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An application of the third order JWKB-approximation
method to prove absolute continuity
I. The construction

by P. A. Rejto!)

School of Mathematics, University of Minnesota, 206 Church St., Minneapolis, MN 55455, USA
and
Ecole de Physique, Département de Physique Théorique, Bvd d’Yvoy 32, CH-1211, Genéve 4, Switzerland

(24. 1. 1977)

Abstract. We employ the approximation method of Jeffreys, Wentzel, Kramers and Brillouin to
study the continuous spectra of a class of one-dimensional Schrodinger operators. A typical potential in
our class is a potential which at infinity is smaller than the one of von Neumann—Wigner. According to our
main theorem the interior of the essential spectrum of such a Schrodinger operator is absolutely continuous.

In this first part of this paper we employ the third order JWKB-approximation method to construct
a family of approximating operators to such a Schrédinger operator.

1. Introduction

In their classic paper, ‘Uber merkwiirdige diskrete Eigenwerte’ von Neumann
and Wigner [ 1] gave an example of a Schrodinger operator whose spectrum consisted
of [0, o) together with a strictly positive point eigenvalue. The potential of their
operator was oscillating near infinity.

In this paper we exhibit a class of potentials which oscillates somewhat slower
than the von Neumann-Wigner potential and the corresponding operator has no
strictly positive point-eigenvalues. In fact, in this case the part of the operator over
the open positive axis is absolutely continuous. At the same time we illustrate how
the third order JWKB-approximation method can be applied to prove this property.

In Section 2 first we describe our class of potentials. Then in Theorem 2.1,
which is our main result, we state that the parts of the corresponding Schrédinger
operators over the open positive axis are absolutely continuous.

In Section 3 we formulate a set of abstract criteria for absolute continuity. This
set of criteria is a simplified version of a set formulated elsewhere [8]. As before, the
key requirement is the existence of a family of approximating operators in the sense
of the technical Definition 3.1.

In Section 4 we formulate a sufficient condition on the resolvent kernels of a
family of operators in order that this family of operators approximate a given
operator. This is described in specific terms in Lemma 4.1.

') Supported by NSF grant MCS 76-06013.
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In Section 5 we employ the third order Jeffreys, Wentzel, Kramers, Brillouin
approximation method [11, 12, 18] to construct a family of approximating operators
to the operator L(p) of Theorem 2.1. First, in Lemma 5.1 we formulate a version of a
result of Sibuya [4, 19], concerning JWK B-approximate solutions of the equation,

(u—L(p)Y(w)=0, Re pues.

Let y(u) denote such a family of approximate solutions. To this family of approximate
solutions corresponds a family of potentials, g(u), defined by the property,

(= Lq()))y(w) =0.

In general, there is no reason to expect that this family of operators, L(gq(u)),
approximates the operator L(p) in the sense of Definition 3.1. Therefore we formu-
late Condition 0(.#) on the potential p which ensures that this is the case. We do not
claim that the potentials p of Theorem 2.1 satisfy this condition. However, we show
in Lemma 5.2 that such a potential p admits a decomposition of the formp = p, +p,,
where p, is short range and p, satisfies Condition O(#).

It is far from being evident that the family of potentials g(u) corresponding to p,
is such that the family of operators L(g(u)) approximates the operator L(p). The
proof of this fact requires estimates which will be formulated in the second part of
this paper.

For the role of absolute continuity in quantum scattering theory we refer to the
paper of Amrein—Georgescu [7]. For the role of self-adjointness in quantum theory
we refer to the recent book of Piron [20].

This work was initiated during a Sabbatical stay at the Département de Physique
Théorique at the University of Geneva. It is a pleasure to thank the entire staff for
their hospitality during this stay and during a subsequent visit. In particular, it is a
pleasure to thank Professors Amrein, Davis, Guenin, Eckmann, Piron, Ruegg and
Sinha for valuable conversations. Special thanks are due to Professor Enz for pointing
out that it is dimensionally incorrect to take Plank’s constant equal to one. Inserting
Plank’s constant in definition (5.24) made it dimensionally correct. At the same time
it allowed us to conclude that the third and fourth order terms in 4 are third and
fourth order terms in the sense of estimates (5.37), and (5.38).

