,y (4.6)

for the d-dimensional Zy-model. The Fourier-transform of the Pauli-spin operators
al is defined in a similar way as in equation (3.6). p^(Xv) and pxy(Xv) are the density
operators belonging to the isotropic Heisenberg and AT-models. The Hamiltonians
are defined with constant nearest neighbour coupling of ferromagnetic type. Then :



914 TV. Szabo H. P. A.

Theorem 4.3. The d-dimensional Heisenberg and XY-correlation functions
equations (4.5-4.6) satisfy the inequalities [9] :

6&fo, I 2v) > xfiqx I V) > Xd(qx | \v), (A.l)

2%(qx I 2v) > \lf(qx | u) > \xMi I H (4.8)

Thus, one has the following application of the Theorems 4.1 and 4.3 and Corollary
4.2:

Corollary 4.4. In any d-dimensional XY- and Heisenberg ferromagnet with
constant nearest neighbour interaction

6<<Pk„qï„>d(lv) > <<Pk..oì,.yitje(v) > <<£^>d(b)
2

d>-J<K^>2ÌÌv)>0, (4.9)

2(<Pk„axlYd(2v) > i<o*k..of..\xy(v) > HK^Ydiìv)

>~d<ox..<Pv.\&)>0. (4.10)

We have defined {ok„(Tf„}d x{v) and {crk^Yd as the one dimensional Fourier
transform of 2if(?i I *>) a"d of xT(qx \ v). Further, k" {kx, k2,..., kd) and
/" {lx,k2, ..,kd). It is clear by the Szegö-Kac theorem [8] again, that the
magnetization in the d > 2-dimensional Heisenberg and AT-models is different
from zero

2
lim <.<Tp.etYd,Av) >

and

lim (<Pk.,oiYd,M > -, "m (oxk„oxlY2(2-v)>0 (4.11)

lim <exk»oì„>d,xy > Hm -M^Yiihv) > 0 (4.12)
fei —ïi-*go kj — li~*cc

for appropriate coupling constant v. It follows :

Theorem 4.5. The magnetization per site

Md^= lim ^-<EAdffk>,.,*0 (4.13)
Ad^a> /vd fe

in the d> 2-dimensional Heisenberg (tx J^f) and XY-model (a. XY) by an
appropriate choice of coupling constant v.

The fact, that Md>a # 0 for d > 2, is a consequence of the relation lim^.^ _a0
{(jx„axY2(^v) M2 < M2

x
below the critical temperature Tc, M ~ A\(TC- T)/

T I 1/8

As in the Heisenberg and AT-models one has similar interest in the d-dimensional
AT-model with homogeneous or inhomogeneous magnetic field in the z-direction,
because of their relation to the KDP- and fiCS-models. The existence of phase
transition has been proven in these models [3]. We would like to discuss it in this
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context also. Let us define the correlation function of the d-dimensional XT-model
with inhomogeneous magnetic field in the z-direction by

«~°r>d,Mv) Tr {p*(Xv)<fk„<JÏ„} (AAA)

and the related Hamiltonian is

Has - h E (?5 + e;)2 + 2 E h,°l°l (4-15)
jAd fcJcAd

a x,y

with vkl < 0. It is known that the one-dimensional Fourier transform 2d(#t I v) °f
equation (4.14) fulfils the inequality

8(0! I »)£&(*! IM (4-16)

and if it holds that

wYr'{ssp{2H4+irnch(ßs'\— lim
Ad->co ir"'ld {. \^ J) ivdjAd

> 0, (4.17)

then:

Theorem 4.6. If inequalities (4.16-4.17) are satisfied, then the correlation function
equation (4.14) is bounded from below:

«¦¦ <¦•>„,.(») > \ <<Ê«?»>a (H (4-18)

and ?/ze magnetization of the model equation (4.15) as a limit

0<M2= lim <(Pk„(Jl„}2(iv) < lim ^«^») |m2£ (4.19)
fcl — il~>QO fel — ll~*O0

exists below the transition temperature Tc.

Sketch of the proof: In reference [3] one has shown that the inequality (4.16)
under the assumption of inequality (4.17) is fulfilled. Using inequality (4.16) in
Theorem 4.1, and Corollary 4.2, the inequality (4.18) follows, from which equation
(4.19) results. Therefore, it remains to show that the inequality (4.17) can be fulfilled;
that this is the case follows from Theorem 2.1.

Similar thoughts can be applied also in lattice field and field theories.

Appendix

To prove the existence of the spontaneous magnetization of the 2-dimensional
Ising model, one represents the correlation function as the Toeplitz determinant
Dki_h(f) (pkkok iYiiv) whose elements are the coefficients in the Laurent
expression of a function/(x).

Let/(x) be positive, satisfying the Lipschitz condition and the derivative f'(x)
should exist. Then one has the Theorem:
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Theorem [8]. Iff(x) satisfies the above conditions, G(f) denotes the geometric
mean off(x) andDn(f) is the nth Toeplitz determinant associated with thefunctionf(x),
then it holds

lim Dn(f)
exp

„^ 10(f)] n+x

where

_2tc

and
+ 00

ln/(x) X K exP (Jmx)

G(f) exp ln/(.

E m\hm\2])

x) dx

m= — ao

In the case of the two-dimensional Ising model G(f) 1 and

h_m
1

2m ij -(z1z*r + 2(-ir
with Zx th(ßJx) and Z2 th(ßJ2) in the case of anisotropic coupling [10].
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