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On the phase transition in X Y- and Heisenberg models')

by N. Szabo

Département de Physique Théorique, Université de Genéve, CH-1211 Geneve 4, Switzerland

(2. V. 1977)

Abstract. For the free energy and susceptibility of the quantum X Y- and Heisenberg models singular
lower and upper bounds have been constructed in d dimensions. The bounds are given by the Ising model
free energies and susceptibilities which prove the onset of continuous phase transition in 4 dimensions,
d>2.

1. Introduction

Continuous phase transition and symmetry breaking in statistical mechanics are
interesting and deep problems. It is especially hard to understand them in the quan-
tum X'Y- and Heisenberg models. If one would like to understand the phenomenon
of continuous phase transition in these models, one must be clear about its
characterization, which can be given by a singular behaviour in different quantities
as the susceptibility, specific heat, etc., at the transition temperature 7, and by the
appearance of a from-zero different magnetization below T, in the case of magnetic
systems." Here, we take up the idea of singularity in the above mentioned quantities.

The idea is to construct lower and upper bounds to the susceptibilities of the
quantum X'Y- and Heisenberg models which do diverge. This can be achieved by
constructing lower and upper bounds given by the Ising susceptibility, which does
diverge, and therefore the susceptibilities of the quantum X Y- and Heisenberg models
must also do so. This fact characterizes the onset of continuous phase transition in
the quantum XY- and Heisenberg models. The order parameter exists below T,.
In dimension d = 2 its existence is proved by these inequalities and by the theorem of
Szego and Kac. It is believed that the two dimensional quantum X'Y- and Heisenberg
models do not show continuous phase transition [ 1] contrary to our finding. See the
appendix for discussions. For higher dimensionality such as d = 2 some progress has
been made. In three dimensions, Frohlich ef al. [2] and Dyson et al. [3] proved
continuous phase transition which is supported by our ideas also. Now we turn to the
technicalities.

Our considerations are based on the theorem of Golden [4] and Thompson [5]:
if A and B are two hermitian square matrices, then

Tr{e™ P} < Tr{e ™ e 4o ™), (-4, ~Bx2 1) Ul
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holds. If 4 and B commute then the equality is valid. This theorem has been gener-
alized by Segal [6] to certain selfadjoint operators 4 and B. Because we will work at
first in finite volume and then take the thermodynamic limit, it is enough for us to work
first with finite matrices, e.g., with the theorem of Golden and Thompson. From
equation (1) it follows

Tr{e~“*®P} < [Tr {e 24}]V2[Tr {e~28}]'? < Tr {e~ 24} Tr {e~ 2B} (2)

by Schwartz inequality for symmetric and bounded 4 and B. This inequality will now
be used to discuss the upper and lower bounds of the partition functions belonging to
the quantum mechanic X'Y- and Heisenberg models. We make no restriction on the
space dimension d at first, but we will refer to the solution of the two-dimensional
Ising model.

2. XY-model

The model Hamiltonian is

H, (v) = sz y—vq&;c*r“_q = H (v) + H,(v). 3)
6qare the Fourier transforms of the Pauli spin operators ;. The operators —H,, (v)
and — H_(v) are positive definite operators and fulfil the relations

~H, () > -H,@w=>=0, a=xy “)

by unitary equivalence of H (v) and H(v), H, = H and H = H_ .
To construct upper and lower bounds to the partition function of the X'Y-model
we make the following choices for 4 and B of equation (2):

A+ B=H,, B=H, (5a)
1 1

Equations (2) and (5) give the inequalities
; |
Z (5 v) < Z}C)’,Z(U)Zifz(—v) < Z_(20)ZL*(-v) (6a)
or

1 1 | |
| ﬁln Z, (5 v) = N [nZ () +InZ (-v)] < N [21n Z_(2v)
+1nZ,(-v)]  (6b)
with definitions
1
Z, () = Tr{exp [-7H, )]}, v=~15,2,

Z (v=Tr{exp[— H_(v)]}
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for the partition functions. In equation (6b) the number of lattice sites N has been
introduced to perform the thermodynamic limit. On the other hand In Z (yv) can be
written as