2. Formulation of the result

We start this section by describing a class of potentials. First we say that a
potential p is short range if

PERRT)N Ly 1o (R7) (2.1)
and
E+1
lim J p(n) |2 dn = 0. 2.2)
&— o0

Secondly we introduce some notations. For a given pair of positive constants (f, )
we define two functions by

B
o8O = (g) sin + 07, Eear 3
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and
1

b, 1)E) = (1 - é),, cos (1 + &), ¢ed’ (2.4)
Then we define

B(ﬁ: )’: '@+) = Span {a(ﬁ9 '}})3 b(ﬁ’ y)} (25)
Clearly in this definition we can replace £ © by any of its subintervals and we let

2B, 7, 0) = v (B, v, [£, o). (2.6)

FoeR +

From now on we assume that the potential p admits a decomposition of the form

P =py+ Dy 2.7)

where p, is short range and p, is long range in the sense that it belongs to a class of
the form (2.6). As usual let (€ (#£") denote the class of infinitely differentiable
complex valued functions with compact supportin £ *. For a given a in £, and given
potential p define,

DL(p)) = {f:feCF(A™), and f(0) cos a — f(0) sin a = 0}. (2.8)
Then define the operator L(p) mapping this set into ,(# ") by
L(p)f () = w1 (&) + p&) f(&). 29)

It is not difficult to show that the Rellich-Kato theorem [16] implies that for real
potentials p satisfying assumption (2.2) this operator is essentially self-adjoint on
D(L(p)). At the same time it follows that the domain of the closure of this operator,
is independent of p. In fact, denoting this closure by L(p) again, one has

DL(p) = D(L(pY) = DLP,)) = D).

The theorem that follows is our main result and it formulates an absolute
continuity criterion for a par) of the operator L(p).

Theorem 2.1. Suppose that the real potential p admits a decomposition of the
form (2.7) where p, is short range and to p, there is a pair of constants (8, y) such that

x>0, 1>9y>0, and B+ 3(1 —y) > 1, (2.10)
and

PZEQ(B9 'J’, CO)(-\ EZ, loc (gg-‘—) (211)

Let L(p) denote the closure of the operator defined by relations (2.8) and (2.9). Then
the part of L(p) over #* is absolutely continuous, that is,

L(p)(2™) = L(P)(R?),.- (2.12)

We shall derive this theorem from an abstract theorem to be stated in Section 3.

We conclude this section by adding two remarks on Theorem 2.1. First we
remark that some of the inequalities in assumption (2.10) have to be strict. For von
Neumann and Wigner [1, 5] have constructed a potential p such that

P, e, 1, 2, ie, f=1, y=1
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and the operator L(p) has a strictly positive point-eigenvalue. Hence conclusion
(2.12) does not hold. Secondly we replace assumption (2.10) by the following, more
stringent one,

>0, 1>y>0 and B+ 2(1 —y) > 1.

Then we remark that conclusion (2.12) is implied by an extended version of a
theorem of Titchmarsh-Neumark—Walter formulated elsewhere [8a].

3. An abstract criterion for absolute continuity

In this section we formulate a simplified version of a criterion for absolute
continuity formulated elsewhere [8b].

Let A be a given self-adjoint operator acting on a given abstract Hilbert space $.
We state a lemma which gives a simple sufficient condition for a part of A to be
absolutely continuous. To formulate it we need some notations. To a given interval
of reals, .#, and angle o, we assign two open regions of the complex plane by setting

R, (F) = {u:Repe s 0 < + argu < a}, (3.1),

where #° denotes the interior of the interval #. As usual, we denote by B($H) the
space of everywhere defined bounded operators on &. For a possibly unbounded
operator T and for u in p(T), the resolvent set of T, we set

R, T) = (ul — T)"' € B(H). 39

Lemma 3.1. Suppose that to A and to the given compact interval ¥ there is a
dense subset & such that for each pair of vectors (f,g)in€ x €
sup [(R(W)f, 9) — (R(A) S, 9)] < o (3-3)

neR 1 ()
Then A(.#), the part of A over £, is absolutely continuous.

It was observed elsewhere that this lemma is an elementary consequence of the
resolvent loop-integral formula.

For a class of Schrodinger operators it is possible to factorize the resolvent in a
manner which allows us to establish the rather general assumptions of Lemma 3.1.
To describe such factorizations we make a digression on forms. Accordingly let
® be an abstract Banach space and [F] a functional on & x & which is linear in the
first argument and conjugate linear in the second argument, in short, a sesquilinear
form. In analogy to the notion of the norm of an operator we define the norm of the
form [F] by

ILF1ll = sup  ILFI(/, 9)l (3.4)

F209%29% 1 lslglls

and we denote by &(C) the space of forms for which this norm is finite. Next let 4
be a bounded operator on €. We define the product [ F7]4 to be the form determined
by

LF1A4(f. 9) = [FI(4/. 9). 3.3)
Then clearly
ILFJAN < ICF1I 1A (3.6)
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So far the Banach space & was independent of our Hilbert space . Now we
impose our first requirement, namely, that both & and $ can be embedded in a
metric space I in such a manner that

® N Hisdensein H and in 6. (3.7

Clearly an operator T in $ defines a form on D(T) n & x D(T) N G; namely the
form

[T1e(f; 9) = [T1s(/, 9) = (IF, 9). 3.8)

In view of assumption (3.7) a sufficient condition for this domain to be dense in &
is that,

T e B(H). (3.9)

The closure of this form may or may not be in F(®). If it 1s, we denote it by the same
symbol [T]g. In this case we say that the operator 7 determines a form in &(®).
If in addition to assumption (3.9)

T(Hn 6) = 6, (3.10)

and the closure of this operator is in B(®) we denote it by Tg. In this case we say that
the operator T determines an operator in B(®).
These definitions allow us to state our key definition.

