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Limitations on the use of é-function potentials
as replacements for actual atomic potentials
in one-dimensional studies )

by Paul Erdos

Institut de Physique Théorique, Université de Lausanne
1015 Lausanne, Switzerland

and Roy C. Herndon

Physics Department, The Florida State University
Tallahassee, Florida 32306, USA

(2. IIL. 1977)

Abstract. In calculations involving one-dimensional disordered systems of atomic potentials, it is
desirable to simplify the problem by representing the atomic potentials by é-functions. We have investi-
gated the claim that it is always possible to represent a single atomic potential by a d-function, and have
pointed out the limitations of extending this claim to include an array of atomic potentials.

1. Introduction

There has been considerable literature published concerning electron states in
one-dimensional disordered systems of atomic potentials [see for example, Mott
(1961), Mott (1967), Elliott (1974)]. For ease of calculation, §-function potentials
were often used to represent the actual atomic potentials. Consequently the question
arose as to what extent the results obtained had features peculiar to the fact that
o-functions were used to represent the actual potentials.

Borland (1961) published an article in which he investigated the existence of
energy gaps in a one-dimensional liquid. In this article Borland presented what he
considered a proof of this statement that: . . .it is always possible for a fixed positive
electron energy E to replace the atomic potential by a §-function surrounded by two
regions of zero potential which together have the same transformation properties
as the atomic potential upon the wave functions to the right and left of it.’

Borland (1961, 1963) as well as other authors [see for example, Dworin (1965),
McCubbin (1972) and Eggarter (1972)] have accepted this statement as justification
for the use of a J-function representation for atomic potentials. We will show
that the content of Borland’s statement must be carefully interpreted in order to
avoid misunderstanding. A J-function potential is characterized by two energy
independent parameters (strength and location). However, in general, three energy

') With partial support of the Swiss National Science Foundation.
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dependent parameters are necessary to specify the transfer matrix of a (not neces-
sarily symmetric) potential. One of these parameters may always be interpreted as the
‘location’ of the potential. In general, the ‘location’ parameter is energy dependent,
but we will show that for potentials with a line of symmetry, the location is energy
independent and coincides with the line of symmetry of the potential.

Borland (1961), in arriving at his result, essentially wrote the transfer matrix for
a general potential in a form that resembled the corresponding transfer matrix for a
o-function potential. It will be shown, that there are essential differences between what
Borland considers as the transfer matrix for the ‘equivalent d-function potential’
and the properties of the transfer matrix of an actual é-function potential. Finally,
a graphical representation of the transfer matrix is made to help clarify the distinction
between the transfer matrices of a potential located at an arbitrary point and one
located at the origin, and between those of symmetric and non-symmetric potentials.

In order to make our presentation clear, we will first develop the properties of
the transfer matrix for the case of a general potential. Although this involves much
rather trivial algebra, it is precisely this algebra, whose careless handling in the past
has led to misunderstandings. With this done, we can then understand the content
of Borland’s statement and what limitations are contained therein, in particular with
regard to representing an array of general atomic potentials by a series of J-function
potentials.

2. Properties of the transfer matrix R

The potential is assumed to be a single-valued, real (but not necessarily sym-
metric) function V(x) such that
X < x4

V(x) =0 for { (2.1)
X

= X,

where —o0 < x; < x, < oco. We will call such a potential localized. The region
-0 < x £ x, will be denoted by I, and the region x, < x < oo by III. (Fig. 1.)

The time independent Schrédinger equation?) for a particle of energy x? is,
in units where #%/2m = 1,

[—d?/dx* + V(x) — &*TY(x) = 0. 2.2)
The solution of this equation is:
Y(x) = Ajexp (ikx) + Byexp (—ikx), x < x,
and (2.3)
Ym(x) = Ay exp (ixx) + By exp (—ikx), x = X3

If boundary conditions on ¥ and dy//dx at some point x < x, specify the complex
constants 4, and B, then 4;;; and By, are not free since the solution of a second-order
differential equation is completely determined by only two arbitrary constants. We
relate A;; and By, to 4, and B; by means of a 2 x 2 matrix R with complex elements.

