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Light cone sum rules for single-pion electroproduction’)

by S. Mallik

Institute for Theoretical Physics, University of Berne, Sidlerstrasse 5, CH-3012 Berne, Switzerland

(25. VIL 1977)

Abstract. We derive light cone dispersion sum rules (of low energy and superconvergence types) for
nucleon matrix elements of the commutator involving electromagnetic and divergence of axial vector
currents. The superconvergence type sum rules in the fixed mass limit are rewritten without requiring the
knowledge of Regge subtractions. The retarded scaling functions occurring in these sum rules are evaluated
within the framework of quark light cone algebra of currents. Besides a general consistency check of the
framework underlying the derivation, we infer, on the basis of crude evaluation of scaling functions, an
upper limit of 100 MeV for the bare mass of nonstrange quarks.

1. Introduction

It is well-known that causality of current commutators can be exploited [1, 2]
to write down light cone dispersion relations (LCDR) and light cone sum rules
(LCSR) for their Fourier transforms. Such relations, in general, involve subtraction
constants depending on the behaviour of the commutators on the light cone. The
quark light cone algebra of currents [3] allows these constants or the retarded scaling
functions to be expressed [4] in terms of matrix elements of quark bilocal operators.
Since the bilocals are not described by free quark fields, it is, of course, not possible
to evaluate them without detailed knowledge of quark interaction. Nevertheless, it is
possible to extract some model independent information about them from certain
sum rules satisfied by the absorptive scaling functions.

The LCDRs and LCSRs involve, in general, both timelike and spacelike values of
masses of external currents, making it difficult to apply them phenomenologically.
One has, therefore, to consider the limit of fixed mass in the dispersion integrals. The
procedure [4] consists in subtracting out from the amplitude a Regge piece corres-
ponding to some of the leading J-plane singularities of the fixed mass amplitude,
such that the sum rule for the subtracted amplitude allows one to go to the fixed mass
limit. These relations are then a useful source of information on the scaling functions
from a phenomenological point of view.

The present work consists in studying sum rules for amplitudes involving the
electromagnetic and the divergence of the axial vector currents. These amplitudes
are related to the exclusive one pion electroproduction process. In addition to the
LCSRs (to be referred as superconvergence type sum rules) we also consider low
energy type sum rules obtained by combining low energy theorems [5, 6] with
LCDRs.

") Work supported by the Schweizerische Nationalfonds.
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It is easy to realize that the Regge subtraction involved in these sum rules is an
extremely delicate affair. In the language of finite energy sum rules (FESR) [7], when
the Regge piece, R, is extrapolated in the low energy region, it is the deviation from
average duality (the deviation is expected since we have not included all singularities
in R) which gives essentially the scaling function. A tolerable accuracy at the level of
non-leading singularities is indeed hard to achieve even in the best known case of
Regge parametrization, namely, NV scattering, not to mention pion photoproduction
where simple high energy Regge parametrization fails drastically to satisfy FESR [&].

To avoid the difficulty with Regge subtraction in the superconvergence type sum
rules, we eliminate the Regge piece between the original sum rule for zero pion mass
amplitude and the corresponding one for the on-shell amplitude. The sum rules in this
form have the additional advantage of showing explicitly that all terms are formally
of the order of m2. These are then trivially satisfied in the chiral limit.

Because of the presence of divergence of the axial vector current in our amplitude,
the bare mass of the nonstrange quarks, m,, appears in the scaling functions. This is
one of the parameters responsible for chlral symmetry breaking. One expects that a
numerical evaluation of our sum rules would not only allow a general consistency
check of the framework involved in their derivation but also a quantitative determina-
tion of m,. But since we do not wish to commit ourselves to any specific model, we
are forced to estimate the retarded scaling functions from just a few integral relations
for the absorptive scaling functions. Because of this difficulty, we can only argue for
an upper limit to »,.

Although the present work assumes exact scaling as given by the quark light cone
algebra of currents, it is easy to modify them if scaling is violated. We discuss this
possibility in the context of asymptotically free gauge theories [9]. The singularity
structure of the commutators on the light cone predicted by these theories is slightly
smoother than the canonical singularity given by the light cone algebra. As a result
all the light cone sum rules of this paper will remain valid in these theories with the
retarded scaling functions being calculated according to such theories. From the
behaviour of the moment integrals over the structure functions, it can be readily seen
that the retarded scaling functions in the truely Bjorken limit is proportional to the
integral over the absorptive scaling functions and hence are not expected to differ
much from that given by the light cone algebra. In particular, the parameter m, in the
scaling functions may be interpreted [10] as the quark mass relevant in the non-
asymptotic but approximate scaling region. In the fixed mass limit, however, the
situation is more complicated.

Section 2 deals with kinematics of the process considered. We also discuss the
constraint on the invariant amplitudes imposed by current conservation. In Section 3
we write the generalized Bjorken limit of our amplitude in terms of the matrix element
of the quark bilocal operator, decompose the latter in terms of form factors and
finally derive the scaling functions for the invariant amplitudes in terms of these form
factors. In Section 4 we rederive the low energy theorems for the invariant amplitudes
free from kinematic singularities. We write down the light cone sum rules (low energy
and superconvergence types) in Section 5. In Section 6 we eliminate the pion pole
contribution in ¢ channel, when present, from both sides of the sum rules. This
not only provides a partial check on these but also serves partly to carry out the Regge
subtraction to be performed in the next section. We then go to the fixed mass limit of
these sum rules in Section 7. We also eliminate the Regge subtraction from the super-
convergence type sum rules. Section 8 deals with the numerical evaluation of these
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sum rules. In Section 9 we review the assumptions made in the derivation and
evaluation of the sum rules. We then briefly compare the present sum rules with other
works. Finally an appendix contains sum rules satisfied by the scaling functions and
their rough estimates based on these.

2. Kinematics
The present work studies the matrix element?)
el” =1 j dx ¢'®p, | 6(x°)0,42(x/2), Vi (=x/2]|p1de,, 2.1)

representing the ‘process’ depicted in Fig. 1. 8,4 (x) and V% (x) denote the divergence
of the axial vector current of isospin index ¢ and the electromagnetic current carrying

Figure 1
The “process’ N(p,) + y(k) = N(p,) + "3,47°(q).

momenta g and k respectively. p, and p, are the momenta of the initial and final
nucleon respectively. As a maximal set of four-vectors we choose

P=Lip,+py), O=1k+q), A=p,—p, =k —q.

It will be convenient for us to work with the following set of independent scalar
variables, .

v=P-Q, t=A* k% 4.

Of course, for the physical pion and photon, g*> = m2, k* = 0.
The most general form of the above amplitude may be written as

e, T = z Uia(p,)Nu(p,)

where

N, = iysek Ns = —iyse

N, = 2iysq-e N, =iykq-e
N, = 2iysk-e Ng = iysk-k-e. (2.2)

The amplitudes U, have been shown by Ball [11] to be free of kinematic singularities.

