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Local and Substantial Fluxes for Energy, Linear
Momentum and Quasi Momentum in Crystals

by J. A. Kobussen?)

Institut fiir Theoretische Physik der Universitit Ziirich, CH-8001 Ziirich,
Schonberggasse 9, Switzerland

(16. II. 1976)

Abstract. The dynamics of a crystal lattice with an internal two-particle interaction is described
as a limiting case of a continuous dynamical system with a non-local internal interaction. The
explicit expressions for the densities and fluxes of linear momentum, energy and quasi momentum
are given, This is done in terms of substantial as well as local coordinates.

1. Introduction

In electromagnetic (e.m.) theory the concept of elementary excitations of the
e.m. field as quasi particles, termed photons, has been shown to be very useful. For
a great class of applications, an elementary excitation of the e.m. field characterized
by the wave vector k and polarization s behaves like a particle with an energy 7w (k)
and a linear momentum %k which is, apart from a constant factor ¢2, also the energy
flux. The total energy of the e.m. field can be written as >y >, iw(k)Ny,, the total
linear momentum of the e.m. field as > >, ik Ny, Here Ny, is the number of elementary
excitations (photons) of the e.m. field, with polarization s and wave vector k; wy(k)
represents the dispersion relation w = c|k| of the e.m. field.

There is a close analogy between the theories of the e.m. field, of lattice vibrations
in crystals and of waves in fluids. Therefore it has been very tempting to extend the
photon concept to the theory of fluid waves and of crystal vibrations. One meets in
the literature, often without further explanation, the assumption that an elementary
excitation of the crystal or fluid (here termed phonon), characterized by the wave
vector k and polarization s, carries not only an energy fiw,(k), but also a linear
momentum 7Kk, the energy current tensor being 7k x d/dk w (k).

In spite of the analogy between the theory of the e.m. field on the one hand and
the theories of crystal vibrations and fluid waves on the other hand, there are also
many essential differences:

(i) The e.m. field theory is a covariant theory. Consequently the linear momentum
density is proportional to the energy current. On the other side, crystal vibrations and
fluid waves are usually treated non-relativistically. Therefore in these theories linear
momentum and energy current are different concepts.

(ii)) In e.m. field theory photons with a zero wave vector have no physical
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meaning. For fluids and for crystals the elementary excitations with a zero wave
vector represent (in most papers) a macroscopic motion of the entire system. The
mechanically defined linear momentum is related to this macroscopic motion and
therefore to phonons with k = 0. The physical meaning of the statement ‘a phonon
carries a linear momentum #k’ remains rather unclear. '

As far as we know the first authors who discussed these problems thoroughly
were Leibfried [1], Brenig [2] and Siissmann [3]. They clarified that any phonon with
k # O carries a zero linear momentum. The quantity #k connected with a phonon is
then called ‘quasi momentum’. Brenig [2] and later Gilbert and Mollow [4] discuss
the connection between linear momentum and quasi momentum. The physical
meaning of the concept of the quasi momentum, however, has not been explained.
Siissmann [3] tackles the problem by means of invariance properties of the Hamilton
operator of the crystal. The conservation of the linear momentum of a crystal is due
to some continuous invariance group of the crystal, the selection rule for the quasi
momentum is due to some discrete invariance group.

Nevertheless, all this is only a part of the truth. The relations between invariance
groups, constants of the motion and elementary excitations depend essentially on the
formalism in use. An elucidating example hereof is found in the paper of Kronig and
Thellung [5]. These authors discuss a formalism for fluid waves in local coordinates.
Phonons with a wave vector k, defined in this formalism, carry a mechanically defined
momentum #k. This does not contradict the result of Leibfried, Brenig and Siissmann,
it shows only the influence of the formalism in use.