2)  The periodic time dependence of the wave function may be omitted since it would cancel out in the
calculated intensities.



Vol. 50, 1977  Limitations on the use of potentials 515

V(x)

Y
X

I
|
|
I
I
I
|
|
|
| X2
Figure 1

< x,

. . X
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We define R by

A A
m) _ p.[71) . 2.4
(Bm) (BI) &=

The column vectors in equation (2.4) will be denoted by by, and b, respectively;
hence

by = Rb;. (2.5)

By making use of the linear superposition principle valid for solutions of (2.2),
we can show that the matrix R is independent of 4, and B, (or A4, and By, ). Further
the property of time reversal invariance of (2.2) and the conservation of probability
current density lead to the following relationships between the elements of R:

R,, = Rf,; R, = R},
and (2.6)
detR = |[Ry,[* — [R,[* = 1.

These are equivalent to five real equations connecting the eight real numbers which
characterize the four complex matrix elements R, . These equations are such that R
is completely determined by three real parameters. Since the solutions of the Schro-
dinger equation are functionals of V(x) and x only, the three parameters can only
depend on V(x) and x. We should note that the transfer matrix R is unimodular
(det R = 1) and it is not unitary. There are three additional properties of the transfer
matrix we will use. We will call these three properties (P1), (P2) and (P3) in what
follows.

(P1) A shift by x,, of the origin of the x-coordinate (leaving the potential in place)
induces the transformation R — R’, defined by

Ry — Ry = Ry, (2.7)
and

R,, — R, = R,, exp (2ixx,). ‘ (2.8)
Here R’ is the transfer matrix relating the coefficients of Y (x") and ¥ (x'), where
X' =x— x,.

To prove (P1) we note that a shift in the origin of the coordinate means that we
replace x by X' + x, in the exponent of equation (2.3). This leads to coefficients a,
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of the wave function with respect to the basis exp (ixx’), exp (—ixx’)

a, = Uxyb,, A=1LIII (2.9)
where

Ulx,) = (exp ((;xxc) xp (*Ol_xxo)). (2.10)
Therefore, if we set

ay = Ra, 2.11)
we obtain from equations (2.5) and (2.9)

R = U(xy)RU(—x,) = U(x,)RU™ !(x,), (2.12)

from which equations (2.7) and (2.8) follow immediately.

(P2) For a fixed coordinate origin x = 0 and for each value of «, there exists a
point — o0 < x,(k) < oo such that if x,(x) is chosen as the origin of the coordinate
», and M is the matrix relating A,, B, and A4y, By; as coefficients of y/;(x") and Vr,;(x),
respectively, then in addition to the properties that .

M22=MT1} M, = MY,

and (2.13)
detM = |M,|* — |M,|* = 1,

the following relation exists:
Re M, = 0. (2.14)

Equation (2.13) follows from equation (2.6).
To prove equation (2.14) and thereby (P2), we write the matrix element R, as

Ry, = |Ry,|exp[—i¢], ¢real, —n < ¢ < m. (2.15)
Then choosing the new coordinate origin x" = 0 at

Xom, k) =[¢p — (m + D)2k, m =0, +1, +2,... (2.16)
we find that equation (2.8) yields

M, = (=)™ YR, (2.17)
Let us denote the value of m, for which

|xo(m, k) — 3(x; + x,)| (2.18)

as a function of m is a minimum, by m,,. Here, x, and x, are defined by equation (2.1).
The point x,(k) = x,(m,, k) will be denoted as the location of the potential. We then
obtain

M, = (=)™ YR, (2.19)

Equation (2.14) reduces the number of independent parameters which define the
transfer matrix M to two. Hence, x,(x) may be considered as the third parameter
characterizing R with respect to the original coordinate x.3)

) From now on when the transfer matrix R is expressed with respect to a coordinate whose origin
coincides with the location of the potential, it will be denoted by M.
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(P3) If the potential is symmetric, its location x, is independent of x, and is
identical to the position, xg, of its line of symmetry.
To prove (P3) we note that if the line of symmetry of the potential is at xg = 0,

then the transformation x’ = — x leaves the Schrédinger equation invariant. There-
fore, along with y/(x) there exists another solution y"(x’) such that

1(X) = Yy(—x), - (2.20)
and

m(x) = ¥y(—x).

