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The regular external field problem in
quantum electrodynamics')

by M. Klaus and G. Scharf

Institut fiir Theoretische Physik der Universitit Ziirich, Schonberggasse 9,
CH-8001 Ziirich, Switzerland

(2.VIIL.1977)

Abstract. The quantized electron-positron field in interaction with an external classical static
electromagnetic field is considered. The external potential is restricted in such a way that a dressed vacuum
and dressed electron-positron states exist in Fock space. In this case the Furry picture has a mathematically
well-defined meaning. A large class of such regular external fields is found which, however, contains no
static magnetic field.

1. Introduction

One of the simplest systems of quantum electrodynamics is the quantized
electron-positron field interacting with an external classical electromegnetic field.
Although the physics of this system is well understood and rather simple, the mathe-
matical character of the theory is not at all trivial and requires a careful investigation.

We will consider the system described by the formal Hamiltonian

Heormar = Jdg‘x: Ur(x, 1) (— [ iak 6i + mf + EV(X)) (X, 1): (1.1
k=1 OX

where Y(x, 1) is the electron-positron field operator satisfying equal-time Fermi
anti-commutation relations

WX, 0, ¥ (', D}y = 0,0(xx"); a,b=1,....4 (1.2)

with all other anticommutators vanishing. H;,..; (1.1) as it stands is not a well-defined

operator in Fock space. Nevertheless, the Heisenberg equation of motion derived
from (1.1)

Q!!/—%L) = — i(— i kilakéfjc— + mp + eV(x)) (X, 1) (L.3)
makes sense and is immediat_ely solkved by

Y(f 0 = yEtf). (1.4)
Here

w(f ) = JdSXfa(X)*t!fa(X, 0, f.€ L*(R?) (1.5)

') Work supported by the Swiss National Science Foundation.
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is the spacially smeared out field operator and

Y(f) = y(/f.0) (1.6)

is the initial value at time ¢ = 0, H is the one-particle Dirac operator in (L*(R?))*.

We are now interested in the question whether there exists a selfadjoint Hamil-
tonian H in Fock space (some renormalized version of (1.1)) which generates the time
evolution automorphism (1.4) as an inner automorphism

Y(e™f) = e y(f) e” ™. (L.7)
It has been shown by Bongaarts [1] that H exists if and only if
P% e iHtp0 ¢ HS. (1.8)

is a Hilbert—Schmidt operator (H.S.) in (L2 (R*))* for all ¢, where P are the projection
operators on the positive and negative part of the spectrum of the free Dirac operator
H,,, respectively (see next section). This condition can be satisfied probably only with
scalar potentials (see Section 4). For this reason, we have restricted ourselves to
scalar external potentials from the very beginning (1.1). Bongaarts gives no con-
struction of the renormalized Hamiltonian H. On the other hand, Friedrichs [2] long
ago constructed such a H under the conditions

P.P°cHS., PLP_eHS. (1.9)

where P, are now the projections on the positive and negative spectral part of the

Dirac operator H with potential. The conditions (1.9) imply (1.8), and if (1.9) holds

the method of Friedrichs gives a very simple construction of the renormalized

Hamiltonian H. Very likely the conditions (1.8) and (1.9) are actually equivalent. We

have proven this at the moment only for a restricted class of external potentials.
The condition (1.9), or the equivalent one

P, — P% eHS. (1.10)

has the more direct physical meaning. It guarantees the existence of a dressed vacuum
and dressed electron-positron states in Fock space, that means, the Furry picture is
mathematically well-defined. This will be discussed in Section 3. Most results of this
section have been obtained by several authors [2, 3, 4, 5], so that our contribution is
merely the clarification of some details and certain simplifications of the proofs. In
Section 4, we discuss the class of regular potentials which is defined by the property
that condition (1.10) is fulfilled. Our characterization of this class is not complete
in the sense that we do not know the most general condition on the potential implying
(1.10). The physical consequences of these results are discussed in the following
section. It turns out that the existence of the dressed states enables one to construct
the renormalized Hamiltonian and charge density operators and give a rigorous
discussion of the vacuum polarization.

2. Preliminaries

The free Dirac operator

SR 0 o 10 |
H = ] _— = k = 21
0 ’k;“kaka“mﬂ’ % (ak o)’ b (0 —1) @1)
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gives rise to a self-adjoint operator in (L?(R?))*. Its spectral decomposition is most
conveniently described in terms of the (generalized) eigenfunctions

ul(p, X) = u,(p) €™, )P, x) =v,(P)e ™ s=+1 (2.2)

where

As
_ [E4+m| e-p )
@) =\ 73F (E ey L (2.3)
_ E+m G-p
o) =\ [ E (E n m) xs

As
_ (! = O~ & = . 5 (2.4)
x+_oax__1, = p° + m-. .
They satisfy
Houg (p, X) = Eu(p, x)
Hoo?(®, %) = — Es(p, X) 2.5)

and the orthogonality relations

us(p)+us’(p) = 5ss’ = vs(p)+vs'(p) .
us(p)+vs'(— p) == vs(p)+us'( - p) = 0. ) (26)
For any ®(x) e (L?)* let

&, (p,s) = 2n)"¥? Lim. jd3xu£(p, x) " D(x)

&_(p,s) = 2n)"*? Lim. fd3 xv(p, x) " D(x). (2.7)
Then the spectral projection P° (Q) for a Borel set

Q c (—oo,m] u[m, +o0) (2.8)
is given by

(P°(Q)D)(x) = 2n) %2 Lim. |: j d*p® . (p, s)u(p, x)

Q+

+J dpd_(p, 5)v2(p, X)] (2.9)
e

where
Q, = {peR’+ E(p)e Q}. (2.10)

In particular, we have the eigenfunction expansion

®(x) = (2m)~>* Lim. fd3p[®+(p, ), x) + O_(p, v P, x)] (2.11)
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which defines a unitary transformation of (L?)* onto itself, completely analogous to
the Fourier transformation in ordinary L. The first member on the right-hand side
of (2.11) is the projection P2® on the electron subspace, the second member P°®
on the positron subspace.