For the calculation of transport coefficients in solids (e.g. heat conduction and
viscosity) it is necessary to know the currents of energy and linear momentum in the
solid. There are two obvious ways to define these currents. One can define the current
of some quantity either through a material point (point fixed in the medium) or
through a local point (point fixed in the laboratory). Corresponding to these possibili-
ties we speak about substantial and about local fluxes, respectively. For Bravais
lattices Choquard [6] discussed the substantial energy flux, Hardy [7] the local energy
flux. De Vault [8] applied Hardy’s method to the local linear-momentum flux, Enz [9]
generalized the method to non-Bravais lattices. Pokrovsky and Sergeev [10] gave a
rather general discussion of local fluxes in crystals. Furthermore, they gave a trans-
formation of the local flux in what they call ‘a flux in a material description’. As we
already pointed out in a previous paper [11] (hereafter referred to as I), this flux is
still a local flux.

In Section 2 of this paper we describe the dynamics of a crystal lattice as a limiting
case of the dynamics of a continuous medium with a non-local internal interaction,

“which we have discussed in I. For later use and to fasten down the notation, the Bloch
functions for a crystal lattice are introduced in Section 3. In Section 4 the results of I
are used to discuss the density and the flux of linear momentum in a crystal lattice.
These results are also related to some earlier papers. The discussion is given in terms
of substantial as well as local coordinates. In a similar way the energy density and
flux are discussed in Section 5, and the balance of quasi momentum in Section 6.
Finally, we give in Section 7 an evaluation of the present results.

2. Non-Bravais Crystal Lattices

Let the equilibrium positions of the atoms of an elementary cell of an ideal
crystal that contains g atoms, be given by the set of 3-tuples C = {c?, o2,. .., of}.
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The mass of an atom with an equilibrium position m = « shall be M,. The primitive
translation vectors of an elementary cell are taken to be given by the 3-tuples (a, 0, 0),
(0, ag, 0) and (0, 0, a3). The set T of all translation vectors of the crystal is then
represented by

T = {f = (fla 52’ 53) I gi = ma;, n; € ZNi}' (‘2'1)

Here Zy, is the cyclic group of all integers modulo N; = L;/a; and L = (L,, Ly, L)
denotes the linear dimensions of the crystal. Note that the 3-tuples e C and (€T
represent the components of vectors with respect to some coordinate system, which
in general is non-orthogonal. The (substantial) coordinates of an arbitrary atom in the
crystal are now m = « + ¢ whereae C and £ € T.

A suitable field vector for the description of the crystal dynamics is u(m) =
(uy(m), uy(m), us(m)), i.e. the deviation from the equilibrium position of the atom
with substantial coordinate (equilibrium position) m, the field velocity vector being
u(m) = (d/dt u(m)),,. We impose periodic boundary conditions for u.

The substantial mass density of the crystal is given by

polm) = 2 > M3(m — o — £). (2.2)

aeC £eT

Here 8(m — «) is the three-dimensional Dirac delta function 8(m; — o,)8(my — )
8(ms — «g). .

We assume that the total potential energy of the crystal may be written as a
sum of two-particle interaction energies:

> D fE et ot E—B— D)= f f dm duV (z(m, 1), m, p),

a,8eC &,LeT
where (c.f. (2.2) of I)

z(m, p) = u(m + p) — u@m) + p, (2.3)
so that

Viz,m, p) = fég (2)0(m — o« — H(p + « + € — B — D). 2.4)
Here a summation over «, B€ C and &, { € T is implied. Furthermore we assume

Jag {(2) = fis (—2) = f&7 %) = fiz (). (2.5)

The derivatives of f; %(z) will be indicated as
figi(2) = dldz, fi5 “(2);  fi5fi(2) = dldzi djdz; fi5%(2), etc.
From (2.5) it follows
as.1(2) = —fag.i(—2); fini(2) = fagi(—2), ete. (2.6)

With (2.2) and (2.4) we can now apply the results of I. Then, for the equation of
motion (c.f. (2.4) of I) we find

Mo + 8 — > > 2ffifla+ =B —L+ue+ & —uB+0)=0. (27)
BeC LeT

This expression clearly represents the equation of motion of an arbitrary periodic
crystal with a general two-particle interaction.
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We have interpreted » as the deviation from equilibrium, therefore ¥ = u = 0
must satisfy (2.7) or:

a5 =0, (2.8)
BeC LeT

where we use the short-hand notation
Figi = fagile — B+ & 0. (2.9)

A similar abbreviation will be used for the higher order derivatives of /5 °(z). Equation
(2.8) states that the total force on each atom is zero when the crystal is in equilibrium.
For u = 0 the potential energy of the crystal may be chosen to be zero:

> Fit=0. (2.10)
o,peC &,LeT
For reasons of completeness we note that, as we will see in Section 4, the additional
requirement
Dl—B+¢—QF5i=0 .11
«,8eC LeT

assures that the linear-momentum flux through the crystal, averaged over the entire
volume, vanishes for u = u = 0.