Consequently, if b’ (4 = I, III) denotes the coefficient of the wave function referred
to exp (ixx’), exp (—ixx"), we have

b/ = o_b,, (2.21)
and

by = ¢,b;,
where o is the Pauli spin matrix.

Since R is invariant under the space inversion x — x’ = —x, we have from equa-
tion (2.5),

by, = Rb;. (2.22)
Combining equations (2.5), (2.21) and (2.22), we obtain

Re,)’ = (6R)* = L. - | (2.23)

Equation (2.23) used in conjunction with equation (2.6) leads to the additional
relation that

ReR,, = 0, | (2.24)

where equation (2.24) is valid regardless of the value of x as long as the potential
is symmetric with respect to xg = 0. Hence, the line of symmetry of the potential is
its ‘location’ in the sense defined in (P2), because it is the point which, when chosen
as the coordinate origin, leads to equations (2.14) and (2.19).

We are now in the position to determine from the transfer matrix whether there
exists a line of symmetry for a given potential. From equations (2.8) and (2.24) it
follows that for a symmetric potential, located at x,, the matrix element R,, of a
symmetric potential fulfills the equation

Im[nR,,]=-Qxx +n/2+nn), n=0,+1, +2,... (2.25)

where x, is independent of x. In contrast to this, for a nonsymmetric potential, it
follows from equation (2.15) that

Im[InR,,] = —¢(x) + nn, n—0, 1, +2,... (2.26)

where ¢(k) is not necessarily a linear function of x.

Without loss of generality, we may express the elements of the transfer matrix M
forapotential located at the origin x’ = (in terms of two real k-dependent parameters
A and y such that
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M, = (chA) exp (—iy),
and (2.27)
M, , = —ishi,

where we have made use of equations (2.13) and (2.14).

It should be borne in mind that the representation given by equation (2.27) is
valid for a symmetric potential for all values of k, since the location of the symmetric
potential, once chosen, remains at x’ = 0, independent of k. In contrast to this, the
location x, of a non-symmetric potential depends on k, and, therefore, the two-
parameter description, equation (2.27), is valid only for a particular value k = x,,
for which x,(x,) = 0. For general values of x, the third parameter x,(x) is needed in
addition to A(x) and y(x) to specify the transfer matrix.

The elements of the transfer matrix R for a potential not located at the origin
are commonly written such that the unimodular property is explicitly taken into
account similar to equation (2.27). In this case, however, R,, # 0, in general, and
there are three real parameters o, 4, and y as discussed previously:

R,, = (chi) exp (—in); R,, = (shi) exp (—1y). (2.28)

For our purposes, it is more convenient to use the parameters ¢, f and ¢ defined
by

Ry, =0—-i)exp(—if); Ry, =texp(—ig), (2.29)

where it is clear that the unimodular condition is still automatically satisfied.
From equation (2.12) and (2.29), we can find the matrix elements of R’ (or M):

M, = (1 — ir)exp (—if),
and ' (2.30)
M, = texp[—i(¢p — 2kx,)].

In accord with the discussions under (P2), we interpret the parameter x, as the
‘location’ of the potential so that we may write

M, =-i, (2.31)

where we have made use of equations (2.15) through (2.19).
From equations (2.12) and (2.30) we find R to be

(I —inexp(—if) —itexp (—2ikx,) 2.32)

it exp (2ikx,) (1 + it) exp (iB) '

It is important to note that B, t and x, are, in general, all k dependent.

