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Local and Substantial Fluxes for Energy, Linear
Momentum and Quasi Momentum in Systems
with a Non-local Internal Interaction

by J. A. Kobussen)

Institut fiir Theoretische Physik der Universitét Ziirich, CH-8001 Ziirich,
Schonberggasse 9, Switzerland

(16. 1I. 1976)

Abstract. The dynamics of a continuous inhomogeneous system with a non-linear non-local
internal interaction is described. This is done in terms of a Lagrangian density by means of local
as well as substantial coordinates. In both coordinate systems the copservation laws for energy and
linear momentum are derived. Additionally, a balance equation for a quantity, which may be
termed quasi momentum, has been constructed. The expressions in both coordinate systems are
mutually related.

1. Introduction

In many problems in physics it is not obvious what physical quantities must be
taken as the independent variables, the coordinates. In the description of the dynamics
of a compressible fluid one may use local coordinates, also called Eulerian coordinates,
or substantial coordinates, also termed Lagrangian or material coordinates. In solid
state physics the same problem is met.

In hydrodynamics as well as solid state physics local quantities mixed up with
substantial quantities are generally used. Mass densities and energy densities are
usually local densities. On the other hand, the velocities used in the same discussions
are time derivatives of substantial quantities. This mixing up of two different descrip-
tions hinders the formulation of the dynamics in terms of a Lagrangian or a Hamil-
tonian. One has to find suitable field variables first.

Recently we studied the conversion from substantial into local coordinates in
terms of a Lagrangian and Hamiltonian formulation of fluid motion (Ref. [1] and
Ref. [2], chapters 6 and 7). In the present paper we study the same problem for a
continuous inhomogeneous dynamical system with a non-linear non-local internal
interaction. The Lagrangian of the model has been chosen such that, for a special
choice of the mass density and the potential energy function, the system may describe
both local interaction and the dynamics of a crystal lattice as limiting cases.

In Section 2 of this paper a Lagrangian density is introduced in terms of sub-
stantial coordinates. On the basis of invariant infinitesimal transformations of the
field variable (Noether’s theorem) expressions for substantial energy density and flux,
substantial linear-momentum density and flux are found. With a modification of
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Noether’s theorem expressions for what can be called quasi-momentum density,
flux and production density are derived. In Section 3 we convert the formalism of
Section 2 into local coordinates. The transformation for this is analogous to the
transformation used in [1] and [2] for the hydrodynamical case. The transformation
used is purely geometrical, i.e. it does not depend explicitly on the dynamics. In
Section 4 we give a concise discussion and comparison of the results of Sections 2 and
3. In a forthcoming paper we will apply the present results to the dynamics of a
crystal lattice; there, a comparison will be given with results of other authors who
use methods familiar in the field of solid state physics.

2. Substantial Description

Let the state of a continuous dynamical system with dimensionality d be realized
by fixing the components of the field vector u = u(m) = (uy(m), ug(m),. . ., us(m))
and the field velocity u# = u(m) = (4,(m), tis(m),. .., u;(m)) as a function of the
coordinate m = (my, ms,..., my). The coordinate m itself will be interpreted as a
substantial coordinate, indicating material points of the system. For example one
can take the position, at time ¢ = 0 or in another reference situation, of some material
point as the corresponding coordinate m.

The system dynamics is described by a function of time: u(m, t). This function
gives the time evolution of the field vector u. The field velocity then takes the form
# = (du/dt),. Finally, we assume that admissible fields ¥ = u(m, t) are prescribed by
solutions of the Euler-Lagrange equations following from the substantial Lagrangian
density (i.e. Lagrangian density in m space)

L(m) = }po(m)uy, — fd#V(Z(m, ), My 1), ' 2.1)
where
z(m, p) = u(m + p) — u(m) + p. (2.2)

(Summation over repeated Latin indices is implied over 1,2,...,d.) The quantity
po(m) is a non-negative scalar function of m and can be interpreted as the mass
density in the substantial coordinate m-space. py(m) will be termed substantial mass
density. The function V' (z, m, p) is a real scalar function of the three d-tuples z, m and
p and may be interpreted as the potential energy density in m, u-space. Furthermore
fd,u denotes the multiple integral fd,u,l f dus. .. f dpg. The integration over u has
to be carried out over the entire volume of the system. As a rule we will not write the
argument of the function u explicitly if u(m) is meant.