Similar results are true for the Dirac operator

H = H, + V(x) (2.12)

for a large class of static scalar potentials which contains the class of potentials we
are going to consider in the following. Also in this case, the spectral projections
P(Q) can be expressed in terms of eigenfunctions u,(p, x), v,(p, X) as (2.9) [6], with
the only difference that in addition to the continuous spectrum (2.8) there are in
general discrete eigenvalues, and we have no explicit expression for the eigenfunctions
like (2.3). The Fourier transform analogous to (2.11) reads

®(x) = (2m)”>* Lim. Jdp[@r(v, uy(p X) + D_(p, 5)v,(p, X)] (2.13)

where [dp is a short notation for [d3p and a possible sum over the discrete eigen-
values.
Let us now construct the Fock space & using

bl = (L2 (IR3 ))4
as the one-particle subspace. To have a concise notation we write

p=(se

where ¢ = + 1 distinguishes the electron and positron subspaces (2.7). The n- partlcle
subspace b, then consists of functions @, (p, - - -p,) € ((L* )*)®" antisymmetric in the
arguments p; = (p;, §;, €;)- b, contains electron and positron states together only the
total number of partlcles (— n) is specified. The Fock space & then is

= (—B b,
n=0

with h, = C.

The symbolic absorption and emission operators are given by

b, (PP, - -p,) =/n+ 10,,.,(, 5, 1;p D)

(ds(p)q))n(ps : pn) — n + 1(I)n+1(p, 5 —19ps . pn)

O @O ) = 7 T (Y0 B,

Q{_

(Dn—l(ps' ) 'ﬂjﬁs‘jgj' ’ pn)
( Y7L — p;)dg, 01,

(Dn—l(ps' ’ 'pjjﬂéj' ' pn)
(2.14)

@ @), ;- P,) =

Q‘,_
'TIM:
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where the crossed out arguments p; have to be omitted. If £ (x) € (L*)* is in P%y, then

b(f+) = d3pf+(p= S)*bs(p)

LY

b+(f+) = d3pf+(p, S)b:(P) = b(f+)+ (2.15)

LY,

are well-defined (even bounded) operators in & :

(b(f-l—)(p)n (ps' ' pn) = AV n + I Jd3pf+@a S)*(Dn+1(p3 S’ 13‘ . ')

®* (F)9, @y - -p,) = \%1 Y (Y0, 1@y 5)
q)n—l(ps‘ ’ ‘Pj?‘j#j' ) pn) (216)
and similarly for

d*(f-) = jdiv (@, *d; ()

47 = |1 G.94,0) @)
They satisfy the anti-commutation rules
{b(f+), b+(@+)}+ — (f+ s J+)
{d*(f2), d@-)}, = (J-.5-). (2.18)

with all other anti-commutators vanishing.
The field operators smeared out in space are defined by

¥(f) = b(f.)+ d*(f-)
() = b*(f.) + d(f-) (2.19)

which corresponds to the formal expressions

¥(f) = Jd SxfEX)Y, (%)

¥(x) = (2m)~3? stp[uf @, x)b,@) + v, x)d;" (p)]. (2.20)

3. The dressed electron-positron states

Let )
by =2 @b, b =PIb 3.1)

be the decomposition of h, into the electron and positron subspaces defined by the
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free Dirac operator H, and similarly let

bl =I7+ <'Bb—s bi :P;tb1 (3-2)

be the decomposition defined by the positive and negative spectral parts of H (2.12).
We call by, the dressed electron and positron subspaces, respectively, hJ. are the bare
electron and positron subspaces. For f(x) e h, we now define the dressed emission
and absorption operators by

B(J.) = BPLf) + d* (PO)
B = b (3.3)
and similarly for f(x) e j_
d(J.) = bPSf) + d* (POS)
d(F) =d*(j)", (3.4)

where f, (p, s) € f)'i, is the Fourier—Dirac transform of f(2.13) defined by H. From
(2.18) we get canonical anti-commutation rules for the dressed operators

{b’(ﬁr}: b'+(ﬁ+)} = (f+s g+)

{d*(f).d'(G)} = (J-.§-) (3.5)
and from (2.19) the decomposition of the field operators W(f) for arbitrary
f(x) e (L?)*

b(f) + d* (o) = bPLf) + d* (PO f) = W(). (3.6)

As in the case of free fields (2.20), the dressed operators can be expressed in terms of
operator-valued distributions b (p), d.(p) etc.