3. The transfer matrix as defined by Borland

Before proceeding further, it is necessary to comment upon the transfer matrix
as used by Borland (1961). Whereas we have defined a transfer matrix R through
equations (2.3) and (2.4), Borland chose to use a different basis for ¥, and y; [see
equation (2.3)]. This means Borland makes use of plane wave solutions where the



Vol. 50, 1977 Limitations on the use of potentials 519

coordinate x is measured from two different origins on the two sides of the potential
such that

Y, = Apexp [iv(x — x,)] + Byexp [—ix(x — x,)], x < x,
and (3.1)
Y = Ay exp Lik(x — x,)] + Byexp [—ix(x — x,)], x = x,

so that Borland’s transfer matrix, Ry, is defined by

Ai[l Ai
= R,- . Nl
() = e @

Using equations (2.3) and (3.1), we can write the primed coefficients of the wave
function in terms of the unprimed coefficients, thus relating the transfer matrices
defined by equations (2.4) and (3.2): equation (3.2) may then be written as

Ay exp (ikx,) _R. A, exp (ixkx,) (3.3)
By, exp (—ixx,) B\ B, exp (—ixx,) '

or equivalently

b = U*(x,)RzU(x,)b; = Rb,, (3.4)
where we have made use of equation (2.5), and we have defined

Ux,) = (e"p (irex,) 0 ); n=1,2 (3.5)

" 0 exp (—ikx,)

From equation (3.4) we see that R and R are related through the relationship

R = U*(x,)R,U(x,), (3.6)
or solving for R, we have

R, = U(x,)RU*(x,). (3.7)

For later reference we note that if a single coordinate origin is used (x = 0),
the transfer matrix R which represents a line segment of zero potential between x,
and x, (see Fig. 1), is given by

)
R:(O 1)‘ (3.8)

However, from equation (3.7), we see that the transfer matrix R for a line segment of
zero potential is

Rp = U(x,)U*(x,) = U(x, — x|) = (eXp DK(J:)Z - exp [—irc?x - X )])
(3.9)

4. Transfer matrix for a j-function potential
To understand what is meant by an ‘equivalent’ §-function potential, we will

need the transfer matrix for an actual é-function potential for comparison. We will
first find the transfer matrix for a d-function potential located at the origin. We can
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then use equation (2.12) to transform it to a é-function potential located at an arbi-
trary point, x = x,.

A o-function potential of strength & located at x = 0 gives rise to the Schrodinger
equation

[—d?/dx* + £8(x) — K*TY(x) = 0, 4.1)

where x? is the energy of the particle in units #%/2m = 1. Integrating this equation
fromx = —gtox = y > 0, we obtain

—V'(y) + Y(—e) + £ [ SOW(x) dx — 2 J. Y(x) dx = 0. (4.2)

Integrating once more from y = —¢ to + & we obtain

—(e) + Y(—e) + 2ef'(—e) + & f dy J SO (x) dx —

— K? JE Jy w(x)dx = 0. (4.3)

Subject to the condition that |y(x)| remains finite, it is easy to see that in the limit of
¢ — 0 the last three terms in equation (4.3) tend to zero. It follows:

—¥(07) + ¥(07) =0, (4.4)

where /(0 7) is the value of the wave function slightly to the right of x = 0 and simi-
larly for /(0 7). Using the fact that /(x) is continuous across the é-function, we obtain
from equation (4.2) in the limit of e — 0:

—¥'(07) + ¥'(07) + &Y(0) = 0. (4.5)

We now use the plane wave solutions given by equation (2.3) on each side of
the o-function potential (in this case x, = x, = 0). Inserting these solutions and
their derivatives into equation (4.4) and (4.5), we obtain

Ay = (1 — i&/2x)A4, — (ié/2x)B,,
and (4.6)
By, = (i&2x)A; + (1 + i&/2k)B,.

Therefore, from equation (2.4) we have for the elements of the transfer matrix of a
o-function potential situated at the origin

M, =1 — ik, (4.7)
M,, = —i&/2k. (4.8)

The conditions given by equation (2.6) are fulfilled, as is easily seen by inspection.
Further, in keeping with our convention, we denote this transfer matrix by the letter
M, since it is expressed with respect to a coordinate origin at the location (line of
symmetry) of the potential [see (P2) and (P3)] in Section 2].

Using equations (2.12), (4.7) and (4.8), we can write the transfer matrix R;,
for a é-function potential located at a point x = x, as

R; = U*(xo))M4(HU(x,), (4.9)
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where
y (exp (ikx,) 0 )
(*o) = 0 exp (—ixx,)’’ (4.10)
and
(Ui —iE
Ms(©) = (fc/2x [+ ié/2rc)' (@.11)

The parameters ¢ and x,, are not k dependent. [See (P3) in Section 2.]