The potential energy density in m space fdp V(z(m, n), m, p) describes the
interaction between material points with coordinates m and (m + w) of distance
z(m, p) = uw + u(m + p) — u. Additionally certain conditions ensuring a decent
behaviour, such as differentiability and integrability, should be imposed, but we will
not specify, and in the following not even mention, these conditions.

In general any dynamical system can be described by a class of Lagrangian
densities. In applications one does not have to worry about this, because what can be
derived from one particular Lagrangian density can be derived from any suitable
Lagrangian density. Therefore we did not try to give the most general Lagrangian to
describe the same system, as e.g. Marnelius [3] recently did for systems with a non-
local internal interaction. On the contrary, we tried to introduce a Lagrangian density
that is easily manageable with a minimal loss of generality concerning applications to
different systems.
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Let x = (X1, X3,. .., X3), ¥ = (P1, Va,. .., ¥a) and dfdx = d[dx, d[dx,. .. d[dx,;
then for any function F(x) holds:

F(x)=—-dldx| F(y)dy=—-d/dx| F(x+ y)dy

Cx Co

and analogously

F(x — 2) = —d/dx f FO)dy = —djdx | Fx + ) a.

Cxwz C-2

Subtraction of both equations gives

F(x) — F(x — z)=djdx | F(x + y)dy. (2.3)

D,

Here D, = C_,\C,is thefirst ‘octant’ C_, = {y | y; > —z;} in y-space with the center
in y = —z minus the first ‘octant’ C, = {y | y; > 0} with the center in the origin
y = 0. We note that in (2.3) the function F is not necessarily a scalar function.

In order to derive from (2.1) the equations of motion (Euler-Lagrange equations)
and various conservation laws we must be able to translate arguments of functions.
Equation (2.3) makes this possible.

We shall use the following notations

us,e = (0/omy uf(m)m, 4 .15

Po,i(m) = (9/om, Po(m))mjw

V,i(“, ﬁ’ '}’) = (a/aai V(oa, B: 7))“1 #i:8,7
Ve, B, v) = (/0B V(«, B, '}’))a,s,ﬂ,ya :

where the comma in ¥ (e, B, ) means differentiation with respect to the first variable,
and the semi-colon in V (e, B, ¥) means differentiation with respect to the second
variable. From (2.1) we can derive the equation of motion

pD(m)iii = fdf“’(y,i(z(m: -u')’ m, ,LL) - V,i(z(m - M -u')a m— pw, F’)): (24)

which leaves for the first-order variation 8L(m) of L(m)
8L(m) = d/dt (po(m)i;du;)

~ dfdm [dp [ dnV (alom + 1, ), + 7, 8 + o+ 9. 2.5)
DI‘

Note that here d/dt means differentiation with constant m. The symbol = denotes
the so called weak identity only valid for solutions u of the equations of motion.

From the definition (2.1) of L(m) it is readily seen that the infinitesimal translation
in u-space (8u; = ¢, ¢, being vanishingly small constants) leaves the Lagrangian
density L(m) invariant:

ou; = ¢ — 6L = 0.

So from (2.5) we obtain the set of local conservation laws:

dfdt (po(myis) — ddm f du | dnV(am + n, 1w, m +m, ) = 0. @.6)
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With the interpretation of u; as a deviation of a material point in the ith direction and
po(m) as the substantial mass density, the quantity f o Po(m)i dm clearly represents the
total linear momentum in the volume Q. Consequently (2.6) is the local conservation
law for the linear momentum in substantial coordinates. In fact this derivation is
equivalent to Noether’s theorem (Ref. [2], section (3.4)).

