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Boltzmann collision operator without cut-off )

by M. Klaus

Institut fiir Theoretische Physik der Universitit Ziirich,
Schénberggasse 9, 8001 Ziirich

(25.VIIL.1977)

Abstract. We study the spectrum of the linear Boltzmann collision operator for repulsive inverse-
power intermolecular potentials. The spectrum turns out to be purely discrete. We use the method of

strong resolvent convergence and study various cut-off approximations. A previous work of Pao [1] is
critically reviewed.

1. Introduction

In a recent work of Pao [1] the linear Boltzmann collision operator for gases
with repulsive inverse-power intermolecular potential was considered. In contrast to
almost all of the previous work on this subject no cut-off to exclude the grazing
collisions was introduced. On the one hand, it is well known that, due to the grazing
collisions, infinite range potentials show up a grave singularity in their classical
differential cross section. On the other hand, the collision operator has built in a
mechanism which cancels this singularity to some degree. Though a radial cut-off of
the intermolecular potential or even the use of a quantum mechanical cross section
may be physically reasonable, there has been a constant interest in the spectral
properties of the collision operator without cut-off. Since the inverse fourth-power
potential (Maxwell gas) has a purely discrete spectrum, the question is natural
whether a similar result holds for other potentials. According to Pao this is true for
potentials with power s > 2. Pao uses the theory of pseudo-differential operators, a
method which seems to be adequate to the problem but which also requires some
tedious estimates of the so-called symbols of these pseudo-differential operators.
Moreover, in our opinion, Pao’s discussion of the selfadjointness of the collision
operator is erroneous?). It seems, therefore, to be justified to attack the problem by
another method. We present some relatively simple arguments which prove the dis-
creteness of the spectrum for inverse-power potentials. In particular, we construct
the collision operator for the infinite range potential as the limit of operators with a
cut-off, for example, an angular (Grad) cut-off. The approximation will be in the

D) Work supported by the Swiss National Science Foundation.
%) See Note on p. 903.
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sense of strong resolvent convergence. Among the various kinds of cut-offs, the radial
integral cut-off [3], which is closely related to a radial potential cut-off ([4], [3]), has
some unpleasant properties. However, we can also describe the spectrum in this case.
Although we confine ourselves to the study of strict inverse-power potentials it
becomes evident that our method can also be used in other cases.

2. Preliminaries

The linearized Boltzmann equation for a spatially homogeneous gas reads in
nondimensional form

af
o 2.1
=V @

where
I = f(f(VQ) + Av) — fivy) — fV)w(v,)BO, V) d*v, df do (2.2)

y2
o(vy) = 2n)~*% exp (—51) (2.3)
Here v, v, are the velocities before and v’, v; the velocities after an encounter:
v . =v + n(nV) (2.4)
vi = v, — n(nV) (2.5)
nV = Vcos 0 (2.6)
n = (sin 0 cos @, sin 0 sin @, cos 0) 2.7)
V=v —v (2.8)
ob

B0, V) = Vb0, V) %(9, V)| (2.9)

@ 1s a polar angle in the impact parameter plane, 0 < ¢ < 2n. B(0, V) is related to
the differential cross section and b denotes the impact parameter [2]. For analytical
purposes, it is an advantage to assume a pure power law interaction

mo=% x> 0,5 > 0. (2.10)
Then 6 € [0, n/2], b € [0, o0). Further restrictions on s will follow. We have

B@,V)=V"86), BO) =0, y= 51—4 (2.1D)

BO) ~ Has® — 0 and mn~G~ﬂyhmmeag- (2.12)

If we would have, for a general interaction U(r),

n/2
J‘mamw<w

0
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we could write
I=—v+ K (2.13)

splitting away the multiplicative operator v = v(v), the so-called collision frequency.
In order to have (2.13), one must introduce a cut-off. Some possibilities are

(a) qng;lar cut-off: Set B(#, V) = 0if 6 > 0, for some 6,0 < 6, < n/2, uniformly
in V.

(b) radial potential cut-off: Set V(r) = O forr > o.