In literature one often meets a much stronger condition than (2.8) and (2.11)
namely

55 = 0. 2.12)

A deeper discussion of the equilibrium conditions for crystals is for example given
by Leibfried and Ludwig [12].

3. Bloch Functions and the Dispersion Relation

According to Bloch’s theorem for periodic structures the functions u(e + £) may
be written as

u(e + € = (QM,)~2 3 w(e, k) explik-(a + £)]. (3.1)

KeB

Here Q is the number of elementary cells in the crystal and k& = (ky, k,, k3) is the
wave number 3-tuple from the first Brioullin zone B:

B = {k = (ky, k2, k3) | ki = 2am/Li; e Z, —3N; < n; < 3N}

with Z is the set of all integers, a dot between 3-tuples denotes contraction:
k-(@+ & =D kfa + &)
i

The components k; of the 3-tuple k& can be interpreted as the contra-variant com-
ponents of the usual k vector. For the Bloch functions w(e, k) we have the reality
condition

w(e, k) = w(e, —k)*, (3.2)

where the asterisk denotes complex conjugation.
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We shall make use of the following identity

EZT expli(k + k')-£] = QA (3.3)
where

A, = O(k ¢ K),

A, = 1(k eK),

K = {K = (K, K;, K;) l K; = 2nnifa;, n, € ZN;}'

If the components K; of K € K are interpreted as the contra-variant components of
some vector, the set K is the usual reciprocal lattice. With (2.9) a linearization of the
equation of motion (2.7) for small values of u; yields

Miie + &) + > > 2Fgiufe + € — (B + ) = 0. (3.4)

BeC LeT

(Summation over j = 1, 2, 3 is implied.) Substitution of (3.1) into (3.4), afterwards
multiplication of the equation with M; /2 exp[—ik’-(« + £)], summation of the first
two terms with (3.3) for £ € T, then substitution of » = ¢ — { into the third term and
finally summation over £ € T gives

Wwile, k) + D Weg(k)Ws(B, k) = 0 3.5)

BeC

where

Wapifk) = 2 z {Z My F}y 1850 — (M Mg)~'2Fjg i exp[—ik-(« — B + 7))]}-
n yeC (3.6)
The Kronecker symbol §;, is defined in the usual way:
Op = O(B # a), 85 = 1(B = ).
With (2.5) and (3.6) we find
Woapi(k) = Wiiu(k) = Waan(—k). (3.7

Thus, the matrix W is Hermitian and has therefore real eigenvalues. The set of
eigenvectors of W is a complete set.

If (3.5) represents the first-order approximation to the equation of motion of a
real crystal we have to require additionally that W (k) is a non-negative matrix. The
eigenvalue problem for W(k) can then be written as:

Wapi (k) Xigs(k) = wi(k)Xjos(K). (3.8)

(Summation over Be C and i = 1, 2, 3 is implied.) Here the index s, running from
I to 3g, counts the three different polarizations as well as the g different modes.
Because of the orthonormality of the eigenvectors we have

Xias(k)Xigs'(k) = 8.~:s’ (3'9)
and from (3.8) it follows
Xias(K)W u51(k) X g5 (k) = w3(K)Sss. (3.10)
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By interchanging the dummy variables « and B in (3.10) it is easily verified that
Xizs(k) = Xiws(—k) (3.11)
and
wi(k) = wi(—k). (3.12)

Furthermore because of the completeness of the set of eigenvectors, any w(e, k) can
be written as

wiler, k) = 2 (k) Xiaslk)- (3.13)

8

With (3.11) and the reality condition (3.2) we see that

cs(k) = c¥(—k). (3.14)
With (3.8), the substitution of (3.13) into (3.5) yields

&) Xiadk) + WagfR) X pi)ey) = — w2(K) Xias(K).
(Summation over s = 1, 2,..., 3g is implied.) So

é(k) + wi(k)c (k) = 0. (3.15)

Functions of the form c¢y(k)X,.(k) (no summation over k and s) for which cy(k)
satisfies (3.15) will be termed substantial phonons. We use the adjective substantial
to indicate that the linearization of the equation of motion has been performed in
terms of the substantial variable w.