In the same way we may deduce the conservation law for the energy by the
infinitesimal translation in z-space (e being an infinitesimal scalar)

du = et — 8L(m) = ed/dtL(m),
So with (2.5) we find the local conservation law for the energy:

ajae (tpolmyi + [ du? @l ), m, )

— d/dMJd#L dnV (z(m + 9, p), m + 9, Wim + p + 1) =0.  (2.7)

If the system described by (2.1) were homogeneous, the infinitesimal translation in
m-space would also be a Noetherian variation: If p,(m) = 0 and V.(z, m, p) = 0
then 6u; = eu; ; yields 8L(m) = e,d/dm,; L(m). In the general inhomogeneous case
the variation du; = €u; ; does not leave L(m) invariant up to a total derivative, but
there are other terms containing p, ;(m) and V. (z, m, ). The result is not a local
conservation law but a local balance equation, i.e. a local conservation law with a
non-zero right-hand side (source term).

ou; = ey ; — 8L(m) = ej{d/ dm; L(m) — %po, (m)u; + fde,(z(m, ©), m, n"')}
With (2.5) we then obtain

ddt (= po(myigs,,) + djdm, (%po(m)aiai ~ [duviem, w, m, #))
+ dfdm [ dy [ dnV Gatom + m, 0, + 0, W om + o+ )

= Spo. ity — [ dV(ztm, ), m, ) 2.8)

This equation, obviously a local balance equation in substantial coordinates, will be
interpreted as a description of the balance of ‘quasi momentum’. One reason for this
is that for homogeneous media (2.8) changes to a conservation law that is usually
identified with the conservation law for quasi momentum. Another argument is
found in the specialization of (2.1) for crystal lattices. Then using an appropriate
continuum representation for u and suitable phonon variables, the total quasi
momentum — j' dmpo(m)u;u; ; can be written as >y k;Ny,. Here k = (ky, kg,. . ., kg) is
the wave vector of a phonon, N, the number of phonons with wave vector k and
mode/polarization s. In solid state physics such a quantity is called quasi momentum
(if it is not simply called momentum). In a forthcoming paper we will come back to
this subject.

Any of the equations (2.6), (2.7) and (2.8) contain a term of the form

d[dm f du fDu dnF(m + 7, p), which is the divergence of some flux term:

div G = djdm, G, = djdmy...d/dms f du| Fon + n, u)dy. 2.9)
Dy
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The components G; of the flux term are not defined uniquely by this equation. A
divergence-free term may always be added to G;. To obtain symmetrically looking
expressions one may write

0

G, d/dmz---d/dmd{ [an[" an ["ans- [* dniFn+ n +
-y

0 0 0
l/dfd,,,f dmf dna-- |
bt 3] —Ukg

J-ug

dneF(m + 1, ,,,)} (2.10)

and similar expressions for Gy, Gg,. .., G4. From (2.10), we obtain easily

f dmG; = (—)i-1 f f s B O, ) @.11)

where the integration over m is done over the entire system. The factor (—)*~?
comes from integrating by parts (d — 1) times. The second term of (2.10) does not
give a contribution to f G, dm. The equations (2.6), (2.7) and (2.8) may now be
written in the usual form

d/dt p{m) + djdm, = (m) = 0, 2.12)

dldt e(m) + dfdm; s(m) = 0, (2.13)
and

dfdt p\(m) + dldm; #,(m) = Qm), (2.14)
respectively. Here

pi(m) = po(mik, ' (2.15)

e(m) = ool + [ AV (zlm, ), m, 1), 2.16)
and

Pim) = — po(m)iay; (2.17)

are the substantial linear-momentum density, the substantial energy density and the
substantial quasi-momentum density, respectively. For the substantial linear-momen-
tum flux =;(m), the substantial energy flux s,(m) and the substantial quasi-momentum
flux #;,(m), we give only the value of the integral over the entire volume. :