5. Graphical representation of the transfer matrix

Let us represent the elements R, , and R, , of the transfer matrix in the complex
plane z = o, + io,. The elements R,, and R,, are completely determined by R,
and R, through equation (2.6) and, therefore, need not be considered.

The use of equation (2.6) allows the following graphical construction of a
compatible set of matrix elements for a given value of the wave number x (see

Fig. 2).
io,
%
\ND) »/
Arbitrary potential

located at arbitrary point| Potential located at x= O

Cc w d ‘iO‘z

\NY)

Iio—

b

r

£

3-function potential §-function potential
located at arbitary point| - located at x=0
Figure 2

Argand diagrams of the transfer matrix elements.
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(1) Choose R, as an arbitrary point in the complex plane.

(i1) Draw a circle through R, with the origin as center. At an arbitrary point
on the circle draw a tangent of unit length measured from the point of contact.
Draw a second circle through the end point of the tangent with the origin as center.

(ii1) Choose R,,; anywhere on the larger circle (see Fig. 2a). This will fulfill
equation (2.6).

The construction could, of course, be reversed, choosing first R,, arbitrarily
with obvious modifications. In either case there are three real parameters at our
disposal: the modulus and angle of the complex number R,, and the phase angle of
R, (or vice versa).

It follows from equation (2.8) that a shift in the origin of the coordinate x is
equivalent to moving R,, on the smaller circle. If the potential is located at x = 0
(see Fig. 2b), then R, (or M ,) lies on the imaginary axis [refer to (P2) and (P3) in
Section 2]. For an arbitrary potential V(x), when x is varied, both R,, and R,,
move in the complex plane, always retaining the geometrical relationships given by
(1), (it) and (iii). A symmetric potential is characterized by the fact that M, always
moves along the imaginary axis if the potential is centered at the origin (see Fig. 2b).

Next let us construct the complex diagram of the matrix elements of a §-function
potential located at x = 0 and of strength £. From equations (4.7) and (4.8), the
relationships

Ry, =M =1+ & (5.1)
and
Ry, = My, = il (P2

follow, where for attractive potentials ¢ is a positive sign and for repulsive potentials
£1s a negative sign. In applying rules (i), (ii) and (iii) we have to choose M, on the
imaginary axis [equation (5.2)]: Furthermore, M, has to be chosen at a distance
1 to the right of the imaginary axis on the larger circle in the same half plane as M,
(see Fig. 2d). Consequently, no freedom is left in the choice of M,, once M, is
chosen.

If the é-function is moved to the point x,, R, , moves on the inner circle of Fig. 2c.
In this case, equation (5.1) still remains valid and R,, does not move; however,
equation (5.2) no longer holds [see (P3), Section 2]. Note that for a é-function po-
tential

ReR,, = |, (5.3)

and it is this relation which distinguishes a é-function potential from a more general
one.

6. Discussion

Let us now compare the transfer matrix given by equation (2.32) for a general
potential with that given by equation (4.9) for a §-function potential. Using equations
(4.10) and (4.11) we can write equation (4.9) as

_ ( 1 — /2 —¢/2K exp (- 2in0))
6 = 2

i&/2x exp (2ikx,) 1 + i&/2x (6.1)
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where it is important to keep in mind that the strength, £, and the location, x,, are
not dependent on « for a é-function potential. We can rewrite equation (2.32) as

R — ([1 — if'(k)/2c] exp [—if(x)] [—it'(x)/2x] exp [—Zino(K)])’ 62)
[it'(1)/2x] exp [2ikxy(x)] [1 + it'(x)/2x] exp [iB(x)]
where we have defined
t(x) = t'(x)/2k, (6.3)

and we have explicitly indicated that for a general potential the parameters ¢, f and
X, are k dependent.

