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A non-homogeneous string model for hadrons?)

by M. Quirds?)

University of Geneva

(15. II1. 1977)

Abstract. By means of a non-uniform interaction among partons we have introduced a variable
elasticity and density of mass into the Nambu-Susskind string. These functions characterize the string.
There is a very general class of strings, related by reparametrizations, which are equivalent to the homo-
geneous dual string model. Further we generalize Veneziano amplitudes. States are much less degenerated
than in conventional dual models. Four and five-point amplitudes are explicitly computed showing
correct Regge behaviour.

1. Introduction

The so-called string model of hadrons was first introduced independently by
Nambu [1] and Susskind [2] defining boson covariant fields ¢,(6), and their canon-
ical conjugate m,(6), as Fourier expansions of annihilation, a{)~, and creation,
a*, operators of four-dimensional harmonic oscillators, with level spacing equal
to /, and canonical commutation relations

[P, a"*] =6, 6.,. (1.1)

Nevertheless if we imagine that hadrons are built up of an indeterminate number of
point-like constituents, partons [3], we can get a deeper interpretation of the string
model making a dynamical hypothesis for parton interactions. We can suppose the
hadron boosted with a very large hyperbolic angle, w, in such a way that the Einstein
time dilation effect slows, for some observer at rest, the internal motion as much as
we want. This is the impulse approximation, useful because the light can see in this
frame the structure of hadrons. If the boost is performed along z-direction one can
extract from the infinite z-component of momentum X, a longitudinal finite fraction
n = /2 K, e”®, where the divergence has been removed. One can prove that in the
mﬁmte—momentum frame the motion of partons is Galilean in the transverse plane
[4], n playing the role of mass and m?/25 the role of binding energy. The kinetic
energy of the ith parton is
K} + m?

s B e 1.
E == (12)

14

where K; is the transverse momentum and m the mass of the parton.
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Serrano, 119, Madrid-6, Spain.
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Further we shall use a multiperipheral symmetrized picture in which the cloud
of partons is generated by a bare hadron, with longitudinal fraction unity, which
cascaded in the remote past into two bare partons — each one of these two partons
cascades into two other more and so on. We can characterize the partons by an
angular variable 0 given as a function of the longitudinal momentum, n() = A,/n
sin @ (0 < 0 < =), where the constant 4, = nn,,,, is given by the value at which
vW, begins to decrease sharply to zero (,,, =~ 1). It is supposed that the flow of
longitudinal fraction is strongly damped up and down the chain. As a result of this
model partons random walk in the transverse plane. The dynamical hypothesis
underlying the string parton model is given by a harmonic potential for the inter-
action between nearest-neighbour partons. Thence the potential energy between
partons i and i + 1 is given by

Viiv1 = @/2n)(x; — xi+1)2 (1.3)

where X, is the transverse coordinate of the ith parton, a function of 6, and the proper
time .

In a scattering process the hypothesis of nearest-neighbour interaction implies
that only partons having longitudinal fraction (k_) ™!, wee partons, are responsible
for strong interactions, the distribution of partons along the chain being dN/d0 =
(Ao sin 6) ™', in accordance with Feynman’s distribution law [3] for the multiplicity
of fragments dN,__, ~ dk,/k,. Using the Galilean analogy, k; = n,(d/dt)X;, and
the continuum approximation Y ; — | d6, the energy of the system of partons will
become

1 ([ (6X\* [oX\?
= — — — 1.4
) o)+ &) | (9
G being a constant with dimensionality of (mass)?. From (1.4) the equation of motion
is found to be

o*X %X
If we define the density of transverse momentum as a vector in the (z, 6)-plane
10X GoX
P S yinind P(O) = —— —— 1.6
1(9) o a‘c B( ) T ag ( )

equation (1.5) is the continuity equation describing momentum conservation. The
hadron behaves in this model as a homogeneous string with free ends because the
boundary conditions are Z,(f = 0, n) = 0, in order to avoid a flux across the ends
of the string. The solution of (1.5) gives the well known decomposition of X into
modes of oscillation