(c¢) radial integral cut-off: replace the 0-integration in (2.2) by an integration over b
and cut off this integral at some value b, .

(a) was introduced by Grad[2]. In this case, K is compact whenever s > 1 [2], [3].
(b) was discussed by Cercignani [4] and (c) appears in Drange [3]. For (b) and (c),
K is not compact [3].

We consider the operator 7 in the Hilbert space # with scalar product

(f,g) = wagd%, # = L,(R3, o d®). (2.14)

It 1s straightforward to define If for smooth functions f because it is possible to carry
out first the f-integration in (2.2). By (2.4)«2.8) we get for 8 near /2

(fv) + V) = vy = V) ~ (—g— - 9)- (2.15)

We see from (2.12) that s > 2 is necessary for the #-integration to exist. In fact, the
matrix elements of the collision operator with respect to the so-called Burnett
functions (eigenfunctions of the Maxwell gas) are finite only if s > 2 [6].

Using the symmetry properties of the differential cross section one shows that

(S, If) = —f|f("i) + fv) = flvy) — AV x
x w(v,)w)B6, V) dd dp d*v, dv < 0. (2.16)

I has a five-fold zero eigenvalue with eigenfunctions 1, v,, v2.

3. The spectrum of 7

We study first the case of a hard intermolecular potential, i.e. an inverse-power
law with s > 4. '

We introduce an angular cut-off, setting (@) = 0 for 8 > n/2 — 6 with some
small positive 6. The corresponding collision operator is denoted by I;. We are in-
terested in the limit 6 | 0. /; consists of two parts [2] :

I; = —vs + K; (3.1)
s —4
s

with v;(v) = (2n)B, fa)(vl)|vl —v'd%, y= (3.2)

n/2-6
Bs = J p(0) db 3.3)

0
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y > 0 if s > 4 and v,(v) grows like v* as v — oo. In fact, v4(v) is a monotonically
increasing function starting from some positive value v4(0). For s = 4, v, is a constant.
K, is a compact integral operator [2]. I; is selfadjoint and negative on D(I;) =
D(y,) = D(v”) (mdependent of 9).

Our aim is to apply Theorem (3.13) of Kato ([5], p. 459). This theorem is
formulated in terms of sesquilinear forms and uses the close connection between
forms and operators. To I; corresponds a closed, symmetric, negative quadratic
form, denoted by I,[ - ] with

L/ = =L * feD(L") (3.4)

Consider now I CP(R?) (1 restricted to the C*-functions with compact support).
I'T Cg defines a closable form since it is generated by a symmetric negative operator.
We denote the closure of this form by i,. The index “F’ stands for ‘Friedrichs’ and
means that the operator I associated with i is the Friedrichs extension of I C7. I,
1s selfadjoint and negative.

For two selfadjoint, negative operators 4 and B the order relation 4 < B is
defined as equivalent to a < b for the associated closed forms a and b, which means

that D(a) = D(|A|'?) = D(b) and a[ f] < b[ f] for all '€ D(a).

Proposition 3.1. I; > I, > I, if0 <4, <9,.

Proof In view of (2.12), (2.16) and (3.3) the inequalities certainly hold for
fe C¥ since B5, > f;, . Then Proposition 3.1 follows by taking closures of quadratic
forms using the fact that I, is essentially selfadjoint on CF (because v, is essentially
selfadjoint).

Now the theorem from Kato’s book quoted above gives

Theorem 3.2. I, converges in the strong resolvent sense to a selfadjoint, negative
operator 1,

(Is — )7 — Uy — )Y forRed > 0,feH
and

I; & L.

I, is the collision operator with the angular cut-off removed. There exists another
characterization of 1. I, is also the strong graph limit of /; ([7], p. 293). This means
that f'e D(I,) if and only if we can find f; € D(I,) so that f; — f and I; f; converges
strongly to some element g. Then g = I,f.

Remarks

(1) The Friedrichs extension I, of I C¥ acts only as an auxiliary operator and
is used in the proof of Theorem 3.2. Instead of C{’, we could, for example, use 2, the
class of polynomials in v;. # would contain the Burnett functions.