Definition 3.1. The family of operators Ay(u) is an approximating family to the
given operator A over the given interval ¥ if there are open regions X (%) of the form
(3.1) ;. such that for each p in Z .(5),

pep(dy(w), ie., R(u, Ay(n) € B(H). (3.11)

Furthermore there is a space ® satisfying assumption (3.7) such that with reference to
it the two conditions that follow hold.

Condition G,(.#). For each p in Z.(F) the approximate resolvent operator,
R (u, Ay(p)) determines a sesquilinear form in § ®) for which

sup  I[R(, o)l < <o, (3.12)
RER+(F)
Condition G,(.#). For each u in & .(.¥) the operator,
T(p) = (4 — AR, Ao(r) in 9 (3.13)
determines an operator in B(®); that is, |
(T(u)s € B(G). (3.14)

These operators depend norm-continuously on t and admit continuous extensions on to
the closures # . (F).

An example of Pavlov and Petras [10] concerning Holder gentle perturbations
implies that the existence of a family of approximating operators alone is not a
sufficient condition for absolute continuity. Therefore, in analogy with such per-
turbations [5, 15], we introduce an additional condition. In it for each w in .# we set

T,(w)g = lim T(w + ie)g (3.15)

e—=>+0
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where the right member is defined by relation (3.13) and according to Condition
®,(.#) this limit exists.

Condition A(#). For each w in % each of the two limit operators (I — T, (w))g,
admits an inverse in B(®).

The theorem that follows formulates an absolute continuity criterion with the
aid of these conditions.

Theorem 3.1. Let A be a given self-adjoint operator and let ¥ be a given compact
interval. Suppose that over the interval #, A admits a family of approximating operators
in the sense of Definition 3.1. Suppose, further, that Condition A(¥) holds and that for
each pin # . (F)

T(u) is compact in B(H). (3.16)

Then A(.#), the part of A over the interval ., is absolutely continuous.

This theorem is a simplified version of a theorem formulated elsewhere [8b].
There, assumption (3.16) was replaced by Condition 4,(.#) which required that

[R(u, A)]g = [R(u, Ao)1e — T(w))s " (3.17)

Accordingly we prove Theorem 3.1 be proving that assumption (3.16) implies
relation (3.17). Clearly, assumption (3.16) and Condition G,(.#) together show that

Twg = T, on $ N G. (3.18)

Here and in the following the subscript $ emphasizes the fact that a given operator
acts on $. Note that this subscript is in addition to the fact that 7(u) is defined in
$. Since the spectrum of a self-adjoint operator is real [16], assumption (3.8) yields

€ p(A) N p(Ay(p))-
It is not difficult to show that this fact together with assumption (3.16) yields

(I - Tw) '=U - Tw)g' e B(H) (3.19)
and

R(u, A)g = R(t Agi)g- (I — T(2))g " (3.20)

Let [R(uA,(u))]s denote the sesquilinear form of the operator R(u, 4o(¢))g. Then
by definition

[R(u, 46)]g = [R(, 461)]s on Hn 6 x $n 6. (3.21)
Relations (3.18), (3.19) and Condition A(.#) together yield |
I-Twg' =U~-Tw)g"' on (- T()e(H N G). (3.22)

Inserting relations (3.21) and (3.22) in relation (3.20) we obtain
[R(u, A)1y = [R(p, AsW)1s — T(1))g', on
on (I —T)e(D N 0) x I — T(W)e(H N 6).  (3.23)

Since a bounded operator with a bounded inverse maps an arbitrary dense set onto
a dense set, Condition A(.#) implies

(- Twe® » ®) isdensein 6. (3.24)



Vol. 50, 1977 An application of the third order JWK B-approximation method—I 485

This fact, Condition G,(#), and another application of Condition 4(¥#) allows us to
extend relation (3.23) by closure to all of & x 6. This way we arrive at the validity
of relation (3.17). This completes the proof of Theorem 3.1.