Xz,0) =X, + Kt —i\J2 Y e V2 {af Vo — g7 ¢S} cosl)  (1.7)
=1 i

where X is the total transverse momentum. By substitution of (1.7) into (1.4) we can
express the energy in an operational form

H=3K*+ M}) + 2G ) eq' a (1.8)

1=1
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which gives the Veneziano spectrum provided that G = ;. Being wee partons
(0 = 0, ) responsible of strong interactions, we define the vertex function, as usually,

by
V(Q) = :'2X0); 4 . pi0Xm. (1.9)
where normal ordering is introduced to substract infinities as in ordinary field

theories.
The four point amplitude

A(Qy, Q) = (0| Qs — M*)T'(Q,) | 0) (1.10)
1s computed using (1.8,9) and the result is the Veneziano amplitude, or beta-function,
if the mass of the string ground state is fixed to the value M3 = —1.

The rest of the paper is organized as follows:

In Section 2 the consequences of introducing a non-homogeneity in the string
are investigated. In fact we can suppose, in the context of nearest-neighbour inter-
actions, that the coupling constant in (1.3) can be in general i-dependent. Thus we
can introduce a non-uniform interaction. It is equivalent, from equation of motion,
to consider a string whose modulus of elasticity is not a constant, but rather a
function of the longitudinal coordinate of the string. To take into account a non-
uniformity in the mass distribution we must introduce another multiplicative
factor, parton dependent, in the expression of partons kinetic energy, equation (1.2).
It is interesting to note that there is a very general class of non-homogeneous strings
having the same Hamiltonian, but different Hamiltonian density, and thus the same
spectrum of states as the Veneziano model. The differential equation satisfied by a
general non-homogeneous string is called Sturm-Liouville eigenvalue problem.

In Section 3 a particular class of non-homogeneous models, called (p, g)-
models, is studied. The relevance of such models is that their differential equation of
motion is exactly solvable and they are able to generalize the Veneziano model.
Their energy is computed, becoming t-independent thanks to the orthogonality
properties of Jacobi polynomials. For the case p = 0, ¢ = 3 one finds the energy
of dual resonance models.

In Section 4 we study the (0, i-¢)-model, ¢ being a small parameter, as a
generalization of the Veneziano (0, $)-model. All functions are expanded up to first
order in &. To do that we need to approach Veneziano in a different way for each
different mode of excitation. It is indeed possible because the energy is simply the
sum of the energies generated by different modes, due to the orthogonality of trans-
verse functions corresponding to different modes. As usual the total coordinate is
defined as the sum over the modes, including the zero one. What we really do is to
associate a different string to each mode. In this way we can compute the energy.
The states (eigenstates of the Hamiltonian) are the same as in dual resonance models,
but deplaced in the J—s plane in such a way that they become less degenerated.
States of small mass are not degenerated at all. The first degenerated state appears
at a mass® greater than 3 (GeV)?. This degeneracy increases with the energy and at
a very high energy one finds the exponential behaviour predicted by the statistical
model.

The four-point amplitude is computed in this model. In the s-channel the ampli-
tude shows the contribution of poles corresponding to eigenstates of the Hamil-
tonian. In the s and the 7-channel the amplitude has Regge behaviour corresponding
to the exchange of usual linear Regge trajectories in crossed channels.
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The five-point amplitude is evaluated and its asymptotic behaviour investigated.
It is proved to reggeize in simple-Regge, double-Regge and helicity-asymptotic
limits as in combined Regge and helicity limit. The analytic continuation of the
residue of Regge-poles is performed in each case.

2. The Sturm-Liouville problem

We shall now suppose a non-uniform interaction between nearest-neighbour
partons and also a non-uniform longitudinal mass by means of two functions
depending on i. Because of the one-to-one correspondence between i and €, these
functions must be dependent on ;. In this way the generalized dynamical hypothesis
can be written as

Ei = p(6,)E; 171 o 0(9')Vi i+1 (2.1)

where E; and V, ;, ; are defined in (1.2, 3). That is equivalent to considering a non-
homogeneous string model for hadrons, where o(6) denotes the modulus of elasticity
and p(0) the mass per unit length of the string. The Hamiltonian is computed in the
same way as in Section 1, and it is given by

1 (" oX oX
H=£L[G@( ) (m()]e (2.2)

and the equation of motion

1 X 0

PO 53 —}w{dm } (2.3)
Trying to find a factorized solution

X(z, 8) = A(6)B(v) (2.4)
we get

2

72 B(t) + AB(t) =0 (2.5)
and

d A

0 [0(9) :l + G p(0)A(0) = 0. (2.6)

We are faced with the problem of determining the ‘eigenvalues’ of equation (2.6)
for which a non-trivial solution exists. This is called the Sturm-Liouville eigenvalue
problem [5].