) OQurconvention for metric and y matrices is that of J. D. Bjorken and S. D. Drell, Relativistic Quantum
Fields (McGraw-Hill Book Company, New York, 1965). For other definitions and conventions, we
follow Reference [13].
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The isospin structure of the amplitudes U, is
U, = dMU™M + a U + a®U©,

where
= =4[ 7], @ =31

We shall also use the abbreviated notation
/Vi(a) = a(Pz)a(a)Niu(Pl)a «=+,—,0.

We shall omit isospin index in an equation when it is valid for any of its values.
Current conservation

oVt (x) =0,

u' em

results in the Ward identity
k,T" = — J'dx e™ 3(x)p, | [6,420), VE(=x)]|p>

= — BH)ia(p,)ysu(p,), (2.3)
where, and in the following, the factor f enables us to combine results for isospin
(+), (—=) and (0) amplitudes in one expression; *® = 0, g7’ = 1, and

H(t) = 2mg (1) + th ,(2). (2.4)

Contributions from Schwinger terms which may be present in the above commutator
are assumed to cancel with contact (seagull) contributions which are implied to be
present in e, T* to make the retarded amplitude covariant. g,(7) and 4 ,(?) are the
usual axial vector form factors

P2 1 450) 191> = (p2) 5 3,040 + (B2 = PO)haOW5u()) @3

Equation (2.3) now yields the following constraint among the amplitudes U,,
(U k* + Uy2P -k + Us2q-k + U 2k?)ia(p,)ysu(p;)

+ (= Us + UgP-k + U,q-k + Ugk®)iti(p,)ysku(p,)
= — BH®)iu(p,)ysu(p,). (2.6)

For non-zero k, and g, the two kinematic covariants in (2.6) are independent and the
above equation splits into two separate constraints,

(U, + 2U)k* + U,2P-k + U,2q-k = —BH(1), 2.7)
—Us + UgP-k + U,q-k + Ugk® = 0. (2.8)
Amplitudes for physical pion scattering (we denote them by U/") are recovered from
U, by extracting the residue of the pole at g = m?. Since H(?) is independent of ¢°,

the equations of constraint for U are the same as those of U, with H(?) replaced by
zero. '

The crossing symmetry relations for the absorptive part of U, (denoted as U,)
under v — —v with k%, ¢?, ¢ fixed are

Ugi,O)(V’ kz’ q?—, t) = (ia +)§iUi(—v: kzs qza t)a (2.9)
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where
(= +1fori=3,57,8and{, = —1fori=1,2,6.
Also
T, + 20,0500, k2, g%, 1) = (£, +)(T; + 20,)*0. (2.10)

Contributions from the nucleon intermediate state to U{**? are shown in Table I,
where we have included terms finite at the nucleon pole along with the pole terms.

Table I
Contribution from nucleon intermediate state to the invariant amplitudes. Finite contributions are
retained along with pole contributions. We use the abbreviation P, = (1/(2P + ¢)-k) F (1/(2P — q)-k).

isospin
amplitude (+,0 fe<)
U, G(FP® + 2mFy*)P + g Fy* g(FY + 2mF})P_
U, —gFyipP, —gFiP
U, —39F}°P_ —39FiP,
U, —39F° +2mFy°) — 39,F7° —2g(F{ +2mF)P_
Us 0 g ] +2gF;
Ug 29F3 P, 29F,P_
v 9F;°P- 9EFsP.
Uy 0 0

The finite parts are needed for deriving low energy theorems in section 4. The corres-
ponding pole contributions to U are obtained by replacing 9(q*) =
3[2mg,(¢*) + q*h,(g*)] by g,, the renormalized pion-nucleon coupling constant.
H(?) and ¢(¢) are essentially the same function, H(f) = 2¢(f). We also note for later
use that H(7) satisfies the well-known unsubtracted dispersion relation

2ad o p, 1(:)=%J°O ImH(t)

H(?) = dr’ 211
0 = =il @1

T

which is basic to the derivation of Goldberger-Treiman relation, f,g, = mg ,(0),
f, bring the pion decay constant. Fj; = F}5(k?*) appearing in Table I are the
electromagnetic form factors of the nucleon,

P2 | Ve 0) [ p1> = a(p)[y*(ra FY + FY) + i0*(p, — py)y(t3F3 + FS)]I(!EPI%
the form factors being so normalized that F}>*(0) = 1, F}>5(0) = k**/2m, x* = 3.70,
kK= —0.12.

Because of relations (2.7) and (2.8), it is possible to eliminate two of the U,’s. The
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conventional ‘gauge invariant’ amplitudes result from elimination of U, and U,

gLt = Z Via(p,)Ou(p,) — IO

ok iw(p;)ysq-ew(py).

where

0, =3iys{v.v} Oy =2iys({y, P} — m/2{y, »})

0, = 2iy;{P, q} Os = —iysik, q}

0, = iys{y. 4} O = iysik, 7}
with {a,b} = a-eb-k — a-k b-e and

V,=U,/q:k Vs ——(U + 2U,)/q-k

V,=-U, Ve = U,. (2.13)
Thus elimination of U, is achieved at the cost of introducing kinematic singularity
in V, and V5 at -k = 0. Because e, T* involves 0,4 and not the operator for the
physical pion, it cannot be expressed entirely in terms of the ‘gauge invariant” ampli-
tudes V, [12]

Let U, (V) denote amplitudes from which the nucleon pole contribution is sub-

tracted out ie. U = U + U,. If , and k denote the residues of ¥, and ¥ at
q-k = 0, then

oy = = (72 | q k=0> Ks = — (ﬁi + 264)|q-k=0' (2.14)

Adler has shown [13] that the requirement, that the kinematic singularity at g-k = 0
should not be present in the matrix element in the physical region, yields,

2 = 0. (2.15)
The constraint equation (2.7) at g-k = 0 then reads
Kksk® + 29(¢°)F;f = BH(). (2.16)

This relation will be required in section 4 to convert low energy theorems for U; to
those for V.