1 Yd) \
~InZ, () = — ,[ — Tr {p,(ly0)H,(2yv)} + In 2 )

and a similar expression for Z_ ()-p, is the density operator of the Ising model.
The positive definiteness of the operators

exp[— H,,(v)] — exp[— %Hx(v) — In 2] >0 (8a)
exp [-2H,(v)] — exp[—H,,(t) — In2] > 0 | (8b)

implies with the help of (6b) and (7) the following inequalities

1 (1 1
5 Xx (5 vlq) < 5 Xy (010) < 2, (2019) ©)

by neglecting the antiferro correlation function originated from Z_(—v) and terms
given by In 2. Further we assume the existence of the thermodynamic limit in (6b) and
(9). The correlation functions of equation (9) are defined as

Lvl@) = Tr {p,(w)836% .}, 7= 1,2, (10a)
1oyl = Tr {p, (v) Y 656% .} (10b)
a=x,y

If the dimensionality of the system is two, d = 2, then we know from the Onsager
solution of the two-dimensional Ising model [7] that the upper and lower bounds of
equatlons (6b) and (9) do exist. Further we can show that 1/N In Z, (v) is a mono-
tonically increasing function of N and therefore the free energy and the correlation
function of the XY-model in equations (6b) and (9) exist as for the two-dimensional
Ising model [7]. We assumed the existence of the thermodynamic limit for d > 2.

The key result is the inequality equation (9) which states that the correlation
function of the XY-model must diverge because the lower bound does so, as the
temperature T goes from above to the transition temperature, 7+ — T, and q — 0.
This fact proves the onset of instability to second order phase transition in d di-
mensions for the X'Y-model, because the Ising model exhibits second-order phase
transition. In two dimensions, d = 2, the latter case is surprising because of the
existence of long-range order in the Ising model and of the belief that the two di-
mensional X'Y- and Heisenberg models exhibit no second order phase transition.

3. Heisenberg-model

For the Heisenberg-model,
Hp) = ) —v,6286*,, a=x,},z, (11)

q,
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we get to (6) similar free energy inequality:

1 1 1

1 1
¥ [ln A (5 v) —3 In ny(—v)] < N In Z(v) < N [In Z,, (2v) i~

+ In Z_(2v)],

with the help of equation (1), the Schwartz inequality and the following choice of
A and B in equation (1): Hv)=A+ B, B=H,_, and H_(v) = 2(4 + B),
2B = — H_(v).Z(v) in equation (12) is the partition function of the Heisenberg-
model. Simifar operator inequalities, as used for the X'Y-model, are fulfilled again,

namely:

—Hv) > —-H,@) >0, a=x1,z (13a)
exp [—H(v)] — exp ’:— %Hx(v)} > 0, (13b)
exp[— 2H _(v) +In4] +exp[— 2H (v) +In2] —exp[— H(r) +In3] =0

(13¢)

which imply that the Heisenberg correlation function
X(Ulq) = Tr {P Z&:&a—q}

is bounded from above and from below:

1
X (5 UIQ) < Q) < 2y,,(2v]@) + 2%, (2v]9). (14)

This inequality has been obtained by using the definition equation (7) and neglecting
the antiferro correlation function y (- v|q) > 0 and terms given by In 2. (9) in (14)
gives further

e (310) < 2010 < 61, r10 (19)

Again, the Heisenberg correlation function y(v|q) is bounded from below as well as
from above by the Ising model correlation function with different coupling constants.
The singular behaviour of y,(v|q) indicates again the onset of second order phase
transition in the Heisenberg model with dimensions d > 2.