Before analyzing equation (2.6) we shall investigate the conditions that functions
a(0) and p(0) must satisfy so that by a suitable change of variables y = G(0), equation
(2.2) becomes equation (1.4).

The answer is straightforward and the first condition is

a(0)0(h) = 1 2.7)
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the function G being fixed by
6O) = + f p(0) do @8)

and the second condition is, obviously
GWO0) =0 G(n) = m. (2.9)

Thence the solution to equation (2.4) can be written, in this case, as

Xz, 0) = Xy(1) — /2 Y I"'*{a} VO — g e 'V9'*} cos (IG(0)) (2.10)
1=1

and equation (2.9) insures that transverse conditions for wee partons are the same
in all these models as in the homogeneous string configuration. From (2.10) one
gets the same operational form for the energy as in the Veneziano model, given by
equation (1.4).

As an example of non homogeneous dual string model we define the (0, 3)-
model by the inhomogeneity functions

p@) = 671(0) = {0(n — 6)} /2 (2.11)
satisfying conditions (2.7-9), and the function G(6) is given by |
G(0) = arc cos (1 — 20/x). (2.12)

The Hamiltonian coming from this model can be expressed by (1.8), so it
shows the Veneziano spectrum, and the vertex function :exp (iQX(0)): + :exp
(iQX(m)): is the same as in conventional dual models. Hence the four-point amplitude
(1.10) is the beta function.

Up to here we have learned that duality is not a special privilege of the homogen-
eous string. Furthermore one can prove that all dual models are related by a suitable
reparametrization in the formalism of Goddard, Goldstone, Rebbi and Thorn [6].

3. The (p, g)-model

We shall generalize the (0, 1)-Veneziano model by means of a more general
definition of dynamical hypothesis of equation (2.1).
The (p, g)-model is characterized by the following inhomogeneity functions

c(0) = 64(n — G)r~9*! p(0) = 07 Y — )P 1. 3.1
Equation (2.6) with definitions (3.1) and additional conditions _
qg>0 p—qg> —1 (3.2)

is a Sturm-Liouville differential equation whose solution is given by the /th Jacobi
polynomial G,(p, g, 6/%) [5] corresponding to the eigenvalue

A=Glp+ 1) (3.3)

with the boundary condition that the solution remains finite for 6 = 0, n. The solu-
tion of equation (2.5) is, in this way

B(r) = —i)/2{l(p + D} Y*{a*(, 1) — a~(, 1)} (3.4)
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with
a*(l, 1) = exp {+i[Gl(p + D)]**1}af. (3.9)

Defining the total solution of equation (2.4) as a summation over modes, we have

X(z, 0) = Xo(x) — iy/2 i {{p + D} V*{a™(l, ) — a~ (I, D}G(p, g, O/n).
1=1
(3.6)

The equation of motion is again equivalent to the continuity equation of the
bivector describing the internal density of momentum
1
P(p.g.0) = 67 1(n — Oy 0 X
n ot
G ox (3.7
Pyp,q.0) = — 0%n — Oyp791 —
n ot

where physical boundary conditions P,(0 = 0, ) = 0 are automatically satisfied
from (3.2).

By substitution of (3.1-6) into (2.2), and using the orthogonality properties of
Jacobi polynomials [5], one can find the energy of (p, g)-model as

r—1 Kz o = M%
H(p,q) == B(p—q+ 1, Q)—z"' + 4G :ZI A(p, @)a a; ¢ + 3 (3.8)

where M, is the energy of the string ground state and
T +p — q + )

Alp, q) = {/ n}2 (39
One can easily see that in the case p = 0, ¢ = 3 we have in (3.8, 9)
BH=n AQDH=73! (3.10)

and the value of H(0, ) agrees with that of the homogeneous dual string model as
given by equation (1.8).