[ mstony dm = (= [ [ dm dun, 2, 13, m, ), 218)
:’i(’") dm = (=) f f dm dupgi(m + W)V (2m, &), m, ), 2.19)
[ 4,(m) dm = f dmpolmyii s — f f dm duV (2(m, 1), m, 13

=) [ [ o d o + IV sz, 9, 1, 1, (2.20)
where §;; is the usual Kronecker delta symbol
8;=1(@=j); 8;=00#)).
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We can write down the expressions for the fluxes themselves. Nevertheless, we prefer
to give the integrated value only, because these expressions are simpler and are
sufficient for many physical applications. The source density of the balance equation
for the quasi momentum reads

0(m) = 3po Yty — f duV(2(m, 1), m, o). @.21)

3. Local Description

If in the foregoing section the substantial coordinate m describes the position of
a material point in some reference situation and the field vector u(m) is the deviation
from this reference situation, the local positions of the material points are given by

x = g(m) = m + u(m). 3.D

In analogy to the procedure in [1] and [2] we now define the new field vector v(x) =
(v1(x), vo(X),. . ., v4(x)) by introducing §(x), the set of inverse functions of g(m):

m = §(x) = x + v(x), (3.2)
where
x =q(§(x)); m = g(q(m)). (3.3)

Note that the transformation u(m)— v(x) is a purely geometrical transformation,
i.e. the transformation does not depend on the dynamics of the system. Inserting
(3.1) and (3.2) into (3.3) we obtain

x = 4() + u(@®) = x + v(x) + u(x + v(x),
m = q(m) + v(g(m) = m + um) + vim + u(m)),

or
v(x) + u(x + v(x)) = 0, (3.9
u(m) + v(m + u(m)) = 0. 3.5

In general we shall not write the arguments of # and v explicitly, unless confusion
might arise. Thus, writing 4 or v, we mean the functions u(m) or v(x), respectively.
In analogy to (3.2) we put

m+p=§4x+2)=x+z+ v(x + 2). (3.6)
Then, with (3.2) we get
p=z+ o(x + z) — v(x). (3.7

On the other hand, from (3.1), (3.3) and (3.6) we obtain

x+z=qm+p) =m+p+ um+ p),
or again with (3.1)

z=qm+ p) —q(m) = p + ulm + p) — u(m). (3.8)
The Jacobian of the transformation m — x is

Jx) = s Ma) det(%) - det(-@(—x)),

a(xl, P iy .xd) 3xj 3xj
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and because of (3.2)

J(x) = det(d;; + v, ,(x)). 3.9
Analogously the Jacobian of the transformation from the pair of variables (m, r) to
(x, z), given by (3.2) and (3.7), is

a(m],)- ..y md’ )u‘lyv . uy ,u'd) (am1/BXj a.#’i/axj)
= det = J(J(x + 2). 3.10
a(xl" ces Xdy L1500 0y Zd) € 6mi/az, a)u'i/azj (x) (x Z) ( )

The relation between the substantial field velocity # and the local field velocity v is
obtained by differentiating equation (3.5) with respect to time. In this way we find

u{ + 73{ + Ui,juj = l.lj(au + Ui.j) + ﬁi = O.

Now we introduce the inverse of the matrix (8;;, + v; ;):

A8y + v,;) = &y 3.11)
Then

u = — Ay, (3.12)
Analogously we can find

U, = — A . (3.13)

Now enough preliminary work has been done to convert the substantial Lagrangian
density L(m) into a local Lagrangian density L(x). This has to be done in such a way
that the Lagrangian functionals f L(m) dm and _fZ(x) dx are equal (Ref. [2], section
(3.2)). From (2.1) and (2.2) we see