It is convenient, for what follows, to write the linear transformation (3.3), (3.4)
in matrix notation. Let ¢/ 4 ' (p, s), o* (p, s) be a complete orthonormal system in
b, and @}, (p, 5), 5 _(p, 5)in 9 respectively (which are all separable Hilbert spaces).
Introducing

by =b'(¢), d&% =d 7 (o") (3.7
and similarly for the bare operators, we can write (3.3), (3.4) as follows
bj = (¢, 06.) by + (¢, 0§ _)d
d;* = (oL, ¢o+) b + (9L, 95_)dy . (3.8)
The anti-commutation rules (3.4) take the familiar form
{b‘;, b’;+} — 5jk!' {d}+, d’;} - 5}'(
and 0 otherwise. The matrix

W, W
W (((P+a(P0+) ((P+a(P0 )) o 2 (3.9)
(@ ,0b,) (@ .0k ) Wi W,

occurring in (3.8) can be considered as a unitary operator in b, . This follows from the
properties

W.Wi+ W, Wy =1 W, W; + W, W] =1
W, Wi +W,W; =0 W{W,+ Wi W,=0, (3.10)
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and we have the additional relations
Wiw,+ Wi W,=1 Wy W, + W; W, =1. (3.11)
Here W,,..., W, are considered as transformations on the following subspaces
le?)?t __’5+ Wz:f)(l - B+
Wi:bS — b W h2 — h. (3.12)

These mappings can be trivially extended to the whole of b, . Omitting ~ and " from
now on, because only the p-space is used in the further discussion, we have

W.f= (@, 06, )06, )0 = (@, P )¢’ = P, P)f

Wof = (@, 06 Mot . )¢} = PLP2f

Wif = (0L, 06 ) @5, ol = P_P)f

Wof= (oL, 06 Not_. )9l = P_PLf, feb,, (3.13)
where the bar denotes the extended transformations on b, .

It is of central importance to know whether there exists a dressed vacuum Q’,
that is a vector Q' € # satisfying

BQ = (3.14)
dQ =v (3.15)

for all j. If there exists a unique Q’, then the dressed electron-positron operators
realize a Fock representation of the anti-commutation relations (3.5). Consequently,
there must exist a unitary dressing transformation U relating the dressed and bare
operators

bj=UbU™, d =UdU " (3.16)

If Q" does not exist, the representation is inequivalent to the Fock representation.
We call the first possibility ‘regular’ and the second ‘singular’, and we are going to
discuss the regular case in detail.

Let us expand Q' into bare states

Q= ) Y A e albi b dE L d Q. (3.17)
mn=0 p1<---<pm
q1<---<(gn

Inserting this expression into (3.14) and using (3.8), we get the following recursion
relation

2 (9% o8 ) A g an
= kgl (=)™ 1% (o, ) AD T it (3.18)
= ), L=l des
where the coefficients A4 satisfy
ALy B
Q=3 Z lAm™ .. |7 < o0 (3.19)

mnpy < <pm
ql<...<qn
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Forming the absolute square of both sides of (3.18) and summing over p and ¢, , all
terms on the left-hand side are finite because of (3.19). The same is obviously true for
all terms on the right-hand side except the first one where the summation index ¢,
does not appear under the indices of 4™ "~ !. This leads to the necessary condition

m—1,n—1 2 P q1 |2
|Ap1--- pmq,qz-'-qnl Z l(§0+ » (pol—)l < 00.
Pq1 )
For a non-trivial solution some 4™ "~ ! must be different from 0, consequently

Y l@%, 9§ N = IW,llfs < © (3.20)
Pq

that means
W2 = P. P° eH.S. : (3.21)

must be a Hilbert-Schmidt operator (H.S.). From the equation (3.15) we obtain in
the same way the recursion relation

L AG g anes (@8-, 97)
qo0

m
= - Z(-— )m 1+kArl;'1"',#'1z"%pm,q1"-4n~1(¢g+’(pq—)
k=1

m=0,1,2,...,n=1,2,... (3.22)
and the second necessary condition
Wi =P_PleHS. or W,=P,P_eHS. (3.23)

It follows from (3.23) that W,* W, is a positive trace-class operator. Con-
sequently the kernel n of

Wiw,=1—- Wiy W,

n=Ker W' W, ={febh} | W} W,f=0} = Ker W, (3.249)
is finite-dimensional.

We first consider the case n = 0 (a ‘weak’ Bogoliubov transformation in the
terminology of Labonté [5]). Then W, is bounded away from 0

W fll = elfl, ¢>0 (3.25)

so that there exists a bounded inverse W, '. A solution of the recursion relation (3.18)
is now given by

A% =1 (3.26)
Al = — (W), (W), = 4, (3.27)
A'L’: il z (_)nAm qry 'Apnqnn (3.28)

where the sum runs over all permutations = of the symmetric group S, . Other solutions
of (3.17) are obtained by choosing, instead of (3.26), different initial conditions,
namely

A™® £ 0 forsomem, = 1,2,..., (3.29)
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or
A% £ 0 forsomen, = 1,2,.... (3.30)

The general solution is a linear combination of those solutions. If W ! exists, it
follows from (3.18) for n = 0, m = m, that the first possibility (3.29) is excluded.
This leads to the following expression for the dressed vacuum

o = (14 § (S autiar o 331

where @ is an arbitrary Fock vector containing only bare positrons.