4. A generalized Veneziano model

In this Section we want to describe a model generalizing the Veneziano
(0, )-model by means of a small parameter, 0 < ¢ < 1, introduced in such a way
that the behaviour of the dual string model would be obtained in the limit ¢ — 0.

We can fix p = 0, ¢ = 7 — ¢ in Section 3 and expand each function around
¢ = 0. Doing that we find, for instance, that the expansion I'(l + 3 — ¢) =
T+ H[1 — ey(l + 1] + 0(e?) has no sense because Y(/ + 1) ~ log las!/ — oo and
we can always find an integer e-dependent, N(e), such that if / > N(e), e¥/(I + 3) > 1.
This suggests to us that if we want to approach the Veneziano model by means of
some small parameter ¢, it must be dependent on the particular mode of excitation
considered, ¢(/), and not a constant. This would give a slightly different interpreta-
tion of the hadron in terms of the modes of oscillation of a string. Up to here all
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hadron excitations have been associated with the modes of a string. In fact the solu-
tion to equation (2.3-6) is given by X,(z, 8) = B(7)G/(p, q, 0/n) with any [ going
from zero (if zero mode is included) to infinity. Equation of motion is not depending
on /, so we can take as general solution X the summation over X,. So different modes
are associated to the same differential equation. If p and q are functions of [, p = p(J)
and g = q(/), there will be a different differential equation for each mode /. Taking
as particular solution Xz, 8) = B/(t)G(p(!), q(1), 6/n) and as total solution
X = >, X;, all equations of Section 3 remain valid. In this way we shall define the
(0, 3-¢)-model by means of the following prescription

pi) =0 >0
gq0) =g)=3 g =53—¢l) 1>2

where &(/) = {4[y(! + 3) — ¥(3)]} 'e. The parameter ¢ is fixed and less than one,
and the factor dependent on / is particularly useful to simplify the formulas, decreas-
ing logarithmically when / grows to infinity.

Expanding the function (3.9) up to first order in ¢ one finds

(4.1)

H(,4 —¢) = {K? + M?) 4.2)
with
M?* = 4G{ata; + ¥ 1 + &)a}a;} + M2, (4.3)
1=2

Because p(0) = 0 and ¢(0) = 3, the external energy is unchanged with respect to that
of the (0, 3)-model and fixing &(1) = 0 the intercept of the leading trajectory is equal
to one. This is important because it is the only case where the ghost-killing mechanism
of Virasoro operators has been proved [7] to cancel the ghosts.

4.1. The spectrum of states

Taking in (4.2, 3) as coupling constant G = ; and the mass of the string ground

state M = —1, a taquion, we can compute the mass of intermediate states of the
theory
Il ) =L ) @) ) (ay) 2. .. |0) 4.4

and we find they lie, in the J-M? plane, on a set of straight line trajectories, the leading
one and its daughters (as in dual models) plus a set of parallel trajectories shifted
from the formers by an amount equal to 2¢, 3e, ... The states are much less de-
generated and trajectories are now split. Ounly the leading trajectory has no
splitting, reflecting the fact that its states are the only non-degenerated in dual
models. In the limit ¢ — 0 all the new trajectories come back to the old ones and
states become again degenerated. In Figure 1 we have shown the states (4.4) in the
J-M? plane. We can see that up to M? = 3(GeV)? the states are all non-degenerated.
The first degenerated state we find is jO, 0,0,1,0,...)with a mass? equal to 3 + 4,
coinciding with the first daughter of the state |0, 2, 0, .. .). The degeneracy is much
smaller than in conventional dual spectrum, and to compute its limit at very high
energy we can proceed as Fubini, Gordon and Veneziano [ 8] and define the partition
function of the system by the usual formula

Z(T) = Tr{exp (—H/T)} 4.5)
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10,..>
(00)

-1 0 1 2 3 s (Gev)?