4. A lemma on approximating potentials

Let p(u) be a given family of potentials and let .# be a given interval. Recall that
definitions (2.8) and (2.9) assign to each p(u) an operator L(p(u)). In this section we
formulate conditions which ensure that this family of operators approximates the
operator L(p) over the interval #. These conditions are simplified versions of
conditions formulated elsewhere [9]. These simplifications are partly due to the
simplifiying assumption (2.2) on the short range potential p, and partly due to the
fact that assumptions (2.10) and (2.11) imply that

lim p,(¢) = 0.

=

Condition /(.#). There are regions % .(¥) of the form (3.1). such that for each y
in these regions the operator L(p(u)) satisfies assumption (3.11). This family of potentials
is related to the original potential p by the estimate

jw sup [(p — p()(€) | d€ < . 4.1)

0 Ri(HF)

Furthermore, for each point w of J each of the two limit functions exists
lim p(@ £ i)(©) = p(@)®), (4.2

and this convergence is uniform in w in # and & in any compact subset of # 7.

Condition 1I(#). The family of approximate resolvents, R(u, L(p(1))), is such
that their kernels satisfy the estimate

sup sup | R(u, L(p(w)))(E, n)| < ©. (4.3)

peR+(£) &, MeRt xR

Furthermore, for each point w of ¥ each of the two limit kernels exists
lim R(w + ie, L(p(w + ))&, n) = Ry(w, Lp(@)))(E, n), (4.4)

e—= +0

and this convergence is uniform in w in # and (&, n) in any compact subset of #* x R ™.

In the following lemma we use these conditions to formulate conditions ensuring
that the family of operators L(p(u)) approximates the operator L(p). Recall that in
Definition 3.1 this approximation property was stated with reference to a given
interval .# and with reference to a given space 6. In this following lemma we define
such a space by defining a norm on the space of measurable functions.

Lemma 4.1. Let p be a given potential and let p(1) be a given family of potentials
which satisfies Condition I(.#) and II(.#). Suppose that the operator

T(w) = (L(p) — L(p(u))) R, L(p(1))) 4.5)
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satisfies assumption (3.9) with § = ,(# 7). Define a function n by,
n(¢) = wn I(p — P& + exp (—9) (4.6)

peR . (F

and define a norm & by

1 1/2
I fllg = (;) Sl -
)

Suppose further that the operator T(u) satisfies assumption (3.10) with reference to this
space &. Then the family of operators L(p(u)) approximates the operator L(p) over
the interval . with reference to this norm.

The two remarks that follow were used in the proof of the original version of
Lemma 4.1 [9] and will be used in Section 6.
First we let the transformation M(1/n)'/* mapping & into $ be defined by,

1 1

1/2 1/2
M(;) 1) = (@) f(©), feb. (4.8)

Then we remark that accordmg to definition (4.7) this is an isometry mappmg ®
onto all of $. Hence it is a unitary transformation and clearly the inverse is given by,

M@n'?)f(&) = n'*(O)f (&), feH. (4.9)
Second let M(n'/?) denote the operator in § with domain,
D(M((n'?)) = {ffeH.n'?fe 9} (4.10)

Suppose that 7" is a given operator such that,
1/2
Te®B(H) and M lfz)TM(l) c B(S), 4.11)
n

where we denote an operator and its closure by the same symbol. Then we remark
that relation (4.11) implies that T is in B(G) and that this operator is unitarily
equivalent to the second term in (4.11); that is,

1 1/2
1y, re M(n”z)TM(E) .

S. Construction of a family of Jeffreys-Wentzel-Kramers-Brillouin—approximate
potentials

Let.# be a given compact subinterval of #* and let p be the potential of Theorem
2.1. In this section with the aid of the JWKB approximation method [12, 13, 18] we
construct a family of approximate potentials g(x). That is to say, this family of
potentials is such that over the interval .# the family of operators L(g(x)) approximates
the operator L(p) in the sense of Definition 3.1. Note that in this section we give the
construction only and postpone the proof of the approximation property until the
next section.

To construct such a family of approximate potentials g(x) we need a family of
approximate solutions to the family of equations,

(= L(p))f(p) = 0. (-1
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More specifically let y(u) be an approximate solution to this equation. Then we
define a corresponding approximate potential g(u) by the requirement that

(r — L(g()))y(u) = 0. (5-2)

The technical Definition 3.1 has been motivated by scattering theory. Since
scattering takes place far away from the scattering center we are interested in
approximating the solutions of equation (5.1) for large values of the independent
variable. Inserting definition (2.9) in equation (5.1) we obtain the more detailed
equation

Rf"W) + (1 + p)f) = 0. (5-3)
For a moment let us assume that the potential is a constant and set

U—p=a (5.4)
Then equation (5.2) yields

*f" + af = 0. (5.5)
Next we replace Plank’s constant # by a small parameter 4 in this equation,

h*g, + ag, = 0. (5.5)h

Clearly one can obtain a solution of (5.5) from a solution of (5.5), by a simple scaling
of the independent variable. Specifically by setting

7® = o3¢ 56)

This formula shows that the value of a solution to (5.5) at some large value of ¢
equals the value of a solution to (5.5), at some fixed value of £h and hence small
value of h. Now it is perfectly possible that for a suitable class of potentials instead of
a strict equality in relation (5.6) we have an asymptotic equality. At present we leave
open the question of a suitable class.

