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New free energy and susceptibility inequalities for
the Ising-, XY- and Heisenberg-models and
the problem of phase transition

by N. Szabo
Département de Physique Théorique, Université de Geneéve, 1211 Genéve 4 — Switzerland

(10.VIIL.1977, rev. 10.X.1977)

Abstract. For the d-dimensional spin 1 Ising free energy and susceptibility upper and lower bounds
have been constructed in the case of ferromagnetic and antiferromagnetic, nearest neighbour coupling.
In the antiferromagnetic case the bounds belonging to the free energy or partition function are generated
with help of the related chemical potential In (Z,/Z, _,). These bounds prove the existence of the free
energy of antiferromagnetic type in the thermodynamic limit. If the coupling is the ferromagnetic type,
then the d-dimensional free energy or susceptibility is bounded from above or from below by lower
dimensional ones. For dimensionality d > 2 the bounds are also 2-dimensional, which prove the existence
of finite magnetization (broken phase) below the transition temperature and that by Szegd—Kac theorem.
These results have been applied to the d-dimensional, quantum Heisenberg- and XY-models and to the
d-dimensional X' Y-model with homogeneous or inhomogeneous magnetic field in the z-direction. Assuming

ferromagnetic coupling, the existence of finite magnetization is proved in these d > 2-dimensional quantum
models.

1. Introduction

The partition function Z, of the Ising model can be handled also by the standard
cluster integral treatment of the imperfect gas. To obtain an alternating series of
upper and lower bounds for the free energy of the Ising model with antiferro coupling
one must make purely mathematical considerations for the expansion of Z,. The
mathematical tool [1] to the constructions of the bounds is given by the application
of Lieb’s inequalities [2] to the Ising model. The interest in the bounds lies in the fact
that they allow to make strict conditions for continuous phase transition in the
quantum mechanical XY-model with inhomogeneous magnetic field in the z-
direction [3]. )

The mathematical preliminaries to the program can be formulated in a lemma:

Let f, be a set of real functions, k = 1, 2,..., N such that 0 > f, > — 1 for all .
If we define the function

N N
I5) =[] A +s) =) s4,{f.}) (1.1)
k=1 n=0
with
AN = Y S hs Ao=1 (1.2)

{kl vy kn}
where we sum over all distinct n-tuples k,,..., &k

n*
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One has
Lemma 1.1. If0 < s < 1 then holds

I6) £ Y s'4,(fD (1.3)
n=0

where 0 < M < N and the > sign is valid for odd M and < sign for even M.

The proof of this Lemma is given in references [ 1, 2] and will not be considered here,
but we will apply directly the theorem to the problems studied in the next section.

If the f, — sinequation (1.1) are all positive semidefinite then all the inequalities
in (1.3) become lower bounds. This situation is also of interest for the Ising model
with ferromagnetic coupling. In this case one can derive lower bounds for the
partition function and susceptibility. The lower bound to the d-dimensional partition
function is given by lower dimensional ones, which is the case also for the suscep-
tibility. Similar considerations have been made by Guerra, Rosen and Simon [4], see
also reference [5]. In this latter case, upper bounds to the partition function and to
the susceptibilities can be constructed with help of the Cauchy—Schwarz inequalities.
These bounds are given also by lower dimensional systems.

Let us introduce here the d-dimensional, infinite lattice by Z“ and a bounded
region in Z% by A, , d, < d. Further, the configuration energy H,, of the Ising
model with constant, nearest neighbour coupling is defined as

H, =3 Y vy2n — 1,121, — 1], (1.4a)

{k,1)CA4
and

. {v >0 n.n. antiferro-coupling} s 5 (1.4b)

v <0 n.n. ferro-coupling

in the region A, -n, takes the values {0, 1} for all k € A,. The lattice spin ¢, on site k
is defined by .

6, =2n, — 1. (1.5)

The configurational energy equation (1.4) has a term which is bilinear in , and is the
interesting one for our considerations in the next sections. In the equations (1.4 and
1.5) the indices k& and / denote d-dimensional vectors: k = {k,, k,,..., k,}. The
unit cell of Z4is a hypercube; along the edges of the unit cell the 1nteract10n strengths
are equal. We assume periodic boundary condition on A,, which are essential in the
third and fourth section.