Figure 1
The spectrum of the (0, 3-¢)-model.

where H is given by (4.2, 3). We know from thermodynamlcs and statistical physics
expressions for Gibbs potenual

G(T) = —=TlogZ (4.6)
entropy
oG
5= @.7)
and internal energy
dlog Z
2
E=T aT (4.8)

Because the level density, or degeneracy of states, is given by the exponential of the
entropy, by direct application of (4.2-8) we find

2n 2E L2

Equation (4.9) agrees with the behaviour of level degeneracy in Hagedorn’s thermo-
dynamical model [9] and gives the asymptotic behaviour [8] of dual resonance
model at ¢ = 0.

4.2. The four-point amplitude

We shall compute now the four point amplitude corresponding to the multi-
peripheral configuration of Figure 2, as given by

A, = (0, p, I Vip)(s — Mz)_lVE(Pz) | 0, p3) (4.10)
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P t P2
/—_—\
S
P, P3
Figure 2

The four-point amplitude.

where the kinematical invariants of the reaction are defined by

s=—(po+p)?* t=—(p, +p) (4.11)
and the vertex .
V(Q) = :pi0Xe(0). L . Gi0Xe(m). . ,i0X(0). 4 . ,i0X(R). | 0(s) (4.12)

X, given by (3.6) and X by (1.7).

We shall take for the vertex a zero-th order approximation in the parameter e&.
We have in this way the same vertex as in the Veneziano (0, )-model. For the propa-
gator in (4.10) we take the usual integral representation

1
(s — M2~ = j Xs M1 gy (4.13)

0

Using the canonical commutation relations (1.1) and the definition of coherent states
as the action over the vacuum of the exponential [10]

|f.) = exp (f.al) |0) (4.14)
with the normalization
(fu | 90) = €xp (f%9,)0 s (4.15)

we get for the amplitude (4.10) the following expression

Ayls, 1) = Ay (als), a() = J L xmm9-1(] = xl+eya0-1

0
exp {—(a() + D(x'* — x)}  (4.16)

where a(x) = x + 1 is the linear Veneziano—Regge trajectory. Obviously in the
limit ¢ — 0 we regain the Veneziano amplitude.

Requirement of Regge asymptotic behaviour is a very important test, both
from phenomenological and theoretical point of view, for a function to describe a
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scattering amplitude. In fact Regge behaviour is deduced from very basic principles
of S-matrix theory, as first and second kind analyticity. In the following we shall
compute the asymptotic behaviour of 4,(s, ?) in the two independent channels.

4.2.1. t-channel Regge limit. In this Section we shall compute the limit of equa-
tion (4.16) as |¢| — co. Since (4.16) is only defined for negative «, we first take the limit
t — — oo and then continue in s.

We shall proceed as Bardak¢i and Ruegg [11], using a generalized Laplace’s
method, making the change of variables x = y/(—t), and expanding the integrand
of (4.16) in a power series of (£)~!. Using

yl +e —t=2 y yl +e

t—— o0
we obtain
Al s, ) ~ (=)@ f dy y= 9~ 1L e™v (4.18)
= —ow 0
that can be written as
Ays, )~ (—1POT(—als)) 4.19)
[— — o

which shows poles at a(s) = 0, 1, 2, . ..
The behaviour (4.19) corresponds to the exchange, in the s-channel, of the Regge
trajectory o(s).

4.2.2. s-channel Regge limit. In order to compute the limit s - — 0o of equation
(4.16) it 1s convenient to first make the transformation of variables x > 1 — x so
that it can be written as

Ayls, 1) = Jl dx(l — x)7* @711 — (1 = '] 7O exp {(a()) + 1)

0
[1—x—-(1-x"'*"7}. (4.20)
Using the change x = y/(—s) and expanding the integrand as
1+ yls) "% ~ e7? _ (4.21)

and
[1— (1 +ys)* ] 2exp {(t 4+ 21 + y/s — (1 + y/s)' ™9} ~

( —7 )sz-f“z (4.22)

1 + ¢
we get
Ays, 1) ~ (1 + & "0 (=5 T(—a(2)) (4.23)

corresponding to the exchange of the Regge trajectory a(#) in the crossed channel.
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4.3. The five-point amplitude

In this Section we shall study the five-point amplitude corresponding to the
configuration of Figure 3, as given by

5 = (£, 0 l Vip (s, — M*)~! V(p2)(s, — 1M2)_ i Ve(ps) 11’4: 0) (4.24)
where the kinematical invariant of the reaction are defined as

i 2
—( Z Pj) T, = — (P + Disy)? 1= —(po + P> (4.25)
i=0 |

Py P2 T, p3

— e, ammp— —————

po/ \r/\p

Figure 3
The five-point amplitude.