We analyze, in a formal manner, for small values of 4, the solutions of the
equation,

Rgi(1) + (u — p)g, = 0. (5.7),

As usual in the theory of the JWKB-approximation method [11, 12, 18], we seek the
solution in the form

g()(S) = expﬁ wi()(0) do. (5-8),
Then elementary algebra shows that

g = W) + wr()gi(p)- (5.9),
Inserting this relation in equation (5.7), we obtain the Ricatti equation

W) + wa(u)h® + (u — p) = 0. (5.10),

The lemma that follows is a version of a result of Sibuya [4, 19] and describes the
coefficients of 4 in the formal power series expansion of w,(u). In it we need a notation
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for the space of polynomials of mixed homogeneity. Specifically foreachn = 0,1, .. .,
we set,
Bosilko + 2k + - +(n+ Dk, =n+ 1) = {p:p(so,....5)
=Z a(ko, kl’ ey kn) SJ(‘)O Siil et S:"}’
(511,44

where the summation on the right is extended over those positive integers or zero
which satisfy the equation on the left.

Lemma 5.1. For each of the two branches of (p — p)'/?, equation (5.9), admits a
formal solution of the form,

) = (0 = WY+ ) + 3 G (5.12)
Furthermore,
o |
ag(n) = —Z(p{ #) (5.13),

and for each n = 1,2, ..., the coefficient a,(u) has the property that there is a
polynomial p, such that

n/2
a,(u) = (p—lﬂ) Bu@o()s ap()s - .-, @ () (5.13),

and
Pa€Bilko + 2k + - +(m+ Dk, =n+1). (5.14),

We start the proof of this lemma by setting,

a(1) = (Wi + wi() h* + p. (5.15),
Then using this notation equation (5.10), can be written as,
P — g = 0. (5.16),

To prove conclusion (5.12), we insert its right member in definition (5.15), and
write the result as a formal power series in A. Inserting this formal power series, in
turn, in equation (5.16), we see that the lowest power of 4 equals one. The require-
ment that the coefficient of /4 be zero, yields the following equation for a,(u),

’

20— 0" aglt) — 5 o = O (5.17),

The requirement that the coefficient of 4> be zero yields the following equation for

al(#)?
2p — W' ay(w) + ag(p) + ay(w) = 0. (5.17),

In fact, in general, forn = 1,2, ...,

Ap — W2al) + T afWa) + 09 =0, (5.17),

=n--



Vol. 50, 1977 An application of the third order J WKB-approaéﬁnation method—I 489

where in the summation j and & take on independently posmve integer values and
possibly zero, the only requirement being that their sum is n — 1. Clearly these
equations do admit solutions and the formal power series corresponding to them
are formal solutions of equation (5.10),. This completes the proof of conclusion
1312

To prove conclusion (5.13), we solve equation (5.17), for the unknown function
ay(p). To prove conclusion (5.13), for general n = 1, 2,..., we solve equation
(5.17), for the unknown function a,(i). This yields,

o) = G=gmy| (3 swa) + o] (5.18),

where in the summation j and & range over the same set of values as in relation
(5.17),.
To complete the proof of conclusion (5.13), we define the polynomial 5, by

_ 1
P1(Sp, 81) = —5(3(2) + 5,)- (3.19),

Then inserting this definition in formula (5.18), we see the validity of this
conclusion.
To complete the proof of conclusion (5.13), we differentiate the already

established conclusion (5.13),. After an elementary algebra and the use of conclusion
(5.13), this yields

ay(u) = ("_"_”51/_2 [2a()p 1 (ao(), ag(w)) + Fy(ag(n), ap(w))],
where

Pi(ao(p), ap(p)) = 0op1(ao(w), ao(i))-ao(u) + 0191(ao(l), ag(i))as(w),

and 0,, 0,, denote the partial derivatives of p,, with referenge to the zeroth and
first arguments. Inserting these formulas in formula (5 .18)2 we obtain

ax(1) = T [~ 2a0(0P 1ok, ) — 3 Bilaokd, ao)].  (5.20)
2))

Hence, defining the polynomial 5, by

. _ 1, - Ya o
P*(S0, S1,82) = —25051(Sg5 $1) — 5(50P1(50= $1)81 + 01P1(S0» 51)52) (5.19),

we obtain the validity of conclusion (5.13),.
To complete the proof of conclusion (5.13), for an arbitrary positive integer n
we proceed by induction. In fact, we define the polynomial p, by