Note that for quantum-mechanical models the susceptibility is described by the
Duhamel two point function

(4, B) = Tr {pJB diA* (i/"L)B}
0

which fulfills the inequality of Roepstorff [8]

—

1l —e

24", 4}, < (4, 4) < 5<(4%, 4}, (16)

c
See also Naudts and Verbeure [9]. The lower bound of equation (16) is due to Roep-
storfffor 4™ = A.Thegeneralizedcase, A" # A,istreated in reference [9]. Inthe case
of the X'Y-model we can use the inequalities, equation (9), for the correlation function
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{{4", A})> and equation (15) for the Heisenberg model. In both cases we find
divergent lower bounds for dimensions d > 2. That means the Duhamel two point
function does diverge for these two models. Again the onset of phase transition is
announced by this singular behaviour. Now, we may allow that the coupling constant
of the Ising model takes values below T, for the lower bound. In this case a é-function
appears in Fourier space due to long range order, which forces a J-function in the
Duhamel two point function or in the correlation function of the X'Y- or Heisenberg
models. This indicates long range order in these two models.

Similar inequalities as equations (8) and (13) can be used immediately in equation
(16) with entirely different coupling constants for the X Y- and Ising models, with the
restriction v,, > v,, or also for the Heisenberg model susceptibility.
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Appendix

Using the Heisenberg model Hamiltonian, as in the work of Mermin and

Wagner (MW) [1], with constant nearest neighbour coupling, we discuss here their
inequality

15,00, 5_(-10).>-(8, B = M* (A1
in the ferromagnetic case, where

(8,8 = 4T @ - J@ - O] S,@S.(~0) + & {5, @, S_ (-9}

+imM (A2

and M is the magnetization M = 1/N Y <S5, (R)>. We restrict the space dimension
d = 2. In this case (B, B) can be written as

(B, B) = 4—; Z.,“ |:cos (g,.a) sin® (k’éa) . + cos (g,a) sin? (%ﬁ)]
*(S,(—@S,(@ + £ {5, @, S_ (-9}, > + 3 iM, (A.3)

where we used the invariance of the correlation function with respect to space
reflection to get equation (A.3). The sum over q can be performed formally by inter-
changing ¢, and g, in the second summand. One gets

(B, B) = [sinz (’fz—“) + sin? (k—;f)] 4F(h, T) + L hM > 0, (A.4)

F(h, T) = 53 05 (4,0)<S, @S, (~0) + 3 {S, @, 5_ (-} > 0. (A3
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The function F(h, T) is essentially a spin-spin correlation function of nearest neigh-
bour spins and is related to the expectation value of the model Hamiltonian. Further-
more, F(h, T) is a bounded function and therefore the first term in equation (A.4) is
bounded in the first Brillouin zone (BZ).

From the form of (B, B) one sees immediately that the division of equation (A.1)
by (B, B) is not without problems, because (B, B) ™! for A = 0 does diverge as k2
(k — 0). Therefore the multiplication of equation (A.1) by (B, B) ! and the following
integration over (BZ) result an inequality

EJ d*k {{S, k), S_(-k)},> = sz d*k (B, B)™! (A.6)
BZ

2 BZ

in which one may not put the explicit magnetic field dependence equal zero, because
the lower bound would diverge by fixed magnetization M. On the other hand one may
integrate over a smaller region as the BZ, e.g. [27/3, n/3; 2=/3, n/3]. In this case the
lower bound is explicitly given, and remains finite and > 0 at h = 0, if M is fixed.
One sees in this manner that the method can not give any conclusion about the
existence of finite magnetization at & = 0, because F(0, T) is bounded. Another
possibility is to multiply equation (A.1) by

sin® (M) cos (k"a> «(B,B)~! (A.7)

2 2
and to integrate over BZ. One gets
k
fh,T) = b d {8, (k), S_(—Kk)}, ) sin? (k"a) cos( "a)
2 |z 2 2

2 (*z3

> “2—]‘54,2 J dz \/ch(z)—1—2¢c (A.8)

f(h, T) is a bounded function, ¢ = (3 AM)/F(h, T) and z, = Arch (k + 2¢).

From this equation it follows again that one can not make any conclusion about
the existence of the magnetization M.

The origin of the theorem of MW is the divergent behaviour of (B, B)™!. Re-
capitulating one can say that this ambiguous division requires # > 0 and the inequality
of MW can not be conclusive as we have demonstrated. On the right hand side of
equation (A.6) the situation is very similar to the problem of the Fourier-transform
of the susceptibility in the Ornstein-Zernike theory.
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