= f dmypo(myit — f f dm duV(u + u(m + 1) — u(m), m, p). (3.14)
With (3.9) and (3.10), the substitution of (3.2), (3.7), (3.8) and (3.12) into (3.14) gives
Z = f A3 (X)pa(x + v)AgyAuyi, — f f dx dzJ()J (x + 2)
X V(z,x + v,z + v(x + z) — v(x)).
So with & = ff(x) dx we find for the local Lagrangian density L(x)
L(x) = 3J(xX)po(x + v)AyAu0,0,
I [daIx + V@5 + 0,2 + o0x + 2) = o) (3.15)

Note that J(x) depends explicitly on v, ;. Therefore, for variations v the variation
8J(x) of J(x) is ‘

8J(x) = agv(j) Sou (3.16)

From (3.11) and the properties of determinants one easily verifies

WG

o = (A (3.17)
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Hence

8J(x) = J(x)4,00,,. 7 (3.18)
Analogously the variation of the matrix element 4, is
204
SA“C = av L Svl,m. (3.19)

i,m
Differentiating (3.11) with respect to v, ,, gives

94y
avl.m

= — AyAmy. (3:20)

We have calculated the variation 8L(m) for arbitrary variations du in Section 2.
Analogously we may calculate the variation 8L(x) for variations 8v. Before doing
this we note that the expression (3.15) for L(x) is much more complicated than (2.1)
for L(m). Furthermore we do not need the full expression for 8L(x) but only the
analogue of (2.5), for we shall not need an explicit expression for the equation of
motion in local variables. Therefore in the elaboration of the expression for 8L(x) we
have to collect only terms that give a contribution to terms which are derivatives with

respect to time 7 (at constant x) or to x; (at constant #, x; ;). The calculation becomes
less complicated by writing

L(x) = 3J(x)po(x + v)iu(x + v)i(x + v)
— J(x)fd,u.V(p +ulx+ v+ p)—ux+0),x+ o, p (3.21)

instead of (3.15). This is allowed because 1//(x + z) is the Jacobian of the transforma-
tion of the integration variable z into u (fixed x, m) as is readily seen with (3.7).

Using (3.21) instead of (3.15) we need additionally the relation between 8v; and
the variations of #, and #;. From (3.5) and (3.11) it follows

Suk = —AkiSUi. (3.22)
From (3.12) we see
Sl'li = —AikBI}k = Tjk%lik SU;,,,
A

or with (3.20) and again with (3.12)

Stk = — Ay — Uy Audvy . (3.23)
For 8L(x) we obtain finally

8L(x) = d/dt (p(x)u,du)) + d/dx; (—Lp(x)idu; + p(x)i,du,

+ J(x)u, f daV(e(x + 0, 1), % + 0, )

—d/dxfd,u dn Sux + 0+ 7 + )
Dy

X V,i (z(x + v+ ’7)3 au')’ X+ v+ 7 F‘), (324)
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where

d/dt is the differentiation with respect to ¢ at constant x,

= u(x +v), =u(x+0v), ou =du(x+ o), (3.25)

p(x) = J(x)po(x + v) is the hydrodynamical local mass density, (3.26)

dldx = dfdx, d|dx,. .. d[dx,,

D, = C_,\Co={n|m>—p}\n|n > 0}and

z(m, u) = p + u(m + p) — u(m). (2.2)
For further reference we note that the last term in (3.24) may also be written as

—d/dxfdz dvJ(x + 2)J(x + y + 2)Agx + y + 2o (x + y + 2)
D,

XxVi@zx+y+ox+y,z4+vx+y+2)— ov(x+ y). (3.27)

In Section 2 the conservation of linear momentum has been derived by means
of the variation 8u; = ¢;. From (3.22) and (3.11) the equivalence of the variations

Su,- = Eg and Svi = ——61(8‘, + v‘l,j) (3.28)
follows. Using (3.15), (3.16) and (3.19) for the variation (3.28), we obtain
SL(x) = —e¢; d/dx; L(x). (3.29)

Equations (3.24) and (3.28) yield
SL(x) = ¢ dldt (p(x)i) + €, dfdx; (—3p(X)itidy + (XYl