For the classical analogues of the creation and annihilation operators we may
write

Qs = V3wlk)e(k) + iV 3w (k)iyk),

_ R (3.16)
a = Vie(k)e(—k) — iviek)i(—k),
or inversely
6(k) = iVio ()@ — ati), 3.17)
ek) = VoK) (aw + aty).
From these formulas one obtains easily
cs(k)e(—k) = 1/w(k)Nis + Sks), (3.18)
E(K)e(—k) = wy(k)(Nis — Sks), (3.19)
c(k)(—k) = Ji(agsad; — ata_ys) — Yi(aa_is — atsaiy), (3.20)
where
Ny = alay, (3.21)

is the classical analogue of the substantial phonon number operator for a substantial
phonon with wave number k£ and polarization/mode s, and

Sks = S—ks = '}(aksa—ks + al'czaiks)- (322)
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In the following, we assume that the center of mass of the crystal is at rest, for which
we get with (3.1) the condition

w(a, 0) = 0. (3.23)

In Section 2 we have shown that, with respect to the dynamics, a crystal lattice can
be considered as a limiting case of a continuous dynamical system. For continuous
systems u(m) is defined for all m, whereas for the crystal u(m) is only defined for
m=a+ & acC, £€€T. Consequently the derivatives u; ,(m) are not defined.
Therefore we have to define some continuation of u(« + £) in order to apply the
formalism of 7 to full extent. In principle such a continuum representation is arbitrary.
We shall assume that the desired continuum representation yields (c.f. equation (3.1))

u (e + & = (QM,)~Y2ik,we, k) explik-(« + ). (3.24)

(Summation over k € B is implied.) A further specification of the continuum represen-
tation is not needed.

4. The Conservation of Linear Momentum

In I we have derived the local conservation law for the linear momentum in
terms of substantial as well as local coordinates. In the special case of a crystal lattice
(see (2.2) and (2.4)), the substantial linear-momentum flux density (2.15) of I reads

pim) = Mau(e + £d(m — « — §). 4.1)
Analogously the local linear-momentum density (cf. (3.26), (3.34) of I) is

pi(x) = Myi(e + £8(x + v(x) — « — §J(x)
= Mo + €)3(x — g(o + £)), 4.2)

where

g+vg)=a+ ¢ 4.3)
and

J(x) = det(8;; + vy [(x)).
With (2.2)—(2.5) the integrated value of the substantial linear momentum flux (2.18)

of I reads

fmj(m) dm = (e — B+ &— Difisfle—B+ € — L+ ue+ & —u@+ ).
(4.4)

(Summation over o, BeC; & (€T is implied.) We can expand this expression in
powers of u. The constant and linear term are zero because of (2.11) and (3.23).
With (2.5) and (2.9) we find for the quadratic term

[omomy dm = @ — B + &€ — DESGfuue + 8 + 0. @5)

Now we substitute (3.1) twice into (4.5), put n = ¢ — { and replace the summation
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over ¢ and { by a sum over { and %. Then with (3.3), the summation over { can be
done explicitly. We obtain

f 2mim) dm = —(« — B + )iFds, jn(MoMp)"'? explik-(« — B + 7)]
X wile, K)wn(B, —k). (4.6)
(Summation over «, B, 7 and k is implied.) With (3.13), equation (4.6) reads

J *mi(m) dm = — (M Mg)Y2(a — B + 1)iFgp,qn explik-(« — B + 7)]
X Xn.ﬁs'(_k)leas(k)cs(k)cs'(_k)' (47)

(Summation over s and s’.) For the difference of the integrated values of the sub-
stantial and the local linear-momentum flux one finds (cf. equation (4.4) of I)

jwi,(x) dx — f mm) dm = Ma(e + Oile + £)
— WB+ 0 — ufe+ O)esile —B+&— L+ ulw+ & — ulB + 0)).