Using the same values of V,(p) and M? as in Section 4.2 it is straight- forward to
get for the amplitude the integral representation

1 1
A (S5 83 Tyn Tas T) = '[ dx, j i, J6 = e =1 (4.26)
0 0

(1 _ x1+5)—a:(1:1)—1(1 _ 1+£)—a(t2)—-1(1 i+e 1+£)"a(t)+¢(t1)+1(1.'2)

exp { —(a(ty) + D(x}*™ — x;) — (1) + D(x3" — x,) —
(at) — afzy) — “(Tz))((x1x2)1+£ — X;X2)}

which is a generalization of the Bardak¢i—Ruegg [11] five-point formula.

In order to compute the asymptotic behaviour of (4.26) we shall use Bardakgi-
Ruegg’s method [11], as in Section 4.2, and follow closely the work of Brower,
De Tar and Weis [ 12] to analyze the asymptotic limits of five-point amplitude.

4.3.1. Simple-Regge limit. The limit t,, T — 0, 5,, §,, T/7, fixed is usually called [ 12]
simple-Regge limit of five-point amplitude. Since (4.26) is defined for negative a, we
first take 7,, T — — oo and then continue in ,, 7. The region x; ~ 0 dominates the
integral in this limit. Let us perform, in (4.26), the transformation of variables
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x, = y,/(—1,) and expand the integrand in a power series of (z,) " '. After a lengthy
but straightforward calculation we get

As ~ (=) glsy, 83, T2, T/71, 8) (4.27)

Tyt o= ED-
t2,t/ty, 51, s2fixed

which corresponds to the asymptotic behaviour of a diagram where a Regge pole is
exchanged in the s,-channel. The residue of the Regge pole is given by the function

0 1
— y—a(s))—1 L —a(s2)—1 — yltEey—a(z)-1
g - J:) dyl J; de )1 x2 (1 x2 ) (428)

exp { —(a(ty) + D™ — x3) — ¥y + ¥iXy — Y1X,7/71}
or using the simple change of variables (1 — x,)y; — y, we get
® 1
g = J dle. dx2 yl—d(sﬂ—l xz—a(Sz)—l(l . xz)a(sﬂ(l _ le +8)—a(fz)-1

0 0

(4.29)

X T
exp {—(a(t) + DA™ — x,)] exp {—yl i ?}'
21

The integral (4.29) only converges for 7/t; > 0. It is therefore not an entire function
of 7/7,. To obtain the analytic continuation of (4.29) we can use the identity

exp (Z) = —2-% j_ dAT(=A)(-2) (4.30)

The y, integral in (4.29) can be performed with the result

4= 5 rdl TG — () D(= A, 51, 52, T2, Ec/2,)’ (43D)

i J-ioo

where

1
§ — A—a(ss)—1r1 _ —Ata(s1)] _ 4 ltEy—a(z)—1
g '[) dxz X2 (1 xz) (1 x2 ) (432)

exp {—(a(ty) + D™ — x)}.

In particular if 7/1;, < 1 the contour in (4.31) can be closed to the left, picking up
polesat A = a(s;) —rand A = a(s,) —m((n,m=20,1,...).