2. Upper and lower bounds for the partition function with v > 0

In the bounded region A, we define the partition function of H, equation (1.4)
by

Z,,=2""Tr {exp (- BHI I\, (ny,. .., 1, )} 2.1

where
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H/?d = % Z vkl[lk - 4nk]: (UkI > O), (22)
(k. 1}eA(d)
IAd(nl LRI nAd) = l—I [1 + fkl] (23)
{k, leA(d)

The f,, are the Mayer functions belonging to the model equation (1.4):

Su = exp [—4pv,n.n] — 1. 2.4)

In view of the definition equation (2.1), the free energies F, and F, _, fulfil the
relation

Fra = exp [~B(Ey, - Fy,y)] 2.5)

Ag—1

for large A. In the circular bracket of the above equation (2.5), the difference

F,, — F,,_, corresponds a chemical potential of the system in view of
aFAd - lim FAd — FAd—A . (2.6)

Ay aso A

Because A, is large, A corresponds to the one of F, _,. On the other hand, one has

Ag
Fo,= Y [F.—F._1; xAcZ 2.7)
x=1
Our aim is to construct upper and lower bounds to the free energy per site
1
f= lim —F,
Ag— Ad A

by virtue of equations (2.5-2.7). Let us at first collect some results concerning the
partition function and free energy:

Theorem 2.1. If the coupling constant of H, v, > 0 equation (1.4), then H,, —
related partition function Z, _has the alternating bound properties

Zy, < Zn,_s (2.82)

Z,, > Ch(Bzv)Z,,_, — ~22- exp [B(3z — 2)v]Sh(2B0)Z,,_, (2.8b)

Z,, < Ch(Bzv)Z,,_, — gexp [BGz — 2W]Sh(2Bv)Z,,_,

22

3

exp [fGz — H1Sh>2Pv)Z,,_ (2.8¢)

elc.

(z: number of nearest neighbours); further the free energy per site f = lim, ., 1/A,
F, satisfies

b b? 1 b b? 1
sl S ) = _ = _Z 29
In |:2a k2 V 4a® a:| = fif=ln [Za 4q? a:l )
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for certain parameter values pv, B = [kzT]™ . a and b are:
&
2

The alternating bound property inequalities (2.8) can be established as follows:
From the definition equation (2.3) one has

ad =

exp [BG z — 2)v]1Sh(2fv) and b = Ch(Bzv).

Ad
IAd(nl,. i 5% nAd) = l_[ (1 +f1j)IAd*1(I’l2,. 5 65 ?IAd)._ (210)
j=2
Since I,,_, > 0forA =0,1,2,..., A, — | and f;; satisfies the inequality
0 > fy = =1, (2.11)
then it follows by lemma 1.1
I, <I, _, (2.12a)
Aa
Iy, > (1 + 2 flj) Iy -1 (2.12b)
j=2

(2.12¢)

i=2 {kl}

Ay Ag
Iy, <<1 + qu*' Zflkflt)IAd~1

etc.

Multiplying equation (2.12a) with 2~ "¢ exp (— fH{ ) and taking the trace over the
gained expression, one gets the inequality (2.8a). Similarly one gets

Z,, > 27%Tr{exp (= BHR ) ,,_1} + 272 Tr {exp (= BH)zf 21,2}
(2.13)
by inserting

leIAd—l >f121Ad—2 (2.14)

into inequality (2.12b). Inequality (2.14) follows by inequalities (2.11-2.12a). The
inequality (2.13) immediately results from (2.8b). On the right hand side of inequality
(2.8c) the first two terms are derived along inequalities (2.12b-2.14), as we have done
for the inequality (2.8b). The last term of inequality (2.8c) is gained by the inequality

2 RaT {CXP (—BH}) Z JuJulp,- 1}

{kl}
=2 "M Tr {exp (_ﬂHKd)Z(Z - 1)f12f13]/\d—1}
< 27" Tr {exp (= BHR )z(z — 1) f15 fi31a,- 3} (2.15)
and the evaluation of the right hand side of equation (2.15) proves the inequality
(2.8¢).