We may also expand (4.8) in a power series in u. The constant term is zero and the
linear term vanishes because of (3.23). With (2.5) and (2.9) we find for the quadratic
term

f 2t () dx — f 2 () dim = Mo + (e + &)
— B + 0) — ufe + ONuee + &) — uB + DIFih
= M(e + e + &) + 2(u (e + Oufe + &)
— ufe + Hu(B + O)Fizh.

Now we insert (3.1) twice, put » = ¢ — {, replace the summation over ¢ and { by a
sum over { and 7, use (3.3) and (3.6), and obtain finally

f 34 (x) dx — f S ) it = Wi, Y, —K)
+ 2Waa(K)w e, K)wy(B, — k). 4.9)
With (3.7), (3.8) and (3.12), equation (3.13) yields

f miy(x) dx — f%u(m) dm = Xio(k) Xjas(— k)C(k)Es(— k)
+ 2w5(k) Xjas(k) Xips(— k)ecs(K)es (— k). (4.10)

From (4.1) and (4.2) it is easily verified that f p(m) dm = f p'(x) dx = 0. This con-
clusion agrees with Leibfried’s result [1], but disagrees with that of Bassett and Pryce
[13] and that of Lewis [14]. Bassett and Pryce discuss the so-called localized running
waves. These waves are just a linear combination of our substantial phonons. In
terms of displacements of the lattice, the authors define a certain quantity and call
it “‘momentum’. They show that this ‘momentum’ is proportional to the k vector of
the ‘localized phonon’ with a factor that is a measure for the anharmonicity of the
lattice. On the other side, we have defined the linear momentum as the product of
-mass and velocity. In general these two definitions disagree. In our opinion the
terming of Bassett and Pryce is therefore rather misleading.
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An analogous jumbling of concepts leading to wrong conclusions, is found in
the paper by Lewis [14]. In order to define the ‘momentum’ the author introduces the
sound pressure. This sound pressure is thereupon identified with the product of the
momentum and the phonon velocity (which is, in the model of Lewis, the Debye
velocity). But, the sound pressure must be related to the linear-momentum flux. The
result of Lewis corrected in this way agrees with our results (4.7) and (4.8).

We have derived expression (4.2) for the local linear momentum density. An.
analogous expression is used as a starting point in the discussion of de Vault [8]. The
expressions for the momentum flux found by this author corresponds also with our
results of the local linear-momentum flux (4.7) and (4.8).

5. The Conservation of Energy

In I expressions for the substantial and for the local energy densities have been
derived. For the crystal lattice defined by (2.2) and (2.4), the substantial energy
density reads (cf. (2.16) of I)

e(m) = (FMeiife + Oujle + £
+fas (e — B+ &— L+ ua+ &) —ulB+ D)Ndm — a + §). (.1

(Summation over j = 1,2,3; «,€C and ¢ (€T is implied.) The corresponding
expression for the local energy density is (cf. (4.3))

el(x) = @M e + Eufe + £)
+fig (e — B+ €= L+ ule+ &) — u@ + 0))dx — qle + £). (5.2)

Consequently we have

fe(m) dm = fe‘(x) dx,

which gives an alternative definition of the total energy.
It is a usual procedure to expand the total energy in a power series in u. Because
of (2.10), the constant term in the series vanishes and the linear term is zero because

of (3.23). By straightforward calculations the quadratic terms can be brought into
the form

j %(m) dm = f %e(x) dx = wi(K)Nys. (5.3)

(Summation over s and k € B.) For the lattice, the integrated value of the substantial
energy flux (cf. (2.19) of I) reads

fsi(m) dm = —(a— B+ & — DayB + 0
X fife — B+ € — L+ u(e + &) — u(B + ). (5.4)