(2) One can show that I;f converges strongly when fe C3 or fe . Hence
IT C§ = Iyand IT 2 < [,. For the proof it is important to notice that the singu-
larity in the collision operator at 8 = 7#/2 is cancelled by the smoothness of f. This
fact allows us to estimate the differences fiv;) — flv,) and fiv') — f(v) by means of
the gradient of /. It is then easy to show that I,f converges exactly to that function
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which is defined by (2.2), integrating in the ordinary sense. For f one has to use the
fact that the gradient is also polynomially bounded.
(3) exp (t1;) — exp (¢1,) strongly for each ¢t > 0 ([7], p. 286).

It is our intention to show that (I, — 1)~ ! is compact. This looks somewhat
surprising since (I; — A)”! is not compact and we have only proved strong conver-
gence of the resolvents. For a, b € R we write P;[a, b] for the spectral projection of
the operator 7, associated with the interval [a, b].

Proposition 3.3. To a given N > 0 there exists a 6y > 0, so that
Oo(l;)) N[—N,0] =0

and
dim P;[—N,0] < o for0 < d < dy.

The bound on dim P,;[ — N, 0] is independent of 9.

Proof: By Weyl’s theorem ([5], p. 244) and the compactness of K, the spectrum
of I in the gap (—v,(0), 0] consists of discrete eigenvalues with finite multiplicities,
and the essential spectrum is the interval (— oo, —v,(0)]. By (3.2) v4(0) ~ 5 — 0 as
d | 0 and the statement about o, follows, at least for éy > 6 > 0. However from
Theorem 3.2 we know that I, < I; and this implies dim P,[—N, 0] < dim

Ps[—N, 0] < dim P; [—N, 0]. For suppose dim P, > dim P,. We can find
feRan Py nRan (1 — P;). Then fe D(I,) = D(|IO|”2) < D(|1; |”7') and —N <
(S, I,f) < (f, If) < —N, and this is a contradiction.

It follows from Proposition 3.3 that 7, has a discrete spectrum consisting of
eigenvalues with finite multiplicities. There is actually an infinite sequence of eigen-
values tending to — oo0. Otherwise /, would be bounded and this is not true. Consider,
for instance, the matrix elements with respect to Burnett functions [6].

We can summarize these properties in

Theorem 3.4. (I, — 1)~ ' is compact for A € C\(— o, 0] and dim P,[—N, 0] —
o0 as N — oo.

Compactness of the resolvent in the region indicated above follows from compactness
for 1 > 0 and by analytic continuation.

Remarks
(1) The eigenvalues of I; converge from above to the eigenvalues of /.
(2) P;[—N, 0] — P,[—N, 0] strongly but also in norm ([5], p. 438).

Let us now consider the case of a soft power law potential obeying 2 < s <4.
We want to show how our method works in this case. We shall not prove all
technical details.
~ For an angular cut-off it is still true that K is a compact operator. But since
y <0

vi(v) —> 0, v— o (3.5
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and
O-ess(lé) = [—Va(O), 0] (36)

so that the essential spectrum of I; is not shifted to — oo as é | 0 but fills up larger
and larger intervals on the negative axis. Consequently, the proofs of Proposition 3.3
and Theorem 3.4 break down. However, the arguments behind Theorem 3.2 remain
true and the strong resolvent limit exists. It is possible that the limiting operator has a
discrete spectrum because the spectrum of I; can contract suddenly ([7], p. 291).
We will see that this happens indeed. But for a discussion of the limiting operator the
angular cut-off is not the right choice.

Let us consider briefly a radial integral cut-off as it was described in section 2.
We set b, = o for the cut-off distance. The collision frequency is of the form

d
v.(0) > 0, ";—(U) >0, v ~d v, v o (3.7)
v
Actually, v, (v) is the collision frequency of hard spheres with diameter o [2].
We notice that a radial integral cut-off can also be considered as a velocity-
dependent angular cut-off with cut-off angle 6, = 0,(V, o). It follows from (2.9),
(2.11) and (2.12) that

06,

Po 5 9 3.8
o7 | (3.8)
0,(V,0) ~ V¥, V0 (3.9)
g —0,(V,0) ~ V2, V- 0. (3.10)

We see that, for large V, the small angle scattering is included with increasing

accuracy. The noncompactness of K is due to this velocity-dependence, in particular,
to the strong decay of the right hand side in (3.10).