The second part of the Theorem 2.1, inequality (2.9) follows from the inequalities
(2.8b-2.8c). It holds
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Z VA oF oF
1 /\.d—l _ Ad_2 Ad A —Ad .1
> b Z, a Z, = bex [[3 3 ] a exp I:ZB aAd] (2.16a)
1<bexp[ﬁ%} aexp[ }
aAd
2 3 a A
+2a? exp ﬁ’zv exp | 3 T (2.16b)
Ag

by applying equations (2.5-2.6). The above inequality of second degree is solved
casily for the unknown variable

oF
exp [ﬁ TM]
Aga

One gets

b [7 1| . oF, b [B7 1
- _ = —_Aa e =1l 2.17
In [2«:1 RV a} b5 s, <In [2{1 4a® a] @17)

From here the inequality (2.9) follows by integration over A,;.

3. Bounds on the ferromagnetic partition function and susceptibility

The basis of Theorem 2.1 are the inequalities (2.12), which are a consequence
of the Lemma 1.1. As it has been pointed out in section 1, the upper bounds of
Lemma 1.1 change to lower ones, because f, > 0 for vy, < 0.

This has the consequence that the inequalities equation (2.12) become lower
bounds,

Ly Wy gy ) 3 0y (W s o ny.)

I, (ny,....m,) > (1 + qu) Iy,_1(ny,...,n,) (3.1

I,,(my,.. o My ) > (1 + Z/[u + Zflkfll) Ad-1(”2= vey Ty )

etc.

in the ferromagnetic case, which is on the other hand a consequence of equation
(2.10) and of the inequality

Ja=c¢exp[—4pvynn] —1>0 (v, <0). (3.2)

From the above inequalities (3.1-3.2) it is clear that the partition function Z,  is
bounded from below by Z, _,, A; > n > 1. So far the dimensionality of the system
has not been considered explicitly ; we will take this into account now. The model (1.4)
with v, < 0 is defined in the bounded region A, = Z“. The hypercube A; has a
hypersurface A,_, .
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For the subspaces A; and A; with d = d; + d, the inequality (3.1) can be
generalized so that it has the consequences:

Theorem 3.1. Let A; and A, withd, = d — 1 and d, = 1 two bounded subsets
of Z° so that A\A,_, = A, = Z°. Then it holds

Ng
L,> [l L,-.() (3.3)
=1

where N, is a lattice point in the dth one dimensional subspace with the cyclic boundary
condition N; + 1 = 1. Further, the partition function Z,  fulfils the inequalities

d

I1
ZAd >~ (ZAd—l)Al(d) > (ZAd_z)/\,(d)Al(d_l)_ ‘v % (ZAI)J-=2A1(,-,; (34)

and the d-dimensional susceptibility belonging to Z,  is bounded from below by a
sequence of lower dimensional susceptibilities, which belong to Z,, ,...and Z, :

diy(qylv) > (d — Diy—1(q, \ v) > (d — 2)¥y-2(q, | v) > - > x1(q,y IU) (3:2)
X4(qy | v) is the 1-dimensional Fourier-transform of

Blo 0, = ﬁ<‘7(k1k2. k) Olliky. . ke 2d:
1

Xalgy | v) = K: kz exXp [i%(Rh _R11)]ﬁ<a(k1k2...kd) a(l1k2...kd)>d (3.6)

where k and [ are d-dimensional vectors as indicated, - - - », a d-dimensional average
and B = [kT] ™.

Special cases: Assuming A'@=A, for all j = 1,. .., d then the 3- and 4-dimen-
sional partition functions fulfil the inequalities

Zy, = By )™ = (&, % (3.7)

Zy, > (Za)M > (ZW )N > (Z, )N (3.8)
and the associated susceptibilities obey the relations

3%3(q, 1 v) > 2%,(q; | v) > %1(q | V), (3.9

4%4(q; |v) > 3%3(q; | v) > 2%,(q, | v) > %,(q, | V). (3.10)

Proof: The assertion equation (3.3) can be established by splitting up the model
configuration energy equation (1.4) into two contributions:

HA — Ad-1 + HAl (311)

d

where H,,-, and H,, are:

Hyu =% v 20, — 1,120, — 1,], (3.12a)
K

Hy =1 Y vep2ne — 11028, — 1] (3.12b)

k", 1"
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with k" = {ky,.. . ky_y kg =L} ={l,.. .l b=k}, k" ={k;, =1,,...,

kyy =l_, kyand " = {l, = ky,..., l,_, = k,_,, I,}. The above equations

(3.12) contain constant nearest neighbour coupling. ,
Now we can define /,:, belonging to H,:, by the expression:

In= 1 A+ fip) > 1. (3.13)
)
From equatlons (3.11-3.12) it follows that I,, can be expressed as a product from
I,,and Iy,-q:
[Ad:IAl'IAd—], (3-14)

where I,q-. is defined similarly as 7,. equation (3.13) by H,s-.. The definition
equation (3.12) and the fact f;.,, > 0 tells us:

Iy, >1I,_- (3.15)

Note that H,, and H,.-, do depend on the volume A, as H,, does. Therefore, this is
also the case for I, and I,.-,. It follows directly from the above equations that the
inequality

Tr {exp (—BH, )} > Tr {exp (- fH,,_ )} (3.16)

is satisfied. Now H,... resp. H,, contain 1- resp. (d — l)-dimensional dummy
summation. Therefore, the first inequality of (3.4) follows: Z,, > (Z,,_,)*"®, and
the sequence of the inequalities (3.4) follows by recurrence relation.

The sequence of inequalities (3.4) is also equivalent to

1
/—\;ln ZAd >

1 1
——InZ, _, > InZ, _,>->—InZ,, (3.17)
Ad-l Ag—1 Ad—z Ag—2 A1 A

d
where we used A, = [[ A

Using the identity

1
Ay Inz,, = /_\—kZ J divy<a,.0,)4(40)
1

Z Jl d)“vkl TrAd{pAd(’lv)akal} (3.18)
k,1

and the translation invariance of the system one obtains the sequence of susceptibility
inequalities (3.5) by the facts:

4, 6_, >0, | (3.19a)

exp {—pH,,} > exp{—BH,,_ } >---> exp {—pH, }. (3.19b)

The equations (3.15-3.19) prove Theorem 3.1.
Let us show that the d-dimensional partition function Z,  and its related suscep-
tibility can be bounded from above by lower dimensional ones.

One has:
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Theorem 3.2. Let H, = H,, , + H, in the sense of equations (3.11-3.12).
Then:

j\l—dln Z,,(v) < A, InZ,, (2v) + A, InZ, (2v) (3.20)
and the susceptibilities %,(q, | v), ¥4-1(q, | 2v) and ¥, (q, | 2v) satisfy the inequality

d-74(q,|1v) < (@ = DFy_1(q, | 20) + 7, (q, | 20). (3.21)

Proof: By Cauchy-Schwarz inequality one has

Z,,0) < [Z,, , Q)] ™ [Z,, 2u)]' 2 e (3.22)

and (3.21) follows immediately, because Z, is defined with an x-dimensional
configuration energy. The equations (3.6) and (3 18-3.19) with the positive definity
of 7, (gq,: x-dimensional wave vector) leads to the inequality (3.21), where we used
again translation invariance.

The two above stated Theorems 3.1 and 3.2 have consequences: Let us denote

. 1
_ﬁf;(lj) = lim 7\— In ZAd(U) (323)

Ad—)m d

the thermodynamic limit of the free energy per site and Z, _ is defined with the con-
figuration energy equation (1.4). Then:

Corollary 3.3. The d-dimensional free energy per'site [, equation (3.23) of the
ferromagnetic Ising model with constant nearest neighbour coupling fulfils the sequence
of inequalities:

— 3Bfa- 1 (20) — 3Bf1(20) > —Bf(v) > —Bfy_ (V) > > —Bfi(v), (3.24)

and therefore the free energy per site f,(v) is finite and the inequalities (3.5) and (3.21)
remain in the thermodynamic limit.

This corollary follows from the Ising and Onsager solutions of the 1- and
2-dimensional Ising models.