Here again the constant and the linear term of the power series expansion vanish.
Using (2.5) and (2.9) for the term quadratic in u we find

f sim)ydm = —(a — B+ £ — Day(B + Dua + E)F s . (5.5)
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With the aid of (3.3) the introduction of the Bloch functions by (3.1) yields

fzsi(m) dm = —(« — B + 7)iFas 5(MMp)~*W(B, —K)w(e, k)
x explik-(« — B + )],
or with (3.6)

[ 20y dm = 31 i Wog(— 8, =t . (5.6)
Using (3.13) we may write
fzsi(m) dm = —%l d/dkt Waﬁjl(_k)Xjﬂs'Xlas(k)és(_k)cs(k)'

With the chain rule for differentiation and the equations (3.8), (3.9) and (3.11) we
obtain
[ 250m dm = i~ ke
X {_ d/dki w?(k)sss’ +F WaBJ’l(_k) d/dki (Xjﬁs’(_k)mas(k))}' (57)
Applying (3.8) twice and using (3.9) we get

f 2,(m) dm = ic,(— K)ey(k)
x {—djdk; w2(k)Ses + (2(k) — w2(K)Xiusk) djdi; Xiar(—K)}, (5.8)
or with (3.20)~(3.22)

f 25,m) dm = ey(k) djdk; w k)N
+ 3i(2(k) — wX(K) Xiaslk) dJdk; X (—K)er(—K)cy(K). (5.9)

The difference between the integrated values of the local and the substantial energy
flux is (cf. equation (4.5) of I)

f si(x) dx — f sim) din = AMafe + Dife + Dia + B

+ e + Ofas (@ — B+ E— L+ ule+ &) —u@+ )
— @B+ 0 — ulx + §)
X (B + Ofagile — B+ & — L+ ule+ &) — u@ + ). (5.10)

The constant and the linear term of the series expansion in powers of u are zero. For
the quadratic terms (cf. also (4.6) of I) we find

f 251(x) dx — f 25, (m) dm = — (e + Eufe + &) — u(B + DFisL
+ B + Dl + &) — wlf + DYFLS 5.11)

which vanishes in the special case (2.12).

The results of this section are compatible with the literature: Our expression for
the substantial energy flux agrees with Choquard’s expression for the energy current
[6]. The local energy density is the starting point for Hardy [7] and Enz [9]. The
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expressions for the local energy flux also agrees with the energy fluxes of Hardy and
Enz. A discussion of the meaning of the terms of (5.8) is given there.

6. The Balance of Quasi Momentum

With a modification of Noether’s theorem, we have derived in I a local balance
equation by means of an infinitesimal translation in m-space. This balance equation
reads in substantial coordinates

dfdt p(m) + d/dm; #;{(m) = Q,(m) 6.1)
and in local coordinates
dfdt pi(x) + dfdx; j(x) = Qi(x). (6.2)

For the crystal lattice the substantial and local densities become (cf. equations (2.17)
and (3.47) of I and (4.3))

bim) = — Mufe + Ouyle + d(m — « — §), (6.3)

Ai(x) = —Mae + Huy e + 6d(x — ge + £). 6.4
(Summation over j = 1,2,3; a€C, ¢€T is implied.) With (3.1), (3.24) and (3.3)
one obtains easily

f pi(m) dm = f A0) dx = — kb (e, —k)wi(es K). 6.5)

(Summation over k e B.) This can be transformed to

[ iy dm = [ 33 d = = X~ X I~ R, )
= —ikic(—k)cy(k) = k,Ny. (6.6)

Thus, the quantities §,(m) and pi(x) resemble the linear momentum density of the
e.m. field. Therefore, following Leibfried et al., the equations (6.1) and (6.2) are
interpreted as the balance equations for the ‘quasi momentum’ of the crystal. This
naming agrees with the terming for homogeneous media. For these mediums, the
analogues of (6.1) and (6.2) are the conservation laws for the quasi momentum.