3. Generalized Bjorken limit

We now determine the behaviour of the invariant amplitudes in the generalized
Bjorken limit, in which all the three variables v, k%, ¢* tend to infinity maintaining -
fixed finite ratios amongst themselves. This is achieved by setting [1]

Q= Q' + En, E— + o

where n, is a lightlike vector, n> = 0and Q’, P, A are kept fixed. In terms of the scalar
Varlables the parametrization translates into

=28,V — Ny, q = 28,v — n,,
where

&y =(Q +A2)-n/P-n, & = (0 — A2)-n/P-n,
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withv— oo and ¢, &,, &,, n,, n, fixed. We also define for later use
=0n/Pn= (& +¢&)2 ¢ =AnPn=¢ &, & =0nAn=Z¢EL_,
qg-k=2v—n, n=@0 tn +0/2

Under the assumption that the leading light cone behaviour of currents is canonical,
i.e. is the same as that for free quark fields of spin 1/2, it is straightforward to determine
the absorptive part of the amplitude (2.1) in the generalised Bjorken limit [1, 4, 14],

21m Tel
e Tﬂ _ iAEPn v
—)B] 41r die | Sl

- o0

(An)n, e, = euTl‘;j, | (3.1)

where
Ci(x) = C(x) + CL() + CO(),
with
ClE ) = (py | G(x/2v57, 70 AT Vg(—x/2)0(F, —=)a(—x/2)9,7,7s
A=%x/2) [ py, (3.2)

and
A+) 1 11
= ‘8"[’10'13]+ z‘\‘/—z('{s + \/2 Ao)éca

A( P _[AL’A3]— 4 Ec3k)'

1 1 14
A =_|1 —1 = — €.
8[”’\/3 8]+ 34

Here g(x) denotes a triplet of quark fields (up, down and strange) and m,, is the average
mass of up and down quarks. 4; are the SU(3) Gell-Mann matrices.

We have now to expand C (£.9 in terms of available second rank tensors.
Clearly, its symmetric part can be expanded in terms of two tensors, viz,

{'Ysg,waA1}, {ysg‘” %, Az}: (X‘ = x,uyﬂ)

where and in the following, the second symbol within each bracket denotes the
corresponding scalar form factor to appear in the expansion of C{;*®. We expand
the antisymmetric part in terms of 14 tensors®) which may be grouped into 4 classes
according to their x-dependence (we omit y, on the left, for short),

) The number of linearly independent antisymmetric covariants required to express C v 18 12 and our
choice has 2 in excess. It is not difficult to find 2 relations among them, e.g. one can express the 4-vector
N, = g,,,,p"A’x” in terms of the set of linearly independent 4-vectors, p,, A,, x, and y,. It is then
straightforward to convert the identities N,N, — NN, = 0, %(N,N, — N N,) = 0 into relations
among our set of covariants. But we have not succeeded in using such relations to eliminate 2 co-
variants without introducing kinematic singularities at x = 0 or A = 0. This situation will, however,
not cause any difficulty, as we shall at no stage require the linear independence of our set for x # 0.
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{a,uv’ A(B)}: {6-;:\:’ AS}’ {P“Av - PvAu’ A4}’ {A,u'yv - Av'yu’ AS}’
{Pu’})v o vau’ AG}’
{b%, — b, A} [P, — Py, A} {85 — A% A b

vou? vou? uy v
{'y‘uxv - ’yv'x,u’AQ};
{a,uvx5 A(S)}: {&qu,Alo}, {(PuAv - PvA,u)X’ All}’

{(A,U.‘YV - Av?,u)X’A12}= {(Pyyv - vau)x’Al.’»};
B, — by, Yok Ay :

{(Puxv - Pv'x,u)x’A14}5 {(A,uxv - Avxu)xﬂAl_’)}’

{(yu‘xv - yvxu)x ’ Alﬁ}‘
Here 6,, = 7,7, — 7,7,. The above set includes all possible kinematic co-variants
leaving aside those which are expressible in terms of this set without introducing
kinematic singularity at x = 0 or A = 0. Now since the local limit (x = 0) as well
as the forward limit (A = 0) of the matrix element C,, are well defined, it is possible
to choose the scalar form factors A;’s which are free of kinematic singularities at
x = 0 or A = 0. Our desired expansion may now be written as

i a(i‘,o)
Ciy (%) = #(p)ys—— [0 AT Y + g, % A5 + a,, 4550
+ (b,x, — b,x, )4 + a,, % A5 + (b,x, — b,x,) %A M u(p,), (3.3)

where 4/*'% = A4+ 9(Px, Ax/Px, t). By this choice of arguments of 4; only P-x
depends on x on the light cone. Inserting (3.3) into (3.1) we get

= im . - LS
e, T8, ¢ . 1) = ﬁ ) +Z_ i u(p)ysa®[g" AP + g 5 AP + aAQ)
(b"n" = b"n") (@) R~
Al mv (a)
* P-n i T Pn ®
b*n® — b’n* ~(a
D R p e, (3.4)
where
- 1 ([t b
A=A 6,0 = 5 d(P-x) e*" *K(Px)A,(Px, Ax/Px, 1) (3.5)

with K(Px) equal to 1, Px, (P-x)*fori = 1, (3); i = 2, (4), (5); i = (6) respectively.
In the generalized Bjorken limit, the invariant decomposition of the absorptive
part of the amplitude (2.2) may be written as

e, T* = Y ia(p,)ysa®[U¥Ene + 2UPP-e + 2T, + U,)“En-e
a=+,-—,0
—UPe + UPnP-e + (U, + Ug)?E’ne
By sa s m_ @ L =
t 15 ~Us + Us + 5 U; = Uy) | Are—3(U, = U)WEA-eJu(py).
(3.6)
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The scaling limit of the invariant amplitudes are now obtained by equating (3.6) and
(3.4) (omitting isospin index for short).

U, S, /v, 8; = %mq(u2ff3 + E_A, + AL)

U, = B, S, = —imqf_fﬂ

U, —+ S, S, = "“%mqfit

U4 ¥ §4a S4 = %qu'~4

Us —* S‘S, S‘S = %m (£_A4 )

U — Ss/v, 8¢ = —3m, (A + f Ay b

U, — 8, /v, S, = qu(As - 11)

Us = Ss/"a Sg = w%”’14(*’35 = /Tn)

Us +U,— S3,/v, Sy =dm (A, + 24, + A, + £_Ay)

U, +Ug— S,gh% S.5= %mq(ffz + Ay +24,,+ A, + E_A5). (3T

It is easy to verify that the relations among scaling functions (both absorptive and
retarded) given by current conservation constraints (2.7) and (2.8) are satisfied
identically.

4. Low energy theorems

Since we intend to make use of low energy theorems [5, 6] to write down light
cone sum rules, it is convenient here to rederive them for the amplitudes U;. The use
of U, rather than V; will allow us to obtain two new sum rules in the next section.