We must still take the second recursion relation (3.22) into account. Now it
follows from (3.21) that the kernel n’ of

Wiw,=1-— w, w,
n' =Ker W/ W, = Ker W, (3.32)

is finite-dimensional. Let us first assume n’ = 0. Then W/ has a bounded right-
inverse and consequently (3.22) is solved by

A% = |
A;ql = (W;)pk(W4+_1)kq = qu
A = Y (=) Ay e X XA, (3.33)

which is consistent with (3.27) because of (3.10). Furthermore, it follows from (3.22),
for m = 0, that a different initial condition of the form (3.30) is excluded, that means
® in (3.31) must be the bare vacuum

b+ 5 4(gre)o

exp (Z A,.by d") Q. (3.34)
rq

QI

We have still to check whether Q' has a finite norm. This is best done with the
original expression (3.17)

a0
Q' =Q + Z Z Z(_)nAmqnn X oo X A.vnqmb;r . 'bl;:d;l' "d;:lQ
n=1p;<---<pn m
g1 <'""<gn

—Q+ Y Y det(4,,)bt...d*Q,
n=1py<--<pn
g1<''°<gn

where the determinant is formed by the n x nelements 4, , ,..., 4, ...
Then we get

IIZ=1+ > > |det(4
P

P‘Ik) '
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The determinants are transformed as follows
2 =1+ ) det(4,,)(det 4}

n p1<---<pn
q1<-+<gn

=1+ Z(pn det(ZA Apqu)

n p1<-;-
g1 <" <gn

= 1 + Z Z Z det (Aquu PkQIk)

n p1<:-<pplyln=1
q1<-:+<gn

= 1 + Z Z det (APJ‘IJ Pk‘b)

n py<--:<py
oy an

=1+ Y det(4*4),,,, = det(l + A*A). (3.35)

n p1<:-:-<pn

Pj t]k)

This is finite because 4™ A4 is a trace class operator.
Let us now consider the general situation
dimn =N dimn’ = N’
where N and N’ are finite. We have the direct decomposition
b = Ker W, @ Ran W' = n@ Ran W} (3.36)

both subspaces bemg closed invariant subspaces for W W, and W, W,. That
Ran W' = Ran PP, is closed follows from the fact that the operator P0 as a map-
ping from h, to b° obeys | P2 f| = 6| f| for some 6 >0 and all feb, m(Ker W
which is a sunple consequence of (3.21). Since f € Ker W, implies both P f = fand
P_ f = fand the same is true for Ker W, it follows

Ker W, =Ker W/ =n=5h_nhl. (3.37)
Consequently, we have the following direct decomposition of h_

h. =n@ Ran W,. (3.38)
Applying the same arguments to h° and b, , we get

h, = n"@ Ran W, (3.39)

n=bh, nb°. (3.40)

We choose now the basis vectors ¢}, in % and ¢/, in b, in such a way that

n= {54,004}, by =0, k=1,...N | (3:41)

= {@o-» " 00-}, @b- =¢%, k=1,...N" (3.42)

The transformation (3.8) then assumes the following form

b;=d' j=1,...N' - (3.43)

b= Y Wb+ Y Wi, j=N 41w (3.44)

k=N+1 k=N +1

d*=b;, j=1,..N (3.45)
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dt= Y Wikb+ Y Wkd', j=N+1,...0. (3.46)
k=N+1 k=N'+1
Since W, and W, are invertible on n’t = Ran W, and nt = Ran W,, respectively,
the vacuum for (3.44) and (3.45) is of the form (3.31)

Q' = exp (Z A,.by dq") . (3.47)
paq

Here 4, is given by (3.27) or (3.33) using for W[ or W, ! the restricted inverse
operators defined on Ran W, or Ran W, respectively, and @ is an arbitrary vector
containing only bare electrons and positrons from n and n’. In order to satisfy
(3.14), (3.15) for the remaining operators (3.43), (3.45), ® must be of the form

® = b} -bid}-diQ. (3.48)

Consequently, the dressed vacuum (3.47) is uniquely determined (up to normaliza-
tion). Summing up, we have shown that the conditions (3.21), (3.23) are necessary
and sufficient for the existence of a unique dressed vacuum, or equivalently, for the
dressed electron-positron operators forming a Fock representation. This answers a
question raised in Reference [7]. If N # N, the dressed vacuum Q' becomes charged.
This interesting phenomenon occurs in strong fields and is discussed in the following
paper.

In the rest of this section, we will construct the unitary dressing transformation
U (3.16) explicitly. This has been done for Bose fields by Friedrichs [2]. The result in
the Fermi case was given by Labonté [5] without proof. We shall prove it by very
simple Fock space methods. U maps bare states

®,, = dg---dibl bt Q (3.49)

q1 " Pi
on the corresponding dressed states
@, = U, = d,'---d; bt b " Q (3.50)

q1

where Q' is the normalized vacuum from now on. On the bare vacuum €, U operates
as follows