4. Applications

Finally, in this section we consider some further consequences of our results.
Let us consider the properties of positive definite functions at first.
A function f(x) is called positive definite if it is continuous on R? and has the

property
Y puflx, = x)p' =0 (Z'eR?) @.1)

u, veZd

for any points x, € R?, and any numbers p, € ¢*. Each function f(x) with the above
properties is posmve definite. This fact is related to Fourier-Stiltjes integrals, e.g.
each characteristic function

J(x) = jeXp (ixq) dV(q) (4.2)

is positive definite. There holds
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Theorem 4.1. [6]: Let p(q) be periodic, positive definite and integrable (over the
d-dimensional Brillouin-zone). In order that f(x) can be represented over R by the
expression

fx) = Jeixqﬁ(q) dg (Z* = RY) (4.3)
it is necessary and sufficient for f(x) to be positive definite.

It is the direct consequence of the above theorem that the inequalities equations
(3.5) and (3.21) remain valid in direct space also. One has:

Corollary 4.2. In any d-dimensional spin % Ising ferromagnet with constant
nearest neighbour interaction

d - 1)<G(k1...kdﬁ2kd_1)0-(kl...kd_lld_1)>d—l(2v) + <0y, ‘711>1(2”)
2 d<o_(kl cokg-1ka) a(kg ...kd_lld)>d(v) (4‘4)

>(d-1) Oty ke kg )Oks . ko ala0d—10) >+ >0, 0,5, (v) > 0.

Therefore, the d-dimensional spin % Ising correlation function of ferromagnetic type
is positive on a one-dimensional line and is bounded from below by a sequence of lower
dimensional, positive definite correlation functions. The positive definity of the correla-
tion function is a special case of Griffith’s first inequality [7]). Further, the lower
dimensional upper bound of the d-dimensional Ising correlation function of ferro-
magnetic type proves the existence of the higher dimensional system.

The 2-dimensional lower bound to the d-dimensional correlation function
proves the existence of finite magnetization in the d-dimensional spin 3 Ising system
of ferromagnetic type by the Szegt—Kac theorem [8]:

; 2
) h:m (00 04(0) > = lim  {0y,,0,,,7,() >0
d—lag— o kx—Il2= o
for appropriate choice of the nearest neighbour coupling constant v. The Szego—Kac
theorem is discussed in the Appendix.

We are now ready to apply the above Theorem 4.1 and the Corollary 4.2 to the
d-dimensional quantum XY- and Heisenberg models. For the free energy and
susceptibility of these models singular upper and lower bounds have been given in
d-dimension [9]. The bounds were given by the d-dimensional spin 4 Ising model free
energy and susceptibility of ferromagnetic type. Let us define the Fourier transform
of the correlation functions by

27(q, | ) = Tr{p(0)8: 8%, }, a=xpz (4.5)

for the d-dimensional Heisenberg model and by
22°(q, | ) = Tr {p®(w)ag 62}, B=xy (4.6)

for the d-dimensional X Y-model. The Fourier-transform of the Pauli-spin operators
oy 1s defined in a similar way as in equation (3.6). p,.(4v) and p*(4iv) are the density
operators belonging to the isotropic Heisenberg and X Y-models. The Hamiltonians
are defined with constant nearest neighbour coupling of ferromagnetic type. Then:
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Theorem 4.3. The d-dimensional Heisenberg and XY-correlation functions
equations (4.5—4.6) satisfy the inequalities [9]:

6%4(q, | 2v) = f(d”(Q1 | v) = %(q, |%U), 4.7)

2%4(q, | 2v) - 2Xa7(qy | v) = 24('91 I%U) (4.3)
Thus, one has the following application of the Theorems 4.1 and 4.3 and Corollary
4.2:

Corollary 4.4. In any d-dimensional XY- and Heisenberg ferromagnet with
constant nearest neighbour interaction

6<0%-07.4(20) = (0307104 (V) = (6%0?),,(%-0)