For the crystal lattice, the substantial quasi-momentum production density
reads (cf. equation (2.21) of I)

Qi(m) = GMu(m)u(m) — fi5(m — B — £ + u(m)
—um — o — £+ B+ 0)dldm, é(m — o« — §). 6.7)

An analogous expression holds for the local quasi momentum production density
(cf. (3.48) of I). The integrated values of both quantities are

[ o am = [ 1) dx = — Measa + Bty o + ©
e+ O = u B+ DS — B+ € — L+ u(e + ) — u(B + D),

With the cyclic boundary condition one sees easily

f il den = f 0l(x) dx = 0. 6.8)
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Thus, although the quasi momentum is not a locally conserved quantity, i.e.
there exists no local conservation law but only a local balance equation, globally the
quasi momentum is a constant of the motion, as follows from (6.1), (6.2) and (6.8):

djdt f Bi(m) dm = djdi f Aix) dx = 0. 6.9)

For the crystal, the substantial quasi-momentum flux integrated over the volume
reads (cf. equation (2.20) of I)

f?’f,-j(m) dm = (e« — B+ § — Du B + )

X fegile—B+&E—L+ ule+ & — ulB + L)
+ 8, (3M (e + (e + &) — fugla — B+ € — L+ u(e + §)
— u(B + D). (6.10)

Here again, the constant and the linear term in the power-series expansion vanish.
The quadratic terms can be treated in a way analogous to the calculation of the
energy and the energy flux. In this way we obtain

f B () dm = — eo,(k)Siesdyy + ks dldlley o, (k)(Nes + Sis)
+ (k) — w2(k))Xnos(k) dldk; Xpas(—k)cs(k)es(— k). (6.11)

The difference of the integrated values of the local and the substantial quasi-momen-
tum flux is (cf. equation (4.7) of I)

f A1) dx — f #m) dm = 3Mife + Do + Oy + &)

= 2ufe + Ouya + &) — uje + Hf5 (@ —B+ € — L+ ule + §)
—uB + ) + u B+ OB + ) — ufe + )
X fogifla — B+ &€ -+ ule+ & — uP + Q). (6.12)

In the special case (2.12) the harmonic terms of (6.12) vanish.

Let us now discuss (6.11). The term k; d/dk; w(k)N,, corresponds to the transport
of the quasi momentum in a crystal with the group velocity d/dk; wy(k). In most
papers this term is the only one that is considered. The last term in (6.11) which is
proportional to (w2(k) — w2(k)), describes the influence of the interference of two
non-degenerate modes or polarizations on the flux of the quasi momentum. This term
finds its analogue in the expression (5.9) for the volume averaged energy flux. Further-
more, we have the term

(ks djdk; wy(k) — 81j04(K))Ss. (6.13)

This term appears also in the theory of homogeneous media. It vanishes for dispersion-
free one-dimensional systems. Moreover, it is easily proved that the time average of
S, over a long enough period approaches zero. For many physical applications, it is
sufficient to know the time average of the volume averaged flux. For those cases the
term (6.13) can be left out.
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7. Evaluation and Final Remarks

With something that may be called ‘physical intuition’ one may feel the leaning
or even the prospensity to write for the volume average of the energy flux in the
harmonic approximation

f 35,(m) dim = wy(k) djdk, (k)N (7.1)

The same physical intuition leads to the expression
k; dldk; w k)N, (7.2)

for the volume average of the linear momentum flux, or if it is known that this is
wrong, for the quasi-momentum flux. Our results and earlier results of other authors
show that such a physical intuition is misleading.

Using the results of I, in this paper a crystal has been described as the limiting
case of a continuous system. Methods used in continuum physics could therefore be
applied to the crystal. Using substantial coordinates m, we have described in terms of
a Lagrangian density L the dynamics of a crystal. With a transformation of the field
variable u(m) — v(x) we have obtained an other Lagrangian density L which describes
the crystal dynamics in terms of local coordinates x. The explicit form of both La-
grangian densities allowed us to use Noether’s theorem in order to derive several local
conservation laws and a local balance equation in terms of substantial as well as
local coordinates.

With the infinitesimal transformation 8u,(m) = € and dvi(x) = —€,(8;; + v; ;) we
have derived (in substantial and in local coordinates, respectively) local conservation
laws that describe the conservation of some quantity, which has been identified with
the linear momentum of the crystal. The description in local coordinates corresponds
to that of de Vault [8].