We evaluate the amplitude e, 7" as g, — 0 through the Ward identity

e, " = —i de e o(x°)py | [A2(x), VE0)] | P> e,

t]\fdx e*0(x°)p, | [47(x), V50 1 p1) e, (4.1)

The term with the equal time commutator, in the limit q,— 0, 1s

6e30{P2 | A5 | p1) = 1(py)ysa ™ (eg () — k-eh,(D)u(p,). 4.2)

The term proportional to g, receives contribution from only the nucleon intermediate
state in the limit g, — 0. These (both pole and finite) contributions may be obtained
from Table 1. Collectmg all the results, (4.1) becomes

euTﬂquo = pole terms + i#(p,)ysa' " (eg(k*) — k-eh (k*)u(p,)
+ 940)itt(p,)ys [{F3(k*)a'® + F5(k*)a "} ek — k-e)
— {Fi(k?) + 2mF3(k*)a " eJu(p,)
= pole terms + g, (O)F5(k*).A [ + F3(k*)N 1) — h, (kDN
+ [94OF{(K*) +2mF;(k*)} — g,(k*)]N 7 4.3)
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Let U; denote the non-pole part of U, in the limit g, — 0: U, = U + U.. Being free
of kinematic singularity at g-k = 0, U, are finite at g, = 0. From (2.2) we get

I — P, (a)
T, w0 =Y UP@ 4@ + ¥ O @
i,a i,a

= pole terms + Z I:(ﬁl —mﬁﬁ 1 ﬁz)(a) A/z(a)

I, A - =
+ (T4 Oy )i+ O @4
The desired low energy theorems now follow from equating (4.3) and (4.4):
Uy = mOs + 0,)*% = g,(0F;°(k?) 4.5)
Ul - (-)
(_2— + U, - mUS) = —1h,(k?) (4.6)
U7 = g, (O{F(K*) + 2mF5(k*)} — g,(k?) (4.7)

atg, = 0. As a check, we may verify that these expressions satisfy the constraint
equation (2.6) among U/’s in the limit g, — 0. The combinations of U;’s entering the
low energy theorems do not actually possess any nucleon pole contribution. Hence the
tilde (~) on them may be dropped.

Recalling (2.13), (2.14) and (2.15), the low energy theorems may more con-
ventionally be expressed in terms of V;:

PO = (O, — mOg)* 0 = g, (0F*(k?) #8)
—2mPV{) = — 2mO§) = — h (k%) + k{7 (4.9)
K2V = U — 2gF3(k*) = g, (0F(k*) — g,(k%) (4.10)

With the help of (2.8) and (2.16) it is easy to recognize the identity of (4.9) and (4.10).
We finally get the set of low energy theorems by collecting all evaluations of U, as
q,— 0:

(O, — mU )+ = g, (0)Fys(k?) (4.11)
o 1 ,
U = = 2 [9.6%) — g, Fi(k*)] (4.12)
U0 = — 59 =9 (4.13)
2 o 2m
U, +20) 7= - ki) = —h,(k* — V= [g.(k*) — g,(0)F(k?)]
4.14)

5. Light cone sum rules

We now write down the light cone dispersion relations (LCDR) and light cone
sum rules (LCSR) [1, 2] which are satisfied by the invariant amplitudes. These
embody the statement of causality of the commutator in (2.1) and may be looked
upon as generalization of fixed mass dispersion relations and sum rules. However,
contrary to the fixed mass case where the asymptotics is determined by the leading
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Regge singularities in the crossed channel, the asymptotic behaviour relevant for
writing LCDR and LCSR is that in the generalized Bjorken limit, which may be
thought of as originating from fixed poles in the complex angular momentum plane
of the crossed channel partial waves of the current amplitude.

Suppose an amplitude A(v, k* = 2&,v — n,, ¢* = 2£,v — n,, t) which is free
of kinematic singularities in v, behaves in the generalized Bjorken limit as

AW, k2, %, 1) & Si1& &, 1) (5.1)

where .S, is the retarded scaling function

I Y (S

S\(E ¢, p=P| o=
1(6,¢.,0 J_ T ¢

This behaviour then allows us to write a LCDR for 4,

+ o0 !
A, %, K2, £) = j a

r
oV —V

dé’ (5.2)

AV, ¢, k%0 + 8,88, 0) (3.3)

’

where a symmetrical integration over v’ is implied. If, however, an amplitude

B(v, k?, ¢, 1) behaves as
B(v, k*, ¢*, 1) TJ* APy (S ) /A (5.4)

then we not only have a LCDR,

2 2 R b e, 5 s
B(v, k%, q%, 1) = o, B0 kD (5.5)
but also a LCSR, |
+
f dvBO, %, k%, 1) = — S,(&. &, 1) (5.6)

a symmetrical integration being again implied in (5.6). '

The path of integration in the domain of the variables (v, g%, k*) appearing in
the above integrals is specified by the parameters ¢, £,, ,, #,. Since the low energy
theorems predict the amplitudes only at g, = 0, i.e. v = ¢* = g-k = 0, we must
choose the path of integration such that it passes through this point in order to make
use of them. This is achieved by choosing n, = 0, n, = — ¢, i.e. with

k> =28 v +1t, q*=2Ev, qk=2&.

It is then easy to incorporate the low energy theorems in the LCDRs to obtain the
following low energy sum rules:

[+ dy _ _
Y (U, — mUg) 90, ¢, k*, t) = g,(0)F9(¢) (5.7)
rf+ oo dv —(A) 3 5 1 . 5 8
. T US (V= q, k 3 t) = _“?[gA(t) - gA(O)Fl([)] ( . )
("7 dv 2o 2 22 +,0

TUé ’ )(vsq ak st) = - SE’Z ’ )(‘fsé—’l’) (59)
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jmd" U, + 2U)0, ¢ k2, ) = — —[ngA(t) + th (1)

— 2mg,(O)F{(N] — 28,(&, -, 0 (5.10)

The presence of retarded scaling functions in (5.9) and (5.10) is inferred from (3.7).
Note that the dispersion integrals in these sum rules do not include any nucleon pole
term.

Equations (3.7) also show that the amplitudes satisfying zeroth moment LCSRs
with scaling functions determined by the leading light cone singularity are U,,
U, + U,, Ug, U, and U;. We thus have the sum rules

j AU v, k2, g%, 1) = g(g®)R(* Vk?) — S5O, L, 0,

i=1,3+4%,678 (511)

The first term on the right is the residue of the nucleon pole (R, involves only the
nucleon electromagnetic form factors and may be read off from Table I). It is also
possible to write the first moment LCSR for the combination (U, + Ug)™*:? with
known scaling function. But we do not consider it in the present work as it is likely to
be sensitive to errors in the evaluation.

6. Elimination of pion contribution

A remarkable distinction shows up between the light cone (variable mass)
dispersion relations (and sum rules) and the fixed mass ones in the way they treat the
t channel singularities. The (fixed ¢) fixed mass dispersion integrals do not get any
contribution directly from the 7 channel singularities, but shows up their presence
by the divergence of the integral as the singularity in £ is approached; the integral thus
requires analytic continuation to cross the singularity. On the other hand, the (fixed )
light cone dispersion integrals get contribution from ¢ channel singularities for all
value of ¢ through the mass dependence of form factors and do not require analytic
continuation to cross such a singularity.