: A radial potential cut-off would lead to the same difficulties [3]. Instead of the
radial integral cut-off we study now a modified velocity-dependent cut-off which
excludes the high energy collisions in a more stringent way, but not as drastically as a
Grad (velocity-independent) cut-off would do. We define the cut-off angle 0(V, ¢)
through

OV,e) = BV, &>0. (3.11)

¢ is the cut-off parameter. We also have 0,(V, ) = fL- U3V %¢?). B~ is the
inverse function of

o) = r B do’, Oe [O, —;—] (3.12)
(]
(2.12) and (3.12) give
B0 (3.13)

dz
BG) ~ 7, 20

- B ~ 27, 7o oo, (3.14)
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The property which should be compared with (3.10) reads
n
2

The deviation expressed by (3.15) depends now on s and is bigger than in (3.10).
For the collision frequency we find

OV,e) ~ V7 2*92 Vo 0. (3.15)

v(v) = 21 jw(ul)V”ﬁ(G(V, g) d3v, = 2me™! J‘w(vl) d*v, = 2ne™ !, (3.16)

and this is simply a constant with respect to v. Of course, we have chosen our cut-off
such as to get this simplification. Compared with the radial integral cut-off we have
sacrificed the growth of the collision frequency for v — oo, but we have gained the
compactness of the integral operator K,. The verification of this fact requires esti-
mates of certain integrals using the properties of the function fl~ Y. If we transform
from J# to an ordinary L,(IR%)-space, making the substitution f = w!/f, we get for
that part of the transformed operator K, which incorporates all difficulties, an integral
kernel of the form [3].

R, ¥) ~ T exp [—42 + 42D) f O, w)exp (—3lw + &) dw  (3.17)

with

O(u, w) = La? + w2)r+ V2! [ﬁg, A6 + B,y G— - 9))] (3.18)
tan § = % V=@ +w)?, u=vy—v (3.19)
g = %(V + V’) = .&1 + gza .gl//“’ .gz L u, (320)
- 1 (U2 _ UIZ)Z
T e
P.v(0) = B(B) 8 < O(V,¢)
=0 0>0(V,¢ (3.21)

The integration in (3.17) is in a plane perpendicular to u.

If we insert the two summands of (3.18) into (3.17) and decompose the integral
into two parts according to w > u and w < u we get four integrals which have to be
estimated. We only give the estimates for one integral, the others can be treated
similarly. Consider for w > u the expression

OP(u, w) = 3(1? + w2’ 12w 18 L(0). (3.22)

Since w > u, tan 6 > 1 so that we should have tan 8(V, &) > lor V > Vy(e) > 0. It
follows from (2.12), (3.11) and (3.14) that

T — 1 =2/
BO) < POV, ¢e) < ¢ (5 — oV, s)) < c(u? + wAlre-s2-
%

and hence
0N, w) < c(u? + w2 =1 < w2 (3.23)
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¢ denotes a positive constant which is not the same in all inequalities. For2 < s < 4
we have 0 < 2 — s/2 < 1. This implies that the integral in (3.17) is bounded by

A

const (v + v a =2 — 5 (3.24)
With this result we can prove the following properties of K,

sup J K, (v, v)| d*v' < o0 (3.25)

veR3

sup J|K£(v, v)| d*v'— 0, R— oo. (3.26)

v=R

These two statements follow from estimates given in [2] and are due to the fact that
a < 1, which is the crucial property.

We can now show that K, is compact. Firstly, the polar singularity which can be
shown to be of the form 1/[v — v'|” with ¢ < 3 can be treated by a limiting argument.
We only need to show that

K™, v') = K. (v,v) (1 — (’X_Tvl_l))

1s compact because

R.(v,v") = norm-lim K™(v, v').

n—*aoo

x s the characteristic function of [0, 1].
Secondly, the operator PRK™ with Ppf = x(v/R)f(v) is easily seen to be Hilbert—
Schmidt. We must therefore only show that

K™ = norm-lim PgK™.