_ _ P =
Pu(Sgs o3 S) = —nSeDp_1(Sgs + -+ s Sp_q) — f( Z ij,,_l(so, . B s,,vl)sjﬂ)
j=0

1 _ —

_E Z pJ(SO’ i % "Sj)'pk(SO’ & W .,Sk). (Sclg)n
j+tk=n—-1

Note that in the second summation, in contrast to formula (5.17),, j and k range

over strictly positive values. This is in accordance with the fact that the polynomials
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p; have been defined for j = 1, 2,..., n — 1. For brevity we do not carry out the
details of this induction and consider the proof of conclusion (5.13), complete.

The validity of conclusion (5.14), is immediate from definitions (5.11), and
(5.19),. Inserting conclusion (5.14), in definition (5.19), we see the validity of
conclusion (5.14),. Similarly we see the validity of conclusion (5.14), from the
inductive definition (5.19),. For brevity we do not prove this fact and consider the
proof of Lemma 5.1 complete.

Having established Lemma 5.1 we return to the question of constructing a
family of approximate potentials. We shall do this with the aid of the formal power
series of Lemma 5.1. Motivated by assumption (2.10) we truncate the series (5.12),
after three terms and replace the small parameter 4 by Planck’s constant 4. That is
to say, we set

W) = (p = 1) 2+ ao) + @y (5:21)

Next we choose a branch of the square root function by the requirement that
Re/z>0 for z¢(—o0,0]. (5.22)

Then we choose two single valued branches, +./p — i, of the double valued
function (p — u)/?. Inserting these branches in definition (5.21) yields the two
functions,

wEi(u) = +/p — 1 % + ag(p) + a,(Wh. ‘ (5.23)

Finally setting
wu) =w(u) and h=nh
in definition (5.15), we obtain the family of approximate potentials,
qw) = W™ () + w (WHA* + p. (3.24)

Remembering definition (2.9) and the fact that relation (5.8), implies relation (5.9),,
we see that the function,

¢
y()(<) = exp ( J w™(u)(0) da), (5.25)
0]
satisfies equation (5.2) where g(u) is given by (5.24). In fact, this property motivated
our definition (5.24).

Note that in this section the role of the functions w*(u) is symmetric. We have
chosen the function w~ (u) versus w™ (1) since this choice is more convenient for the
estimates of Section 6. Also note that in contrast to the case of the second order
approximation,

W)+ wm()? #F wT )+ wt(w
Hence replacing w (1) by w' (1) in definition (5.25) the resulting function will not
satisfy equation (5.2) with the g(u) of definition (5.24).

Recall that Definition 3.1 is of a rather technical nature. This suggests that in
order that the family of potentials of definition (5.24) approximate the potential p

of Theorem 2.1, rather technical assumptions on p will be required. Actually all that
we need is that these potentials approximate a long range part of this potential.
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Accordingly from now on we set

p:pZa

in the previous formulae. This, at least, allows us to carry out the indicated differen-
tiation in definition (5.24). As to be expected these assumptions will have to ensure
that for Rey in .# the JWK B-approximate solution of definition (5.25) has no turning
points. That is to say, there is no point & in Z* such that

P2(&) — Rep = 0.
After these preparations we formulate these assumptions.

Condition 0(.#). The potential p, satisfies the assumptions of Theorem 2.1 and in
addition it is such that

dist (#, p>(Z™)) # 0. (5.26)
Furthermore, the family of approximate potentials q(u) is such that
J sup _|(py — q)I(&) d¢ < o, (5.27)
HeR 1 ()

and the family of functions w™ (1) of definition (5.23)™ is such that
inf  inf Re((w* (1) — ao(u)())) = 0. (5.28)

ueR + (#) te R+

Note that Condition 0(.#) is a condition on p, inasmuch as the left member of
each of the assumptions (5.26), (5.27), (5.28), is defined in terms of p,. We do not
claim and it is not true that if the potential p satisfies the assumptions of Theorem
2.1 then for any decomposition its long range part satisfies Condition 0(.#). All that
we claim is that such a potential admits a decomposition with this property. This is
described in more specific terms in the lemma that follows.

Lemma 5.2. Let # be a given compact interval which does not contain zero.
Suppose that the potential p satisfies the assumptions of Theorem 2.1. Then p admits a
decomposition of the form (2.7) such that p, is short range and p, satisfies Condition
0(F).