4.3.2. Double-Regge limit. The limit t,, 7,, T — 0, 7/(t,7;), §;, 5, fixed is called
the double-Regge limit of the five-point amplitude. It can be obtained by taking the
further limit 7, — o0, t/(1,7,) fixed, on (4.28). Thus making the change of variables
x, = y,/(—1,) and expanding the integrand we get

As - (=1, VN =1,)62 f(sy,s,, 1/1,7,) (4.33)

T1,72,T7% =%
t/t172, 81, s2fixed
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where

[+ e Ca(s— e T
f= L dy, L dy, yy 01 a6 ‘exp{—yl — V2 + 1), T—-} (4.34)
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which corresponds to Regge trajectories exchanged in s, and s, channels. The
residue is only defined for negative t/(z,t,). The analytic continuation of (4.34) in

the variable 7/(7,7,) can be found using again (4.30) to perform y, and y, integrations
with the result

1 [t s
f = “27&[ AT — a(s,) T — a(s,)) T(—A) (—Ti) (4.35)
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4.3.3. Helicity Asymptotic limit. The limit T — 0, 1,, 7,, §,, §,, fixed, is called
the helicity asymptotic limit [ 12]. Looking at (4.26) we can see that 1 — —0 causes
x, ® 0or x, ® 0to dominate in the integral. In fact the integral does not converge
if both x, and x, ® 0. There are, therefore, two contributions. The first one, corres-
ponding to x; =~ 0, can be extracted making in (4.26) the change x, = y,/(—7)
and expanding the integrand in powers of (t) !, taking the limit T — —oo. To get
the contribution corresponding to the region of integration x, ~ 0 we perform in
(4.26) the transformation x, = y,/(—1) and expand the integrand as usually. The
result can be written as

A e F(=a(s (=)™ Ay(als;) — alsy), %(72))
s1, s;,::’l,—ttffixed (436)

+ F(—a(s))(— 1) Ay(alsy) — alsy), #(1,))

where the function A4, is defined in (4.16). Behaviour (4.36) is in agreement with the
general form [12]. The helicity limit behaviour is important because it means that
for negative a(s,) and a(s,) we can write an unsubtracted dispersion relation in t
with the other a’s in (4.26) fixed.

Finally the combined Regge and helicity limit 7, — oo and t/t; — oo is easily
deduced from (4.36) giving

As  ~  T(=a(s))(—1)" Au(a(sy) — ofsy), a(t,))
T1,T/T1 =0 (437)
+ (=5 ))— 0% Tasy) — s N~ 0=

5. Conclusion

We have studied through this paper the consequences of introducing a non-
uniform parton interaction and a non-uniform mass distribution by means of two
functions which modify the usual dynamical hypothesis giving rise to the so-called
conventional dual string model. We are tempted to interpret this as an average
effect of non-neighbour partons modifying the pure oscillatory pattern. This is
equivalent to be considered for the hadron a non-homogeneous string model.

We have seen that duality is not a special privilege of the homogeneous string.
There is a very large set of models having the same spectrum and whose wee partons
(ends of the string) have the same transverse coordinate as in the Veneziano model.
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It is known that while hadrons are emitted from the edge of the Koba—Nielsen
disc [13], wee partons, photons emerge from its interior [14]. So it should be in-
teresting to investigate off-shell currents and scalar amplitudes [15] inside the con-
text of these new distributions of partons in the Nambu-Susskind strip. One of these
models, the (0, )-model, is generalized to the (p, g)-models. In this way we can
approach the Veneziano model by variation of the parameters p and g from the values
0 and 3, respectively. We obtain an e-dependent model which coincides with the
Veneziano model at ¢ = 0. It is a trivial but effective generalization of conventional
dual models because it shows splitting of trajectories in the s-channel, in such a way
that the states are much less degenerated. The lowest mass states are not degenerated
at all. However, the degeneracy of the model respects, in the high energy limit, the
behaviour exp (C,/E) given by statistical models [9].

The four-point amplitude shows decomposition in poles in s and z-channels,
with polynomial residues, and good asymptotic behaviour in the limits s and ¢ — oo,
as expected from first principles and S-matrix theory.

The five-point amplitude Reggeizes both in simple and double-Regge limit as
in helicity asymptotic limit or combined Regge and helicity limits.

Let us remark on the curious fact that there appears a hidden mechanism (or
symmetry) which assures Reggeization of N-point amplitudes by means of cancella-
tions of leading (exponential) terms which could violate Regge behaviour when the
integrand is expanded as an asymptotic series. In this way the amplitudes Reggeize
even if they seem to violate, at first view, the correct Regge behaviour.
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