R—- o

This can be done as follows (we omit the indices ¢ and n)

Kf )| < J IK(v, V)

2Ry, V)

1/2|f‘(v1)| d3vf
and by the Schwarz inequality
KfW)|> < (f R(v, v')| d3v’) (J K(v, v)| | f(v)]? d3v’)~

Using (3.25), (3.26) and the symmetry of K we obtain

10 = Par = (s [ kool (sp | Reovlae )71 o

v>R v’ eR3

R — .
We can now investigate the limit ¢ | 0 of the operator I, = —v, + K,. By
(3.11), (3.12) and (3.16) we have
ooV,
7.8 g (3.27)

O¢
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lim 6(V, ¢) = gauniformly in Vin any interval V, < V < o0, ¥V, > 0. (3.28)
€l 0

v, ~¢ ' — o0, ¢]0. (3.29)

These results enable us to apply the theorems which we proved for hard potentials.
We only have to replace ¢ by «.
We can define the strong resolvent limit 7, of I,. Again, I, has compact resolvent.
One can ask whether the ordinary (velocity-independent) Grad angular cut-off
and our modified velocity-dependent angular cut-off lead to the same limiting opera-
tor. This is a uniqueness question and is discussed in the next section.

4. Uniqueness and essential selfadjointness

The method of strong resolvent convergence is useful to construct a selfadjoint
limiting operator but gives no answer to the question whether different choices of
cut-offs lead to the same limiting operator. Typically, in another field of interest,
namely the theory of Dirac operators, the method has been used to construct dis-
tinguished selfadjoint extensions of a certain symmetric (in this case not semi-bounded)
operator [8].

To prove equivalence of different cut-offs, that is uniqueness of the limiting
operator, needs some more work. Indeed, we can show, for example, that Grad’s
cut-off and a velocity-dependent cut-off give rise to the same limiting operator. We
introduce an additional cut-off by restricting V to an interval [1/M, M], M > 0.

In the following, the indices 0 resp. ¢ refer to Grad’s resp. our velocity-dependent
cut-off for a soft potential. The index M refers to the cut-off in V. For ¢ > 0 we can
find 6, 0’ > 0 so that

;—55'9(1/,3)3’—2{—5' @4.1)

and to 6 > 0 we find ¢, ¢’ so that

oV, ¢) < g — 8 <0(V,¢) 4.2)

uniformly for Ve [1/M, M]. This follows from (3.28).
Denoting the resolvents (at a point 4 > 0) of I; ,, resp. I, ,, by R; ), resp. R,
it follows from the above results that

lim (f, Ry pf) = lim (f, R, i f) = (f, Ry f), SfEH. (4.3)

al0 el0
R, p 1s the resolvent of a strong resolvent limit [, ,,. From (4.3) it follows that
R; y resp R, converge strongly to R, ([5]. p. 452). Iy » 1s independent of the
angular cut- oﬂ'

In the limit M — oo, we get, using I, ,, < I, »p if M > M’, an operator I, .
If we first remove the V-cut-off we have I, \, — I;and I, ,, — I, in the strong resolvent
sense. As 0 resp ¢ | 0, we get operators /|, resp I,. We can now estimate the difference
Ry » — R, as follows

”(R T O)f“ “(Ro © Ro M)fH + ”(Ro M Re,M)f“ +
R w = R+ [(R, — R fe (4.4)
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To any given ¢’ > 0 we can find an ¢ > 0 and M > 0, so that each one of the
four norms on the right hand side of (4.4) is less than ¢'/4. Similarly, we can estimate
Ry, —Ry.Thusl, , =1, = I.