The pion pole in ¢ channel is unique in its proximity to the physical region, its
largeness of contribution and its being the only surviving contribution in ¢ channel
in the chiral limit. Also its contribution to the amplitude and the scaling function is
essentially known [4, 15]. This motivates us to eliminate this singularity from our
light cone sum rules and view the resulting ones as constraint among other unknown
or less known singularities. This task we wish to carry out below. The pion pole
elimination also serves as a partial check on the correctness of our sum rules. More-
over, it will carry out in part the Regge subtraction to be performed in the next section.

We first identify the 7 pole contribution to the absorptive part of the full ampli-
tude (Fig. 2). Denoting pion contribution by the subscript 7, we have

o TH — ig, u(py)yst u(p,)
i mZ —t

Wwee (6.1)

u

Y Uses =Us + U,
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P2 q,-,\v"
A-q-k
P1 k
Figure 2

The pion pole in ¢ channel.

where

wes = 51;; de €0 | [*A5(x/2), VH(—x/2]| n% A = g — ke,

= (q-eW, + k-eW4)£ec3a (6.2)
so that
3
e#T‘g Igru(pl)ySS[T_ : ]u(pl) (q €W + k €W4) (6.3)

Referring to the invariant decomposition of the amplitude (2.2) we get

)19r

— . 1 g, _
=g Ve Ul =g W (64)

ey

QI

The properties of the vertex functions W, and W, are investigated in detail in
Reference (15). We briefly describe those which we shall require. In the Bjorken
limit (6.2) becomes

(W, + W, n-eE - 3‘3“ 2imy [ di e*? "D*n n (6.5)
¢ 4° B 4n ) B
where
D, (x)
= <0 | g(x/2)ys7,7,A7q(=x/2) + q(=x/2),7,7sAq(x/2) | n*, A = q —(6k6>)
With the decomposition
i c3a 2f d A 67’
iD, (%) = % [,y (A3) + (5,8, = %,A,) dy(A- )] (6.7)
q
equation (6.5) becomes
G(So)
6.8
Ws + W) —> Bi EA-n ©38)
where

G(&,) = zfn"%% [&3(50) - ‘14(50)]- (6.9)
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Here d,(£,) are the Fourier transform of d,(A - x),

+ @ :
d(&) = H d(AA-m) €% "d(AA-n), i= 3,4 (6.10)
n —
satisfying the sum rules
+1/2 . +172 .
j déod3(éo) =1, j déod4(£o) =0
—-1/2 -1,2

41,72

+1/2
J d'fo(fo + %)33(50) = %: J

-1/2 —1/2

48y + D,y = 1(—1 + "”—i)
6 my,
(6.11)

Current conservation applied to (6.2) gives

q-kW, + k*W, = 0. (6.12)
Defining now the scaling functions for W,,

- G.

7, G
(6.8) and (6.12) yield

G3(&,) = (26, + DG(&)

G,(&o) = —2£,G(&))- (6.14)
Clearly W, satisfy a LCDR and a LCSR. In terms of the variables

vi=A0=<C v -

k* =28 v —ny = (& + v, — {,

q* =26y —n, = Q2 -y, —{,

i=3,4 (6.13)

these are
+ 0 d ’ _
Wy, k2 q%) =J M W, gt k), i=3,4 (6.15)
- V1 T V1
_ +1/2 G '
j o, W(v,, k2, ¢*) = — J A%y g (f"é Ci=3,4 (6.16)
— 142 0 0

Comparing (3.6) and (6.4) we find that of all the scaling functions only the one for
(U, + U,)'") possess the pion pole, which from (6.8) is

) 1 1 +1/2 a4
8y, =2 @) = =t J e G(&o) | 6.17)

2 2 ’
dm; — t dm; — 1t J_,,5 T

We also note the low energy theorem related to pion decay which is obtainable from
the Ward identity for the full amplitude e, W*. As g, — 0, we have

W@ =0,gA=0=—f,. (6.18)

We are now in a position to identify the n pole contribution in ¢ channel in our
sum rules. It is now clear that only the sum rules for (U, + 2U,)and (U, + U,)"™’
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receive 7 pole contributions. Consider first the one for (U, + 2U,)'™’ given by (5.10).
Equation (6.4) shows that © contributes to the left hand side an amount

1 g dv 1 g
- r 2 f2 12 r
4m? —t W( K7) = 2m? —t

T

W,v=gq¢>=0,k*=1 (6.19)

where we use (6.15). Again the = contribution to the right hand side in /4 ,(?) is

29, fx
mi —t

which, by the low energy theorem (6.18), is identical to (6.19). Cancellation of =
contribution then leads to

+ 0 d
f = (U, + 22U, ¢ K D) = - [2mgA(0)F"(z) ~ 2f,g, — 0] - 25,
o (6.20)
where I(7) is defined in (2.11). The removal of = contribution is denoted by a prime.

Next, the ¢ channel n contribution on the left of the sum rule (5.11) for
(U; + U)7is

1 g e = 2 2
_— dV(W3 + W4)(V,k »qd t)

4m?* — t

— Q0

1 | B - _
T 15_,[ dvi(Wy + W)y, k*(vy), ¢*(v)), 1)

_ 1__g, L[ e O
—t& ~i/2 ‘ 50 — &

which is indeed the negative of the pion part of the scaling function for (U, + U,)'™’
as may be seen from (6.17). After elimination of 7 pole contribution the sum rule
becomes

de(Ué + U0, ¢%, k2, 1) = g(g*)RS,) — S5, (8.8, 1) (6.21)

7. Fixed mass limit

Since the light cone sum rules written above do not allow a ready evaluation of
the dispersion integrals occurring in it, we have to cast the dispersion integrals in a
form where the masses of both the axial vector divergence and the photon are held
fixed, i.e. we have to interchange the limits £, , £, — 0 with the integral over v [4].
The possibility of this interchange is governed by the singularities in the J-plane of the
crossed channel partial waves of the fixed mass amplitude under consideration.

Calling any one of the U/s or their combinations appearing in the sum rule as
U, let

U—> UR = Z 'yj(qz = —nz’kz = —1, 1) yal

R Ej?a‘.o

be its behaviour in the Regge limit. (Note that &;(f) may differ from the actual Regge



840 S. Mallik H.P. A

Table II

High energy behaviour of invariant amplitudes from usually accepted Regge poles and fixed poles.