It is clear from equations (6.1) and (6.2) that R and R, have the same form only
if B(x) = 0. However, as we have seen in Sections 2 and 5, a general potential requires
three independent parameters to specify the transfer matrix whereas the transfer
matrix given by equation (6.1) for a d-function potential has only two, the strength
and the location. Therefore, it is inappropriate to say that the transfer matrix for a
general atomic potential can always be expressed in terms of the transfer matrix for
a J-function potential. Borland stated that there exists an ‘equivalent’ é-function
potential surrounded by two regions of zero potential. To understand what this means
let us use equation (3.7) to transform R into R, the transfer matrix of a general
potential, referred to the basis Borland used (see Section 3). Using equation (3.7) we
can write equation (6.2) as

R = U(x,)RU*(x,) = U(x,)U*(v,)MU(v,)U*(x,), (6.4)
where R has been written as
R = U*(v,)MU(v,) (6.5)
with
exp (ixkv;) 0 .
U = J =12 6.6
(Ul) ( 0 exp (—iKUj)), _] s ( )
kv, = —(B/2 + Kx,); kv, = —(B/2 — Kx,),
and
1 —it'/2x —it'/2x
— . 6
M (it’/2x 1 + it’/ZK) ©.7)

The form of equation (6.7) for the matrix M is the same as equation (4.11) for
the matrix M, for a fixed energy (¢ in M is a function of x, while ¢ in M is not).
According to Borland’s point of view we would interpret equation (6.4) as represent-
ing an ‘equivalent’ é-function potential, M, given by equation (6.7), multiplied on the
left and right, respectively, by the matrices U(x, — v,) and U(v, — x,), which
represent line segments of zero potential in the same sense as equation (3.9).

It is however, deceptive to call the matrix M of equation (6.4) a transfer matrix
for an ‘equivalent’ d-function potential, since one would tend to attribute to it the
properties of an actual d-function potential transfer matrix. This idea of an ‘equiva-
lent’ -function potential to represent a general potential is misleading, then, on the
following counts:
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(1) An actual é-function potential has only two independent parameters, the
strength and location, whereas for a general potential three parameters are
necessary, all of which may be energy dependent.

(2) The matrices which multiply M; in equation (4.9) contain only the location
parameter which is energy independent, whereas the matrices which multiply
M in equation (6.4) contain two parameters, both of which may be energy
dependent.

(3) A total transfer matrix for an array of potentials may be written as the
ordered product of the individual transfer matrices R [see, e.g. Erdos and
Herndon (1972)]. This multiplicative property of the transfer matrices, R,
is highly desirable in investigations dealing with disordered arrays of
potentials. On the other hand, it is clear from equation (3.7) that this
multiplicative property does not hold for Ry.

This is easily seen to be true by considering the following situation. Let R,
and R, be the transfer matrices for the potentials V', and V,, respectively, situated
as shown in Fig. 3. Then from equation (3.6) we have

R, = U*(x,)Rp, U(x,), (6.8)
and
R, = U*(x)Rp,U(xy), (6.9)

where Ry, and Ry, are the transfer matrices corresponding to V', and ¥, respectively,
as expressed in the basis Borland used (see Section 3). Therefore

R,R, = U*(x,)R,,U(xy)U*(x,)R;, Ulx,), (6.10)

and we see that the multiplicative nature of R, and R, does not carry over to Ry,
and R, since the matrix U(x; — x,) appears between them.

V, v,
| L/ /L ] ] /\ 1
\ > X
Figure 3

Two localized potentials V' ,(x) and V,(x) located on the x-axis between x, and x,, and x; and x,, respec-
tively.

In summary, then, we may state that it is always possible to write the transfer
matrix R, which characterizes a general potential, V(x) as the product of three matrices
[see equation (6.5)], each of which contains one energy dependent parameter. In
addition one of these matrices may be written in a form given by equation (6.7).
However, as we have previously explained, it is misleading to identify equation (6.7)
as an ‘equivalent’ d-function potential transfer matrix.

A consequence of these conclusions is, that certain results, which were thought
to be valid for chains of arbitrary atomic potentials, are only valid for chains of d-
function potentials. An example of this is found in the work of Dworin (1964). His
criteria for the existence of electron energy gaps in the spectrum of a disordered chain
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of potentials or chain of random potentials cannot be used, unless one would assume
that the location of each potential is different for each value of the electron energy.
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