To construct a potential p, satisfying assumption (5.26) let p be any given long
range potential. Then from the assumptions on .# and from the fact that for a long
range potential p(c0) = 0, we see that infinity has a neighborhood, (&, ©), such that

dist (£, p((€, «©))) # 0. (5.29)

It is an elementary fact that from the interval (¢ + 1, o0) this potential can be ex-
tended to all of £ in such a manner that the extended potential is also smooth and
denoting it by p,, '

PAR™) = p(€ + 1, 0)).

Inserting this relation in (5.29) we obtain that the potential p, satisfies assumption
(5.26).

Next we show that this potential p, also satisfies assumption (5.27). For this
purpose recall definition (5.24) and assumption (2.10). Together with the already
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established assumption (5.26) they show that assumption (5.27) is implied by the
estimate,

1\f+31 -7
(P2 — aW)(©) = O(Z) at ¢ = oo, (5-30)
uniformly in p in £, (#). We start the proof of this estimate by recalling definitions
(5.21), (5.24) and the way we arrived at equations (5.17), and (5.17),. Combining
them we see that,

Py — 9@ = —Qagwa,(p) + a\()h® — a,(u)’h*. (3-31)
Equation (5.17), and conclusion (5.13), of Lemma 5.1 together show that

r 2 = ’ ”
—(2ag(pwa, (@) + a1(w)) = (p—_#)_fﬁpz(al(ﬂ)a ap(p), ap(m))-
2
Inserting this relation and conclusion (5.13), of Lemma 5.1 in relation (5.31) we
obtain, ,
G0 = B o). a3) — By, @)
P2 = BUD = (g, = iz P20l Aol @olit)) = 1 Ty Puiolit: 0“(5'32)

We complete the proof of estimate (5.30) by estimating each of the two terms on
the right. For this purpose we introduce three notations. First we denote by
A (p, — u)~'"?) the algebra generated by the function (p, — p)~ /2. In other
words,

A((p, — 1)~ 12) = Span {(p> — w2, (py — 1)~ (py — W)~2,...,
(5.33)

where the right-member consists of all finite linear combinations of the functions in
the bracket. Secondly we refer to each of the two functions (p;)* and p, as second
order in p, and for brevity we set,

0%(p,) = {(P3)% P3)- (5.34)
In general we define the n-th order terms in p, to be the set of functions,
0"(p2) = {(Pk(P2)2(P3)3 ... (p,")n}, (5.34)"

where these indices are restricted by the requirement that,
ki +k, +ks+ - +k,=n
Thirdly, with the aid of these two notations we set,
2(0"(p,), U((p, — W)~ ''?) = Span {0"(p,)}, (5.35)

where the right member consists of all finite linear combinations of elements of
0"(p,) with coefficients from the algebra (p, — x)~ '/?). Combining definition
(5.34)" with conclusion (5.13), of Lemma 5.1 we see that for each positive integer n,

a®(u) € 0"+ (p,). (5.36)"
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Combining this relation, in turn, with conclusion (5.13), of Lemma 5.1 and definition
(5.35)"*1, we see that

Paag(w), ag(), . . ., aP (W) € 20" (py), W(p, — 1)~ "), (3:37),
In particular, we see that,

P2(ag(1), ap(p), ag(p)) € £0%(p,), W((p, — W)~ ?). (5.37),
Similarly, it follows that,

P1(ag(w), ag(m))® € £0*(p,), A((p, — w)~ 7). (5.38)

Note that aside from a factor in the algebra A((p — w)~'/?), these two polynomials
are the coefficients of #* and A* in relation (5.32). Hence relations (5.37), and (5.38)
say that in relation (5.32) the coefficients of the third and fourth order terms in #
are third and fourth order terms in p,.

It is not difficult to show that assumptions (2.7) and (2.6) imply that for each
positive integer n each of the n-th order terms in p, decays at infinity with exponent
at least § + n(1 — y). Symbolically we express this fact as,

1 \f+n1-» .

0"(p2)(E) = O(I—:E) at § = oo. (5.39)
Inserting estimates (5.39)*, (5.39)* and relations (5.37),, (5.38) in relation (5.32) we
arrive at the validity of estimate (5.30). From this, in turn, we arrive at the validity of
assumption (5.27) for the potential p,.