Regge behaviour Fixed pole behaviour

W
amplitude (0) (+) (=) ©, +) [~
U, ye— 1 yro—1 y®a,—1 e !
U, el yas—1 yro=1 yaa~ 1 yan—l a2 32 5=
U, R v vy, B 1 vl constant
U, yee, yoB yie Vi pta T 1 yon vyl constant
Us Ve yoo vEay, yra~ 1 y~! constant
U, yae—1 yro~ 1 N R T g1
U, yon—2 oo =2 Vaa— 1 yaa, =2 yi 2
U, =2 yro—2 yEa =1 pea,—2 1 5<%

trajectory function by 1 or 2 units. See Table II.) It includes asymptotic pieces from
both Regge poles and cuts (in the latter case y; may also have /nv dependence) above
a, (to be specified below). Then the above light cone sum rules rewritten for the
amplitude

U =U — U,
will allow us to pass on to the fixed mass limit. Clearly, for the low energy sum rules
(employing dispersion relation) a, = 0 and for the superconvergence type sum rules,

oo = — 1. The general form of the subtracted sum rules in the fixed mass limit are
then

+00d -
J 7" U, k*=1t,8=0,0)=U0v=qgk=0k>=t1+S(@), (1

— 0

and

+ o0
f SO G = @ = —11y, 1) = 9@ = ~n)ROE = —) — SO,
. (72)

for the two types respectively. S'(¢) is the retarded scaling function for U".

Table II shows the high energy behaviour [16] of the invariant (fixed mass)
amplitudes in terms of the usually accepted Regge pole trajectories. (The table also
includes the asymptotic behaviour of amplitudes in terms of a fixed pole which may
exist at the highest right signature non-sense J value in the crossed channel partial
wave expansion of the amplitude.) It is now clear that the low energy sum rules (5.7)
and (5.8) employing LCDR for (U, — mU)'™ ® and U™ and the superconvergence
type sum rules for U{™® and U do not require any Regge subtraction for
t ~ 0 in the fixed mass limit, while all others do.
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We now use the PCAC choice of pion field [17]
0,4L(x) = fumz,.(x),
and the ‘exact’ Goldberger-Treiman relation

f29,(0) = myg ,(0),

where g,(0) in the off-shell (m2 = 0) =N coupling constant. This allows us to convert
the amplitude involving d, 4" into off-shell n-electroproduction amplitude (denoted
by superscript 7). Equations (7.1) and (7.2) then become

2J @[mgf‘(o) T, g2 = 0,k = 1,1)

mm,+m2/2 ¥ g, gr(o)
- 2 1@ =0,k =1, t)vﬁi“)} (7.3)
ﬁjao
=Uyv=qk=0k*=1t10+S()
and
o0 0 _
2f dvli’—ng“‘—()iU”(V,kz= _m,q2= —15, 1)

mm,,+%;(2m.,2,+t+:;1) gr gr(o)

- 2 & =—-n.,¢ =0, t)v&f"’}

%= —1

= mg,(RK> = —n,) — S'() (74)

We shall employ Adler’s model [18] for off-shell continuation to evaluate
[9,/9.(0)]U"(v, ¢* = 0) (see Section 8).

The sum rules (7.3) and (7.4), as it stands, are not very useful in practice. As
mentioned in the Introduction, the available Regge fits for photo-production
amplitudes do not at all extrapolate the low energy region (in the sense of FESR) to
the accuracy demanded by the above sum rules. If one insists on using the available
Regge parametrizations to evaluate these sum rules, the large discrepancy between
the two sides of the corresponding FESR will effectively show up as a huge contri-
bution for the retarded scaling function and our estimate for the latter will turn out
to be hopelessly wrong.

To eliminate the Regge piece from the superconvergence type sum rules, we just
note that a similar sum rule for on-shell pion scattering amplitude reads

2J~ dv I:Un(v, kK= —n,,¢ =m0
mmy + (mz+1+n1)
- 2 Bk = —ny.q* = mg, t)V“f“’] = g,RK* = —n,) (1.5)
ajz—1
which may be obtained directly or by equating the residue of the pole at g> = —n,

= m? on both sides of (7.2). p; denotes the Regge residues for physical pion scattering.
Assuming a dispersion relation for y,(¢*) in the unsubtracted form (since it is essen-
tially the matrix element of d, 4*) and that the absorptive part is resonance (say 4)
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dominated, we may write

fam: 2 ¢

v(q*) = FL5 Bim) + —— (7.6)
J i — a2 7 m:’il _ qZ

(where C, is a constant), which at ¢ = 0 is

2a> = 0) = fB,(m2) (1 + ]%) (7.7)

Here d(=C /ﬁ ) is assumed to be the same for all Regge trajectories contributing to a
given amphtude We further assume &/f, m? 4, < 1, and eliminate the Regge piece
between (7.4) and (7.5) to get

Z[fnj U, (v, k* = —n,,q* = m>, 1)
mme+ Hmz+t+1n1)
_ mgA(O)j g, UK(V, k2 — -1, qZ e 0’ t)j|
9y gy B BBy Brl0)

(7.8)
= (f.9, — mg,0) R + S(1).

It should be noted that the retarded scaling functions in these sum rules, if non-
zero, amount to fixed poles in the J-plane of the current amplitude. Our sum rules
thus assume the behaviour of the current commutator on the light cone as the only
source of fixed pole contribution.

Clearly in the chiral symmetry limit, m, ~ m2 — 0, each term in the sum rule
(7.8) 1nd1v1dually goes to zero. We note that a snmllar method of elimination of the
Regge piece cannot be used for a low energy sum rule, since there will appear the
on-shell amplitude at v = ¢g-k = 0, which is not easily known.

We now write down the final form of our sum rules at k> = ¢ = 0. The ones of
low energy type are

)
= 9 2
(7.9)

40  dww g
L II): - *_ Im(UT —mUZ)HOW, ¢*> =0

m

4=  dww
mnfj I U= W, ¢* = 0)

n m+mg ” — m2 gr(o)
_ 9o ey 94(0)
= (F1 (0) gA(O)) (7.10)

4 (=  dww ()
- s =) — W,q* =0
WJ+WRW”—— bn[ Yo = L 2T RP} (W, ¢* = 0)

m

= 9 2 (OFY(0) — I'0) — 25}) (7.11)

mg 4(0)



Vol. 50, 1977  Light cone sum rules for single-pion electroproduction 843

while the superconvergence type sum rules may be written in the general form

2 [e 0]
(IV-XI):]T f dWWIm [U}‘(i’o’(W, q> = m?)
m+my

— a2 ypEow, g = 0)} = g, RA + Sjif, (112)
9,(0)
Here RP denotes the Regge piece to be subtracted out before going to the fixed mass
limit, A measures the discrepancy in the Goldberger-Treiman relation, A = 1 — 4
where 4 = mg ,(0)/f,g,. The pion pole is understood to have been eliminated from
both sides of the sum rules (even if it does not cause divergence of the integral). The
details of the superconvergence type sum rules are given in Table III. As (U; + U,)
has no definite symmetry under v — —v with masses held fixed, we have chosen to
write the sum rule for the combination U, + U, + 2U,) which is even and odd for
isospin (+, 0) and (—) respectively.