Q' = Cyb-- by df - -dy e Q (3.51)
where
A, = Zqub; dq+ (3.52)
pq

and the normalization factor C, is given by (3.35).
On the one-electron states ¢ > N we have

b,;+n'=( S Wb+ Y Wg"*dk) Cob; - -di e Q

k=N+1 k=N"+1

= Coby - -di(=)"*N et Y Wb Q
k=N+1
+ Cob;— £ 2 'd;(_)N*—N' Z quk* [dk5 eAl]Q.
k=N (3.53)
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We note that exp 4, is bounded on the vectors ®,,,(3.49)
HeAl(DmnH2 S exp Z |qu|27 (3'54)
Pq
which justifies the manipulations in (3.53) and in the following. Since
[d,, et'] = et [d, 4] = — et Y A b7, (3.55)
p=N+1
we get
b;+Ql — Cobil- . .dl\-:-’(_)N'FN' eA1
x ) (W‘{'P* - ) W‘{"*Apk) by b, b, Q. (3.56)
pg’=N+1 k=N'+1
Writing
B=+ (W} — AW gouw, = = WF + WIIW, W)= + Wit (3.57)
+ for N + N'even, — for N + N’ odd.
U operates on the one-electron states (j > N) as
Cobf - -dy e Z B, b, b, (3.58)
and on the vacuum Q and the one-electron states simultaneously as
Colis s s, g4 {]l + > (B,y — 0,00 bq}- (3.59)
pq
By induction, we obtain on arbitrary electron states (j > N)
Ul = COb;- d+ 4 Z i Z (BPIQI - P1411)...
n=0 n P1
‘In
(Bpnqn - 5?!1‘111 b+ b.:ann “Yqu
= Cob{...dy e exp ) (B,, — 6,,)b) b, (3.60)
pPq
Now we add positrons (j > N')
d;* [16,7Q = ( Y W¥b, + Z wird ) U, []bsQ
k p=N+1 p=1 k
= Ul(—)N“"'[ Y Wb, + Y ng'(Bp,p — 6,,)b,
p=N+1 pp’=N+1
+ > W§rA,.d; + Y Wg”d;}ﬂb{ﬂ
S P * (3.61)
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Introducing on Ran W, the matrix operators
C=x AWy + W)ouw. =+ W Wi Wy + W)l = + W, '*
D=+ W,B" =+ (W, W )T,
+ if N + N'even, — if N + N’ odd, | (3.62)
U operates on the states (3.61) as
U, Y (C,dSd, + D,b,d,), (3.63)
p4q

pPq b.P
and combined with pure electron states (g > N) as
U, {1 + Z [(Cpy = 0p9) dp+ d, + D,,b,d, } (3.64)
rq

Adding successively further positrons, we get

U,=U,:exp) [(C,, — b,,)dd + D,b,d]:
pq

qup
= U, :exp) (C,, — 6,)d, dexp) D, b,d,:
pq pq

= Cob{...dyexp) A, byd}! :exp) (B,, — 0,,)b, b,:

pqg-p
pq pq

:exp »,(C,, — 6,,)d)d,:expy. D, .b,d,. (3.65)

rq prq

Finally, we have to include the finitely many exceptional states p < N re-
spectively ¢ < N'. Since, including these states, the above construction does not
change, it is sufficient to consider a typical example:

N
d;*Q = Y Wb, Cob?...bidy .. .dy et Q

k=1

N
= (/YOEA1 Z ng(_)k_lbz-...ﬁ;...b;d‘:—...dhtﬂ

k=1

N N’
Coe't 3 Y WE(=)~bf...pt...byd} ... djd.d 0
p=1gq=1
= Coet' Y WEP(=W*N "1t d,...byd .. .dy d[ Q. (3.66)
pq’

From this, the general form of the factor U, transforming the exceptional states is
obvious

U, = :(b; F) Wg‘dq). : .(b; FY Wgqu)
q q
X (d1+ FY ng*bp). : (d; Fy Wg”’*bp):
P p

— if N+ N'even, + if N + N’ odd. (3.67)
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Then we have the following final result for the dressing transformation U
U= CyUjexp) A, brdS exp) (B, — 6,)b,b,:

pa~p p
pq Pq

rexp ), (C,, — 9,,)d, d :exp ) D, b,d,. (3.68)
pq pq
Since after construction, U maps the basis of bare states (3.49) on the basis of dressed
states (3.50), it extends to a unitary transformation on all of &#. The result (3.68) is in
normal ordered form.?) The normal ordered exponentials can be transformed into
ordinary exponentials by means of the following lemma, which may be of its own
interest.

Lemma. Let H = (H,,) be a matrix operator and

H = ZHqu;“
Then
1
exp o = 1 + Z 5 Z @ -1, ,..."=1,
n=1 =
‘11 'Zn
X b 1'7;11’:',11 A .bqn. (3.69)

Proof. We show that the right-hand side of (3.69) satisfies the differential equation

d = o~
— ¢ — R (3.70)
do
I ® ]
aH _ a aH
e H - Z _f Z (e - l)pl’h' . '(e - I)Pn‘InHPu+IQn+1

xb*...b*b, ...b b

. Pn TP qh "dn Pn+1 dn+1"
This we have to order normally

1 n
B Z H!J Z.t; 21 (“)m“"(e“H - I)qui' ) _(eazH o I)qum qun'Qn+1' B
n 1o m=

1. . Gn+1
b bPl b41 ﬁ‘bn' * 'anan-fi
1
H
+ z —‘ Z (ea - l)plql- * .(eaH - l)pHQnHPnJr 19n+1
h “Pi..Pn+1
d1.. . dn+1

Ry, uoliy Bymeub, ...
1 n
= ;a Z mgl (—)m“n. . -(eaHH)Panin]- T

qi- . Gm-- Gn+1 b b+b ﬁ‘lmb b

P17 q1 dn dn+1

?) A somewhat different normal ordered form of U was recently given by S. N. M. Ruijsenaars [13].
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1

~n!