2
> =030, (G0) 2 0, G
2{63.07.4(20) = 3{0}.0} D, xy(0) = 3€05.07.3,4(GV)
> 5,<az»a;a>2(%v) > 0. (.10)
We have defined {o}.07.), ,(v) and {o}.07.), ,, as the one dimensional Fourier
transform of 7¥(q, |v) and of 7%*(q, |v). Further, k" = {ki,ky,...,k;} and
I"={l,,k,, ..., k,}. Tt is clear by the Szego—Kac theorem [8] agam that the

magnetization in the d > 2-dimensional Heisenberg and XY-models is different
from zero

: 2 ..
lim (607340 0) > > lim <oLoid,(o) > 0 @.11)
ki—li—= o ki—lij—= o
and
| 2 1
lim {63075, ,, > lim g (6%.07.7,Gv) > 0 (4.12)
ki—lj—= ki—lj—=

for appropriate coupling constant v. It follows:

Theorem 4.5. The magnetization per site

) 1
M,,= lim = O A Ok0da 7 O (4.13)
k

- Ad""OO d

in the d > 2-dimensional Heisenberg (« = #) and XY-model (o« = XY) by an
appropriate choice of coupling constant v.

The fact, that M, , # 0 for d > 2, is a consequence of the relation lim, _, _
{03.0}:,(30) = M? < M} , below the critical temperature T,, M ~ A | (T, — T)/
T,|'®.

| As in the Heisenberg and X Y-models one has similar interest in the d-dimensional
XY-model with homogeneous or inhomogeneous magnetic field in the z-direction,
because of their relation to the KDP- and BCS-models. The existence of phase
transition has been proven in these models [3]. We would like to discuss it in this



Vol. 50, 1977 New free energy inequalities for the Ising-, XY- and Heisenberg-models 915

context also. Let us define the correlation function of the d-dimensional X'Y-model -
with inhomogeneous magnetic field in the z-direction by
{04,074 (W) = Tr {p*(Av)o.0f. } 4.14)

and the related Hamiltonian is

H, =-1% (0 +¢)* +3 ) vy0iof 4.15)
JAq k.leAg
a=x,y

with v,; < 0. It is known that the one-dimensional Fourier transform %5(¢, | v) of
equation (4.14) fulfils the inequality

25(qy | v) > Za(g, | 30), (4.16)
and if it holds that
. 1 B 1
~ lim |11 L 2y . 4.17
Pl [2Ad ni {eXp (2 H"d)} M 8’)] = @i
then:

Theorem 4.6. If inequalities (4.16—4.17) are satisfied, then the correlation function
equation (4.14) is bounded from below :

i |
(0% 0%34,,(6) > 5 <0572, ) (4.18)

and the magnetization of the model equation (4.15) as a limit
d

0< M= lim <{o.o:),Gv) < lim 5

ki—l1— ki—li—c0

exists below the transition temperature T, .

d
(GLory ) =5 MZ, (419

Sketch of the proof: In reference [3] one has shown that the inequality (4.16)
under the assumption of inequality (4.17) is fulfilled. Using inequality (4.16) in
Theorem 4.1, and Corollary 4.2, the inequality (4.18) follows, from which equation
(4.19) results. Therefore, it remains to show that the inequality (4.17) can be fulfilled ;
that this is the case follows from Theorem 2.1.

Similar thoughts can be applied also in lattice field and field theories.

Appendix

To prove the existence of the spontaneous magnetization of the 2-dimensional
Ising model, one represents the correlation function as the Toeplitz determinant
D, _,,(f) = (o, kzcr,q‘h)z(v) whose elements are the coefficients in the Laurent
expression of a function f(x).

Let f(x) be positive, satisfying the Lipschitz condition and the derivative f'(x)
should exist. Then one has the Theorem:
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Theorem [8]. If f(x) satisfies the above conditions, G(f) denotes the geometric
mean of f(x) and D ( f') is the nth Toeplitz determinant associated with the function f(x),
then it holds

. D(f) _ - 2
TG e —‘”‘p[z o }

where

G(f) = exp [% j In £(x) dx}
and

i = ¥, sxp G,

In the case of the two-dimensional Ising model G(f) = 1 and

IR W D ') PR

with Z, = th(fJ,) and Z, = th(fJ,) in the case of anisotropic coupling [10].
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