Table IIT
Details of the superconvergence type sum rules. See Equation (7.12) in the text.

Invariant Scaling
Sum rule amplitude R, function
v U 1 +«° B
\ UL K®/m S
VI g K'/2m 55
VII A 0] e
VIII QU, + U, +2U,)™" -1 S$14
X U K/2m S
X Ug” 0 S
XI QU, + U, + 2U,)® -1 SO,

As already mentioned, the degree of accuracy required to evaluate the Regge
piece (RP) in sum rule (7.11) is out of question at present. We therefore leave it out in
our numerical evaluation in the next section. It will be recalled that sum rules (I), (II)
and (III) are exactly the ones obtained originally [5, 6] on the assumption of un-
subtracted dispersion relations for the relevant amplitudes. These sum rules thus
receive no correction from the behaviour of current commutators on the light cone.
The low energy sum rule (5.9) for U™ ® has dropped out from our list as the entire
amplitude U, (as also its scaling function) is zero at ¢g*> = k? = ¢ = 0.%)

8. Numerical evaluation

The off-shell invariant amplitudes are evaluated using Adler’s model [18]:
pion mass is set equal to zero everywhere in the kinematic factors and the multipoles

*)  This follows by relating U, to the isobaric frame amplitudes. See, for example, Reference [13].

a
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corresponding to mass zero external pion are related to the physical multipole by

gr(o) WZ _ mZ 1
= 1 My (g = m}) (__Z—WZ_ ’

where .#', stand for any of the magnetic, electric or longitudinal multipoles and ¢
1s the magnitude of N centre of mass 3 momentum.

The longitudinal multipoles®) are evaluated by extending their known pro-
portionalities to the electric multipoles at zero 3 momentum of photon [13] to non-
zero 3 momenta as well. As pointed out in Reference [6] this, of course, is a source of
much uncertainty in the evaluation of those sum rules where the longitudinal multi-
poles are the major contributors. As can be seen from Table IV this is the case with
sum rules II1, VII, VIII, X, XI.

The values of the physical constants used in the numerical evaluation are
m=672m,g,0) =125, = 0.665m_ and g = 13.40, giving [20]

mg ,(0)
f29.

9,4(0) is evaluated by using a dipole from factor for g ,(f) with m, = 1 GeV [21].

The evaluations are shown in Table IV. For completeness, we have also evaluated
the three old low energy type sum rules (I, II and III) with the new multipole fits to
the photoproduction data. The multipole analysis of Crawford et al. [22] has been
used to evaluate the integrals appearing in the sum rules, restricting the ¢m energy
up to 1.8 GeV and the orbital angular momentum of the multipoles up to 3. These
numbers are shown without bracket in the table. To see how different analyses
compare with one another in the evaluation of the integals, we have also evaluated
these with the multipole analysis of Moorhouse et al. [23].7) These are shown in
brackets in the table. The discrepancy between the two evaluations is, perhaps, a good
measure of the error involved in the current multipole analyses.

The sum rules are in fair agreement with our estimate for the magnitude of the
retarded scaling functions, given in Appendix (A19, 20). Note that the scaling
functions for isospin (—) amplitudes do not involve the quark mass m, explicitly.
The estimate for isospin (+, 0) scaling functions are written for m, = 10MeV. Thus
even if our estimate for the scaling functions are too large by a factor of 10, the value
for m, cannot, on the basis of our crude evaluation, exceed 100MeV. This bound, of
course, satisfies other determinations of m, [24, 25, 26, 27].

%zi(qz = 0)

A=1-

= 0.058 £ 0.013.

9ﬁ. Conclusion

Our work describes the derivation of light cone sum rules for the current com-
mutator involving electromagnetic and divergence of axial vector currents and the
limiting cases of these for which both current masses remain fixed. We then find it

®)  Devenish et al. [19] have performed a multipole analysis of pion electroproduction. However, their
parametrization for the longitudinal multipoles do not respect the above mentioned proportionali-
ties with electric multipoles at zero 3 momentum of photon.

7y  The tables of partial waves in Reference [23] does not extend up to threshold. Evaluation over the
missing region is carried out with the analysis of Crawford et al. [22].
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|
necessary, for practical evaluation, to eliminate the Regge piece from the super-
convergence type sum rules, thus obtaining the final set of sum rules given by equations
(7.9-7.12).

We wish to summarize the major assumptions entering the derivation and
evaluation of the sum rules. The derivation proceeds within the framework of
Reference [4] which is based on causality and quark light cone algebra of currents.
At the level of practical evaluation, we have to take resort to further assumptions.
The current amplitudes involved in the sum rules are converted into zero mass pion
electroproduction amplitudes with the PCAC choice for the pion field to effect the
off-shell continuation. We employ Adler’s model [18] to relate the zero mass pion
amplitude to the physical amplitude. It must, however, be pointed out that this model
plays a much more crucial role in our sum rules than, for example, in the well known
sum rules for g ,(0); whereas in the latter the off-shell character may be considered
as introducing correction to the on-shell amplitude, the integrals in our (super-
convergence type) sum rules derive their entire contributions from this correction
only. However, if we do not accept the excellent agreement between Adler’s evalua-
tion of g,(0) [18] and its present experimental value as a mere chance, we must
conclude that the model is accurate enough.

By far the most difficult task in subjecting our sum rules to an accurate experi-
mental verification is to estimate the retarded scaling functions. There occurs too
many form factors A,(¢) in the decomposition of the matrix element for the quark
bilocal about which we know too little. The Regge subtraction rendering the retarded
scaling functions finite in the fixed mass limit introduces additional uncertainty in the
magnitude of these quantities. In the Appendix, we make a plausible guess for the
form of A, (&) based on their interpretation as subhadronic wave functions of quarks
within the nucleon [24].

If should, of course, be possible to calculate the scaling functions from a suffi-
ciently detailed dynamical model of quark interactions within the nucleon. Our sum
rules may then prove to be a useful tool for checking in a phenomenological way such
dynamical models or getting values of unknown parameters involved in the model.
We have, however, not addressed ourselves to this difficult problem in the present
work. We have thus only been able to set a rough upper bound of 100 MeV for m,.

We next wish to compare briefly the present work with the extensive work of
Furlan et al. [25, 26] based on the equal time commutator of electromagnetic and
divergence of axial vector current. These authors saturate the nucleon matrix element
of the equal time commutator in the Breit frame. This special choice of the reference
frame has the merit of being able to make use of the usual crossing relations in spite
of the fact that the dispersion integral runs over a parabola in (g%, v) plane. Further-
more, it allows the choice of a threshold kinematic configuration in which all contri-
butions other than those of s waves are highly suppressed in the dispersion integral.
PCAC hypothesis is used to relate off-shell amplitudes to physical ones and variation
of pion mass in the amplitudes is ignored in the correction terms. In contrast, our sum
rules derive no benefit from any special choice of reference frame. We cast our sum
rules in the fixed mass limit before using PCAC hypothesis. A model [18] is then
invoked to relate the zero mass amplitudes to the physical ones. One, however, faces
large uncertainties, as already discussed, in evaluating the retarded scaling functions
in contrast to simple form factors in the case of equal time commutator.