Z Z( | A (aH - l)pmqm"'Hpmq,,H

P1...Pn m
q1-. fm- - -n+1

X bF .. bt bt b, ...b

P a1 dn+1
1
aH aH
T Z E Z (e B l)p“h' ) '(e - I)PHQnHPn+1‘Iu+1
T gt
% b.:u b.:zblh ) 'b4n+1
d
d_ Z Z (eaH - PIQI' " '(eaH - 1)PnA1‘Iu—1HPnQH
n
fn qn |
Sl ol
1 n n
aH @
+ Z ; Z (e - I)Piql' * '(e H - I)PnQHHpn+IQn+1
n " Pt...Pn+1
qz---gn+l
+
% an+1 T qn+r”
Since the last two members cancel, the lemma is proved.
According to the lemma we have
© 1
cexp) (B, — 8, )b b, =14+ Y —(B—-1),,,...
pq n=1 n!
+
(B - I)PIQM Pn’ bPl b41' * .ert
= exp Z B, brb,

where B’ is given by

€*),, = B, (3.71)
Then the dressing transformation (3.68) can be written as follows

IF = 5Tl epoA byd' exp ZB’ byb,

pa-p pa-p
expz C, .4, d, exp Z D,b.d. (3.72)
with B, , C,. determined by
€ %)y =B Y, =W, ()=, =)k (3.73)

This is essentially the form of U given by Labonté [5].

4. Regular External Fields

In this section, we investigate under what assumptions on the external fields the
fundamental conditions (3.21) (3.23)

P, P°cHS. PoP_eHS. | 4.1)
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are satisfied. Both conditions (4.1) are equivalent to the single condition

P, — P’eHS. (4.2)
In fact, condition (3.2) implies

P_ — P°eHS.
and

P,P° =(P, — P)P°eH.S.
P°P_ = Po%(P_ — P°)eHS.
Conversely, it follows from (4.1) that
P_P%°eHS.
and
PP —P P2=pP P° - (1-P )P =P, —PleHS.

[he projection operators in (4.2) are conveniently expressed in terms of the
resolvent

R(z) = (H — 2)~! (4.3)
as follows [8, p. 359]

1 1 + oo
P, ==+ — n) dn. ,
+ =5t o LD R(in) dn (4.4)

We assume that 0 is not an eigenvalue of H, otherwise one must agree upon some
convention for the definition of P ; we return to this problem later on in the discus-
sion of strong fields (see next paper Section 3). Then R(z) is bounded for all z = iy
and the integral (4.4) is (at least) strongly convergent. Writing

H=H,+V, 4.5)
we have for the resolvent (4.3) the formal equation
R = Ry — RyVRy + RyVR,VR(1 + VR, ™! (4.6)
=R, + R, + R,
where
R,(z2) = (Hy, — 2)~'. 4.7)

Then we have to consider

1 [+
P, — P% = E,[ (R, + R,). (4.8)

At first let us look at

Oy = zij " R, (in) 49)
[

-
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in the case of a scalar potential V(x). This operator Q, acts in p-space as an integral
operator

Q. N)p) = ja”qu(p, 9@ (4.10)

with the kernel

_ a-p + mp +in a-q + mpf + in
,q) = —(2m)” 572 Vip —
Ql(p q) ( TL') J‘dn p2 + mz + ’12 (p q) qz g m2 o n2
Do — . .
— Qs P q)(“ ptmpoqtmp 1). @4.11)
E, + E, E, E,
Writing
o-p+ mp
T 2P ) = P2 - A (4.12)

p

and using the fact that P) (p) are projection operators 1n C“ we obtain for the
Hilbert-Schmidt norm of Q1

”Qi”iis = J‘de’p deQSPQ1 @, 9" Q:(p, 9

3 [ 43 I (p D o po () po 0 (q) PO
= O | | L= 5 SIPI@P) + PP@PL )]

~ I(p—q)l Cpq 4+ m
= M2m)" JdS J 43 (E +E)2(1—————Equ )

def

=220 VI3 4.13)

where the trace and the adjoint are taken in C*.
We are now looking for potentials P(p) with a finite norm |||V]||, (4.13).
Introducing the variables of integration

PP=P—-4q P,=Pp+4q, (4.14)
we can write (4.13) as follows

iz = j AP ® P, 15

where the function A(p,) can be expressed in terms of complete elliptic integrals of
the first and second kind, K(k) and E(k),

. 4 4
Ap,) = const{ k®) (32m - —m2)
Vp? + 4m? \ 3p? 3

2
+ B i T (_ . _)} @.16)

3 p?

B3

k= [ F1
p: + 4m?

P = |p4l
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(details are given in the Appendix). Expanding (4.16) for p; — o and p, — 0, we
find

A(,) ~ p, forp, >

A(p,) ~p} forp, >0 4.17)
which leads to the conditions
f d*pplV(p)I* < (4.18)
lpl=za
J d’pp*IV(P)I* < o (4.19)
lpl<a
for some finite ¢ > 0. That means F(p) can be decomposed into
P® = 7,(0) + V() (4.20)
with

supp V; < {lpl = a},  supp ¥, = {lp| < a}
and V,, V, satisfying (4.18) and (4.19) respectively. We shall denote this class of
potentials V(x) by

V(x)e (Lffz + L))(R?) (4.21)

according to current terminology [9].