With an infinitesimal time shift (8z = e or equivalently éu; = ei; and dv; = b,
respectively) the conservation of energy has been derived in terms of substantial and
local coordinates. The description in substantial coordinates corresponds to that of
Choquard [6], the description in local coordinates to the discussion of Hardy [7]
and Enz [9].

With an infinitesimal shift of the lattice points (8m; = ¢; or equivalently
du;(m) = eu; ; and dv(x) = €;v; ;, respectively) we have derived a balance equation
for a quantity that resembles the linear momentum of the e.m. field and has therefore
been called ‘quasi momentum’.

In order to clarify some aspects of the physical meaning of the concept of quasi
momentum, we shall make a number of remarks:

(i) The definition of quasi momentum has been chosen such that the total quasi
momentum of a crystal can be written as >, k;N,,. As the total linear momentum is
zero, we could also have taken a linear combination of the balance equation of the
linear momentum and the balance equation of quasi momentum as an alternative
definition of the balance equation of quasi momentum. Then the resulting expressions
would have been more complicated, i.e. the anharmonicity of the crystal would have
contributed to the harmonic part of the flux (cf. equations (4.7) and (6.11)). Thus,
our choice is the simplest choice.
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(i1) After linearization, the equations of motion in local and in substantial
coordinates are identical. Then it is not clear in advance whether the independent
coordinate is of substantial or of local nature. Consequently, a linear combination
of linear momentum and quasi momentum may appear where only the linear momen-
tum is expected.

(111) One may obtain a better understanding of the concept of the quasi momentum
of a crystal in a situation where the crystal interacts with its environment. For example,
we can take a single particle interacting with the crystal. Then the crystal and the
particle together constitute the dynamical system. The interaction energy of particle
and crystal is in general of the form

2 28+ é+ua+ §—q) (7.3)

ZeT aeC
where ¢ = (g, 92, 95) denotes the position of the particle. With this form of the inter-
action energy it is easily seen that the sum of the linear momentum of the crystal and
that of the particle is a conserved quantity. Similarly, one shows easily that the sum
of the linear momentum of the particle and the quasi momentum of the crystal is
conserved. (The same assumptions as in Section 6 have to be made.) Therefore we
may say that the linear momentum of the particle is additively transferable to the
linear momentum as well as to the quasi momentum of the crystal. (See the discussion
on additive transferability of constants of the motion in [15], chapter 4.) Therefore
the linear momentum and the quasi momentum of the crystal have the same ‘ particle
analogue’, in some sense. Furthermore it follows, also in the case where the crystal
interacts with another particle, that the linear momentum and the quasi momentum
are numerically equal (apart from a constant term).

(iv) In the whole discussion it has not been necessary to treat the so called
‘Umklapp’ processes. About this point the following remarks can be made: Because
the values allowed for k are restricted to the first Brioullin zone B, the definition
(3.24) of u; (« + £) is rather arbitrary. With another choice for B other values of
u; (e + £€) are obtained. Consequently the value of _f p(m) dm depends essentially
on the choice of B. In fact, the use of the quantity u;; in the discussion of the quasi
momentum requires some continuum representation of u, for example

u(e + &) — u,(m) = M;?w(e, k) explik-(« + m)]. (7.4)

The restriction of the values of k£ to B becomes then inadequate. For example, one
could take '

kelk = (ky, kg, k3) | ky = 2nni/L,n; € Z}. (7.5)
With (7.4), a summation over ¢ transforms into an integral over m. Instead of (3.3)
we use then the identity

fdm CXp[i(k - k,)'m] —_— /\Skk:, A - L1L2L3 (7.6)
and substantial phonons with k ¢ B may appear in the description. Afterwards k& can
be reduced again to the first Brioullin zone:

w(e, k) — w'(e, k) = 0, k¢B

wi(e, k) = > wla, k + K), keB. (7.7)

KeK



Vol. 49, 1976  Local and Substantial Fluxes for Energy in Crystals 627

This restriction to B does not make any difference for the values of u at the lattice
points, but it does for the derivatives. The consequence is that the quasi momentum
changes in the same way as by ‘ Umklapp’ processes. Therefore, ‘ Umklapp’ processes
enter the discussion of ‘quasi momentum’ in crystals because of the lack of its unique
definition.
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