Finally we point out that the sum rules written down in this paper remain valid
in the framework of asymptotically free gauge theories. However, the evaluation of
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scaling functions in the fixed mass limit satisfying the constraints of such theories is
not a straightforward task. This point is now under investigation.
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Appendix

Here we first collect our information on the absorptive scaling functions in the
form of sum rules obtainable from general considerations. These sum rules then form
the basis of our estimate for the retarded scaling functions.

The relation

eung(és 5—»p2:p1) = _enfll‘;’;(_ga _é—7p1:p2) (Al)
yields the following symmetry relations for 4,

AL, D = (£, HAAE =& -, 1) (A2)
where 4, = +1fori=2,3,4,6,13,14,16and 4, = —1fori = 1, 5, 10, 11, 12, 15,

together with

A = (&, P FN=E =80 (A2Y)

i~ A~

where of | = A, + A,;, 0, = Ag + A,,, 9y = Ay + 24,45 1, = —1,
My = py = +1.

Fourier inversion of (3.5),

+1

K(P-x)A, 0P x) = J dE e~i1EP X I (£.0(E £ ) (A3)

-1

and the finiteness of 4.(P-x) at P-x = 0 yields

f dEAEOE L, =0, i=2,(4),(5),(6)

-1

and

+1
j JEEAEOE €, 1) = 0. (Ad)
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At {_ = 0, some of these relations are identically satisfied due to the symmetry
relations (A2).
From now on we specialize to £_ = 0 (but ¢ # 0) for simplicity and later use.
Inserting (A3) into (3.3) with x on the light cone (x = An, n* = 0) we get
CLE- T iepex a*? T(+,0) X 7(£,0)
(x) = » df e #(p,)ys —2—[9“/11*' t G p A2
(., — b)) -
+a, A((;; 0) uX P-x A((4+),0) s auvﬁA%’O)
(b,x, — b,x )% -~
e (P-x)> Ay | ulpy)- (A3)

To proceed further, we have to treat isospin index (—) and (+, 0) separately.
Consider the local limit of (AS5) for isospin (—) case first. The left hand side of (AS5)
yields

Guv.
2m

q
and we get a new sum rule

[IEZRCRE (A6

- q

H(t)a(p,)a' ysu(p,)

Further sum rules are obtained by differentiating both sides of (A5) with respect
to x (after shifting the x dependence by + x/2), making use of free Dirac equation for
the quark fields and finally going to the local limit. After removing those integrals
which are zero by symmetry, we get
f+1 - H(t

AEELAL) — PRAD + A + A7) - A = am () - 50
"(A7)

f+1

deS[— A — 2mA§T) + PPAS — 3(A57) + 24(y) + mA()]

= m,g,(1)  (AB)

In accordance with our discussion in section 6, we eliminate the pion pole
contributions from these equations. As may be seen from (6.1), (6.7) and (3.3) only
A7) and 4§ get contribution from the pion pole. Denoting this elimination by a
prime, (A6) and (A7) are replaced by

| aeare - 32 (A9

+1 - - - - - I t
j dEELAY) — PRI + 3 + AG) —3A51= - 10 (A1)
— mq

where we have ignored quantities proportlonal to m, on the right of (A10). We recall
that 7(¢) is assumed to be proportional to m2, so that the right hand sides of (A9) and

(A10) are finite in the chiral limit.
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Sum rules for isospin symmetric cases may be obtained in a similar way. Local
limit of (AS5) results in the sum rules (the antisymmetric kinematic covariants re-
maining after use of (A4) are linearly independent),

+1
J dEAFOE, 1) = G5O, i=3,4,6;j=i-2

-1

+1
J dEAENEH =0, i=1,5 (A1l)

i |

where G;'s are form factors in

—2ip, | 4(0)ys5,, A" V() | p1>
= a(p,)ys@* %[0, GO0 + (P,A, — P,A)GS )
+ (P,y, — Py )G 2(0)]u(py)  (Al2)

(time reversal does not allow a term with ys(A,y, — A;y,)). A rough estimate of
G{*-9(t = 0) is obtained by considering the static limit of (A12) and invoking static
SU(6) symmetry among the nonet of axial vector currents,

GOt =0) =509, Gt =0)= 56 (A13)

A sum rule analogous to (A7) and (A8) for isospin (+) case is

+1
| deetapo 4 368 + pn0 2ondiro + Af5on

-1

= =2G{" ) — (4/2G{H)  (Al4)

We have now written above all the sum rules satisfied by the absorptive part of
the scaling functions A**?(¢, £) which are exact within the framework of the quark
model considered. Turning now to the retarded scaling functions S{*:9(¢, 7) in the
fixed mass limit (¢ = £_ = 0), our discussion in Section 7 shows that we have first
to subtract from S{* % (or A{*: ), those contributions which are singular or finite in
this limit. The subtracted scahng functions, denoted by A, still satisfy the symmetry
relations but the sum rules are now to be considered as rough inequalities. The sub-
tracted retarded scaling functions in the fixed mass limit take the general form

+1
SN =¢=0,0 = mqf ol

0

S YA & =0,1) (A15)

where 34/ 9 denote the combination of A; appearing in (3.7). Of course, only those
At 9 which are odd in & can appear in the retarded scaling functions. It is easy to
check that the non- vanishing S{*-? are in conformity with the fixed pole behaviour
of the amplitudes listed in Table II.

For a rough estimate of the retarded scaling functions we assume odd A{*'? to
have the form [15]

AENE E_ =0,t=0) = d® V1 — &?) (A16)

where a{*'® are constants. Then the sum rules (A10) and (A14) yield algebraic
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relations amongst a!**9:
a5 — zay) —mPal?) + 3(ay7) + a(y) = — (15/8)(0)/my) =~ 2(m,/m,)
(A17)
ai™? + 3@ + a5 ? = 2Amay? + aly®) = — (15/2G{°0) (Al8)

Clearly we have too few equations to solve for a{**?. Our last crude assumption
consists in assuming that each of the terms in (A17) are®) ~m,/m, and those in (A18)
are ~ 5. Thus the scaling functions appearing in the swin rules are estimated as

S 7/m?| ~ |SEm| ~ mm? ~ 0.02 m ! (A19)
5000 2 |3 0m] = S{m?] = () = 0005 m !, = 10MeV),
(A20)

Note that the estimates for isospin (—) scaling amplitudes do not depend
directly on m, and is obtained from the observed discrepancy in the Goldberger—
Treiman relation.
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