Let us next show the self-adjointness of H on D(H,) for this class of potentials
(4.21). Owing to the well-known theorem of Kato [8, p. 377], it is sufficient to prove
that V' is H,— bounded, that means an estimate of the form

IVl < alHo fIl + blifl, feD(H,) (4.22)

holds witha < 1. This s trivial for V,, because it follows from (4.19) that ¥, € L'(R?)
and ¥V, € C°(R?), hence

Vo fll < W2l A1 < WP M1 0L £ (4.23)

For V, € L},,(R?) more refined estimates are necessary. In this case ¥, (x) can be
expressed as a convolution of the Bessel potential

© 12\ 3/4
G,/,(x) = const e“""j el (t + —2—) dt (4.24)

0
with an L?— function w, (x) [9]
V) = Gyp*w,. (4.25)
Then, since
G2 ()] < const|x| /2,
it follows from the generalized (weak) Young inequality [10, p. 32]
1Vills < 1G12lles,wllwyll 2 < const|||x] =

that
V,(x) e L*(R). (4.26)

l6/5,w Iwyll2
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This implies by Holder’s and Sobolev’s inequalities [10, p. 113]

3
0
Vi fIl < IVillsllflle < const||Vy |5} td
=1l 0%;
Using
of|?
H 2 _ fal 2 2
IHofI1? =2 |55 + oA 1
it follows
o fl|*

0X;
< const|[V, ||| H, f]2.

This proves (4.22), because |V, ||; can be made arbitrarily small by choosing the
decomposition of V' (4.20) appropriately. By a slight extension of these arguments
[11], it can even be proved that V' is H,-compact, that means

V(H, — A)~'is compact (4.27)

for every A not in the spectrum of H,. This has the important consequence that H
has the same essential spectrum as H,,, i.e. ( — o0, — m] U [m, + o). Then, in the
interval (—m, m) H has only isolated eigenvalues of finite multiplicity. Furthermore,
it is possible to define generalized eigenfunctions u(p, x) and to prove the eigen-
function expansions mentioned in Section 1 [6].

Now we have to consider the remaining term in (4.8)

IVif11* < const |V,33 )
i

1 [T .
Q, = 2—j dn R, (in), (4.28)
n =00
where
R2 = RO VRO VRo(l + VRO)_I. (429)

We have not succeeded in proving that Q, is a Hilbert-Schmidt operator for the whole
class of potentials (4.21); we can show this at the moment only for a restricted class.*)
The Hilbert—Schmidt norm of Q, is estimated as follows

| [+
1Q:llhs. < e dnliR, VRO”H.S.” VRl (1 + VRo)*lll- (4.30)
We have
V(p — @)
IR, VR, |2 « = jd3 Jd3
o Hollas = |42 |99 G @ + 1)
P 1
= | d3*k|V(EK)|? |d?
J e j P+ ) -0 + ) (4.31)
with
o =n" + m’

*)  See note added in proof.
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The inner integral can be carried out

IR VR, lli.s. = Jd K|V ()2 (k) (4.32)
where
2 (m 20
J(k) = = (5 — arctg T) (4.33)

Since J(k) — n?/n, for k — 0, we must require ¥ € L? for the convergence of (4.32)
at k = 0, which is a restriction of the infrared condition (4.19). Then, since
2

Jk) <= fork < 21,
Mo

and
J(k) < const/k  for all &,

which implies

J(k) < const/y, for all k, (4.34)
we get
IR, VR, lly s < const| V||, (5% + m?)~ 14, (4.35)

Now for (4.30) being integrable at infinity, we need additional negative powers of #
from the second factor under the integral (4.30).
We return to the decomposition (4.20). For V, we have

1
Jn* + m? (4.36)
which decreases rapidly enough for # — co. On V,, however, we must impose an
additional ultraviolet restriction. Instead of (4.26) let us assume

V2Rl < 1Vl Roll = 11Vl

V,(x)e L**5(R?). (4.37)
Then, following essentially an argument by Prosser [12], Holder’s inequality gives
6 + 2¢
VA1 < Wills el e s =552 (4.38)
and the Hausdorff-Y oung inequality implies
A 6 + 2¢
< (27)32- 3 ’ — ) 4.39
111, < @™ fl,, r = (4.39)

This can be estimated by Holder’s inequality again
1Fll, = IG/P* + m* + M)J(/p> + m* + M)™'|,
< IW/P* +m? + M) T IG/P? + m? + MM, s, =3+
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with arbitrary M. Since

I/p* +m?* + M) | < |HofIl + M| f] (4.41)
and

(/P> + m* + M)~ ||, < const M3=-1, (4.42)
we finally get

1V, fIl < const|[ V|5, (M~ IIH fI+ MU LD, (4.43)
withsf _ e - i

34 ¢

Taking

/= Ryg,

this implies

y In| ) i 1 }
V. R <const{M ¥l + ————— |+ M ™" ——von-
l 1 0dll { ( \/m ’12+m2 lgll
‘ , , 1
< const{ZM“g + M'e ﬁ} Igll-
N+ m
Choosing _

we obtain

const
0“ -—( 2 4 mZ)alz

This factor produces enough decrease if & > 1, i.e., ¢ > 3, that means
V,(x) e L134+5(R3) (4.46)

for some § > 0. Finally, we must look at the last factor (1 + VR,)™ ! in (4.30). It
follows from the estimate (4.22) that