Finally we show that this potential p, also satisfies assumption (5.28), For this
purpose recall defintions (5.19), and conclusion (5.13), of Lemma 5.1. Combining
them with an elementary algebra they show that,

. ; _ 3 P 1 (py)°
Pi(ag(u), ap(w)) = h(ﬁ (7 i ) ) (7, i ‘u)z)- (5.40)

Combining relation (5.40), in turn, with definition (5.23)" and with conclusion
(5.13), of Lemma 5.1 shows that setting,

_L (3 @) 1 p ) 5.41
o) h+h(16@2—#)3 2(py — ) i)

we have,

wr () — ag(p) = /P2 — 1 b(p). (5.42)

It is an elementary fact that for each compact interval .# which does not contain
zero and for each positive integer n,

Re ((1/2)" \/;)| < o0, (5.43)"
Re (/2) |

The already established assumption (5.26) allows us to apply estimates (5.43)* and
(5.43)? to the complex number

z=p,&) —
Remembering estimate (5.39)? this yields the existence of a number £, such that

inf inf Re (w'(u) — ag(w)(&) = 0.

reR 4+ (F) Ee[&p, ]

sup
Reze(#)
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In other words assumption (5.28) holds in a neighborhood of infinity. The fact that
it holds over all of £ follows by possibly changing the definition of p, over the
interval [0, £,]. For brevity we omit the details of this construction and consider
the proof of Lemma 5.2 complete.

REFERENCES

[1] J. Von NeumanN and E. WiGNER, Uber merkwiirdige diskrete Eigenwerte, Zeitschrift fiir Physik,
30, 465467 (1929).
[2] P. A. REITO, On gentle perturbations, in Perturbation Theory and its Application to Quantum Mechanics,
C. H. Wilcox ed. (Wiley, 1966), pp. 57-95.
[3] T. Kato, Wave operators and similarity for some non-self-adjoint operators. Math. Ann. /62, 258—
279 (1966).
[4] Y asuTaka S1BUYA, Subdominant solutions of the differential equation, y” — 2*(x — a,)(x — a5),. . .,
(x — a,)y = 0, Acta Math. 119, 235-272 (1967). See Lemma 1 in Section 2.
[5] BARRY SIMON, On positive eigenvalues of one-body Schrédinger operators. Comm. Pure Appl.
Math. 22, 531-538 (1967). '
[6] T. KaTo and S. T. KUuroDA, On the abstract theory of scattering. Rocky Mountain J. Math. 7, 121-
171 (1971).
[7] W. O. AMREIN and V. GEORGEScU, On the characterization of bound states in quantum mechanics.
Helv. Phys. Acta. 46, 635-658 (1973). See the Theorem and Remark in Section II.
[8] P. A. ReiTo, On a theorem of Titchmarsh—-Neumark-Walter concerning absolutely continuous
operators I (the abstract part), Letters in Math. Phys. 1, 49-55 (1975). (a) Theorem 2.1; (b) Theorem
3.1
[9] P. A. ReyTo and K. SINHA, Absolute continuity for a 1-dimensional model of the Stark—Hamiltonian.
Helv. Phys. Acta. 46, 389-413 (1976). See Lemma 5.1.
[10] B.S.PAvLov and S. V. PETRAS, The singular spectrum of the weakly perturbed multiplication operator
(In Russian). Funk. Anal. Prilon, 57-95 (1970).
[11] J. P. EckMANN and R. SENEOR, The Maslov-WKB method for the harmonic oscillator. Arch. Rat.
Mech. Anal.
[12] E. C. KEMBLE, The Fundamental Principles of Quantum Mechanics, 1973 Edition reprinted by Dover
Publications. See equations (21.11), (21.12) and Appendix D.
[13] H. A. BETHE and E. E. SALPETER, Quantum mechanics of one-and-two-electron systems, in Handbuch
der Physik, Vol. XXXV (1957), pp. 88-446.
[14] W. Wasow, Asymptotic Expansions For Ordinary Differential Equations (Wiley-Interscience, 1965).
[15] K. O, FriEDRICHS, Perturbation of Spectra in Hilbert Space (Amer. Math. Soc., Providence, R.L.,
1965).
[16] T. KATO, Perturbation Theory For Linear Operators (Springer-Verlag, 1966). See Theorem V .4.6.
[17] N. FrRoMAN and P. O. FrRoMAN, JWKB Approximations (North-Holland, 1965).
[18] Pauli Lectures on Physics: Vol. 5, Wave Mechanics, C. P. Enz ed. (The MIT Press, 1973). See Section
27, The WKB Method.
[19] YASUTAKA SIBUYA, Global Theory of A Second Order Linear Differential Equation With A Polynomial
Coefficient (North-Holland/American Elsevier, 1975). See Lemma 58.1.
[20] PiroON, Foundations of Quantum Physics (Benjamin Inc., 1976).
[21] V. P. MasLov, Théorie Des Perturbations Et Methodes Asymptotiques. (Dunod Qauthier-Villass,
Paris, 1972).
[22] W. A. Harris and D. A. Lutz, On the asymptotic integration of a linear differential system, J. Math.
Anal. Appl. 47 (1974).
[23] MARIANO CARCELEN QUIROS, Les effets de spin dans I'approximation eikonale relativiste. Thesis (In
French). (Univ. Geneva, 1975).



	An application of the third order JWKB-approximation method to prove absolute continuity. I, The construction