Another approach to the uniqueness question would be to prove essential self-
adjointness of I on a certain domain of smooth functions, say on Cg§ or £. From
Pao’s work we can deduce that this property should hold on . & are the ordinary
elements of the Schwartz space transformed to J, that is, multiplied by w ™~ /2. This
is now the point where we do not quite understand the work of Pao. On p. 579 it is
claimed that / is essentially selfadjoint since it is symmetric and negative. However,
this is false. There could be a lot of selfadjoint extensions and not all of them bounded
from above! So far as we can see through the work of Pao it follows that I (closure
of IT &) has a compact resolvent and that its eigenfunctions belong to . But
whether I is selfadjoint and the eigenfunctions form a complete set seems not to be
evident. Pao decomposes I with respect to spherical harmonics: I = @2,1,. He
constructs then a compact, ‘approximate’ inverse B, of I, — N (N > 0, large enough)
satisfying

B, —N)c1+R, 4.5)
R, is bounded with ||R | < const/N,sothat1 + R, hasa bounded inverse if N is large
enough. Unfortunately, Pao writes "=’ instead of <’. It follows from (4.5) that
(Null B, = {0})

d,— N)"' = (1 + R) 'B, (4.6)

which means that both sides are equal when acting on elements in Ran (I, — N). For
I, — N to be selfadjoint it is necessary and sufficient that Ran (I, — N) = 4, or
equivalently Ran (I, — N)I &, = #,.

A sufficient condition for the second statement would be Ran (1 + R)™'B;
L) < &, so that &, = Ran (I, — N). We have not proved this. It is likely, but
should be verified, that it follows from the properties of the symbols associated with
R, and B, in the language of pseudo differential operators used by Pao.?)

Once the essential selfadjointness on &, or even better on C’ or 2, is established,
one can expect that it is no hard problem to show that, by the method of strong
resolvent convergence, one actually constructs a selfadjoint extension, which is then
unique. For all limiting operators which we have met so far one can show that
Cy or Z < D(I,) (see also a remark in section 3). It is likely that a similar result holds
for &.

5. The radial integral cut-off reobserved

We have discarded the radial integral cut-off because it had some unruly proper-
ties. Now, however, we can make some statements about spec(,). As before, we
consider the case of a soft potential, but it would be possible to treat hard potentials
in a similar way. First, I, = —v, + K can be defined as a selfadjoint operator, for
example, as it will be done below as a strong resolvent limit of certain cut-off operators.

*)  See Note on p. 903,
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For ¢ fixed, we introduce a cut-off according to
0V,e) = 0,(V,0) V<20 2% = Vye)
6V, ) = OV, ¢) V > Vo(e)

so that, by the propertles of =1 0,(Vy(e), 0) = B(Vo(s) ). As 10, B(V,¢)1
0,(V, 6) and I, — I_in the strong resolvent sense. I, is the collision operator asso-
ciated to A(V, 8) We have I.= —7, + K, with K, compact and

v (v) = nazj v — vi|w(v,) d*v, + n6?V,y(e) w(v,) d’v,.
V <Vol(s) V>Vo(e)
Min #(v) = #,0) — v,(0) as & | 0 since V() — oo. Since I, < I, we see that the
spectrum of 7 in the gap (—v,(0), 0] is purely discrete, despite the fact that K is not
relatively compact with respect to v (v). As ¢ — o0 we would recover our limiting
operator I, again. o, (I,) = (—o0, —v,(0)] because we can find a sequence f,,
I £,] = 1, with ||(Z, — 2)f,|| — 0 for A in this interval. For f, we can choose

4m\ 112 1
fv) = (—{{) ¥, v — v < =

n
Jiv) =0

v, 1s any vector with v(v)) = — 1. f, converges only weakly to 0, but by means of
Drange’s estimates we can show that | K, f,| — 0 strongly, although K is not com-
pact. Since the functions f, have compact support it is sufficient that K P, is compact,
where Py projects on the functions with support in some ball of radlus R Obviously,
|(ve = S| = 0, n— oo, and therefore ||(I, — 1)f,| — 0.

Note added in proof

Professor Y. Pao kindly informed me that the selfadjointness can be proved
rigorously by the Pseudo-diff. operator formalism. The proof is simple, consisting of
applications of inequalities for the symbols of the Pseudo-diff. operators as given by
Pao. One proves that Ran (/, — N)I' &, is dense.
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