IV,R (4.45)

In|

b
+ ’
JIn? + m? ) S + m?

and this becomes < 1 for ]nl large enough because the constant a can be chosen
< 1. Therefore, (1 + VR,) 'is ‘uniformly bounded on, say, || > 7,. For [n| < #,,
it is bounded as well: Since V'R, is compact, (1 + VR,)~ ! is meromorphic; the poles
are point elgenvalues of H and therefore lie on the real axis. Then (1 + VR,) ™! is
bounded on the imaginary axis because we have assumed that 0 is not eigenvalue of
H. Hence, (1 + VR,) ™! is uniformly bounded in (4.30), leading to a finite Hilbert—
Schmidt norm. Summing up, we have obtained the following class of regular
potentials:

V(x) e (LY54+% 4+ L2)(R3) (4.47)

“ VRo H <a (1
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with (4.18)

J d3pp|V(p))? < oo. (4.48)
Ipl=a

As mentioned in the introduction, there is a second definition of regular external
fields due to Bongaarts [1]. which in contrast to (4.1) reads

P% e PO e HS. forallz. (4.49)

This condition ensures the existence of a Hamiltonian in Fock space (see the following
paper) and has, for the time being, nothing to do with the existence of a dressed
vacuum. However, the condition (4.1) implies (4.49). This follows simply from

PYe P2 = PO e™ip PO + PIP_e PO,

We have not succeeded in proving the converse.?) That both conditions are actually

equivalent is quite plausible from the fact that the first order condition corresponding
to (4.49) [1]

Vp — q)? pq+m?\ . E + E
d3pjd3q—~r——| 1] — = |sin2=2 " 49¢< oo forallt
J (E, + E,) E E, 2

implies (4.13), which follows by integration over ¢.
It is not difficult to give examples of scalar potentials which are not regular. The
simplest one is the square-well

Vix) =V, iflx| <r,
=0 af|x| > r,.

Then condition (4.47) is fulfilled which implies that the higher order term @, (4.28)
is a Hilbert—Schmidt operator. But (4.48) is not satisfied, consequently Q, (4.9) and
therefore P, — P? are not Hilbert-Schmidt. To get a regular potential, one has to
smooth out the edges of the square-well. Let us finally remark that in the case of a
time independent vector potential A(x) the first order operator Q, (4.9) is never a
Hilbert-Schmidt operator (unless A = 0). From this, it is quite certain that regular
static magnetic fields do not exist. This would be very surprising and requires further
investigations.

(4.50)

Note added in proof

In a forthcoming paper by G. Nenciu and G. Scharf it is proved that the class of
regular external fields is not larger than (4.21). In particular, no static magnetic field
is regular. On the other hand, we can enlarge the class to almost all of (4.21). All
potentials satisfying

j d*pp'H|V(p)]* < o for somee > 0,
Ipl=a

and (4.19) are regular.

3 Labonte [4] states that this is not too difficult, however, his privately communicated proof is not
correct.
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Appendix
Here we will give some details of the computation of the integral (4.13)
2 . 2 '
& | a3 IV(p 9, _pgt+tmy A1)
+ E )2 BB,
Introducing the integra‘uon variables

P—q=pP P+4q=DpP,

and integrating over p, using spherical coordinates p, = (p,, 3, @), where 3 is the
angle between p, and p, and cos § = z, we get

= Jd P APV, (A2)

with

5 +1 2 2 2 2
P> p; — py +4m
A =2 et e '] ey A3
?:) ‘EL P .[—1 @ (Ep + Eq)z( 4Equ ) (A.3)

E} =@+ bz) E}=(a— bz)

p

a=pi+p;+4m*  b=2pp,.

Next the integral over z in (A.3) can be carried out

+1 1 a— 22 )
4, =) ] = L) =4, + 4
1 j 2a + 2(61 b222)1/2( (aZ _ b222)1/2 2 3 (A4)
2 2 1/2
a—pifa a
L= (b (b2 ) ) (A.5)
2 a a? 1/2
=3 7\ : A.6
A, barctg (b (b2 1) ) (A.6)
The remaining integrals over p, lead to elliptic integrals.
We get
N 2 L " 2 2 2 l
J dp,p3 A, = — F{j dp,(p; + p1 + 4m”) — gx/P(x)
0 21 ( Jo
1 1
-3 @n? = p) Uy - 2 m® + p])? Jo} (A7)

£a %{M - %Jl - %(4’”2 - 3Pi)=’0 - 2pf(4m2 +P%)J3}

where
x=M?*  P(x) = x>+ x*(8m? — 2p?) + x(4m* + p})?
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and

My M? X
J":L P(x)'"2 J‘=L W o

¥ M2 dx AS)
], (x + dm? + phP(x)'? )

The integral over A4, (A.6) is first transformed by partial integration and then treated
in the same way as 4.

M
J dp,p2A, =M + L{J, — 2(p? + 4m*)J, + 2(p? + 4m**J,}.  (A9)
0

Finally, we express the integrals (A.8) for M — oo by complete elliptic integrals
of the first and second kind, K(k) and E(k)

T K(k)

T+ Am)
1
o
@l + a7
Jy— 2M + 2(p? + 4m*) "2 {K(k) — 2E(k)}
with

J3 K(k)

k2 = P?
P+ am?

Collecting all terms and taking the limit M — oo, we obtain the result (4.16).
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