+J (x)Sjkfde(z(x + v, 1), X + v, p)
— ¢ dldx f s | dn et + 0+ 1% + 0+ 70 (3.30)
On the ofher hand we obtain with (3.29), (3.21), (3.25) and (3.26)
SL(x) = exddx, (—p(iaisd s + J(X)35 j duV(Z(x + v, 4, x + 0, ). (3.31)

From (3.30) and (3.31), we get then the local conservation law in local coordinates
dfdt (p(x)i) + dfdx; (p(x)ii)

— djdx f du| @V,.Gx+o+9),x+0+np=0. (3.32)
Dy
In analogy to (2.12) we write
d/dt pi(x) + djdx; wi(x) = 0 (3.33)
instead of (3.32). Here
pi(x) = p(x)i. (3.349)

With (2.15) and (3.26) it follows
pi(x + v)J(x) = pi(x) (3.35)
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and consequently

[P dx = [ pix + 090 dx = [ piomy dim.

Therefore (3.32) is the local conservation law for the linear momentum in local
coordinates, p}(x) being the local linear-momentum density and =},(x) being the local
linear-momentum flux. For the integrated value of the local linear-momentum flux

[ #(x) dx we can write (c.f. (3.27) and (2.9)-(2.11))

[ 740 dx = [ dmpotomyia + (- f j dmdils; + ufm + 1) — uy(m))

X V,i(z(ms lu‘)’ m, P’) (336)

With the variation du; = e1; the conservation of energy has been derived in
Section 2. The variation 8v; = ev; is equivalent to the variation éu; = e, (c.f. equation
(3.22) and (3.12)). Because L(x) does not depend on time explicitly, under the variation
8v; = ev; we obtain for 8L(x)

3L(x) = ed/dt L(x) = e d/dt 3p(x)uay, — J(x) Jdp V(z(x + v, pn), x + v, p)).

(3.37)
On the other hand, with (3.24) we get

SL(x) = e dJdt (p(x)it)
+ e djdx; Gp(igity + J(Oi, f duV (z(x + v, 1), x + 0, 1))
- ed/dxfdp dibe+ 1 & + WP ez + 0§ 5,83 & o+ o

(3.38)

Subtracting these two equations we obtain
dld (ipCoy, + I() [ duV (@ + ,, x + v, )
+ ddx; (hpCoyianty + J i, [ AV (2G5 + v, 1, % + 0, )

- d/dxfd,u dpi(x + v+ 9+ WV z(x+0v+7mp),x+0v+9p) =0
| o (3.39)
In analogy to (2.13) we write now
djdt e(x) + dfdx, si(x) = 0, (3.40)
where (c.f. equation (2.16))

e'(x) = p(x)usty + J (x)fdMV(Z(x + 0,0, x + v, p) =J(X)e(x +v),  (3.41)

and therefore [ e'(x) dx = [ e(m) dm. This implies that (3.39)~(3.40) is the local con-
servation law for the energy in local coordinates, €!(x) being the local energy density
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and sj(x) the local energy flux. Analogously to what we did for the integrated value
of the local energy flux we may write

st ax = [ ampotmyii, + [ [ dm gy om, 3, m, )

4 (2 [ [ dm it + wiom + ) = wpiaom + V. alon, ), m, ). (342)

The balance equation for the quasi momentum has been derived in substantial
coordinates by the variation 8u; = €u; ;. The variation 8v; = €, ; is equivalent to
that variation as a consequence of (3.13) and (3.22). From (3.15) and (3.26) we then
obtain

SL(x) = <, dldx, (p(xity — J(%) f duV (z(x + o, p), % + 0, 1))
— pofx + oW @ity + J(X) f QVzx + 0,5, %+ 0,8, (3.43)
On the other hand (3.24) yields
SL(x) = e, d/dt (p()ius ) + € dldx, (—bp(x)ihtit,
+ PO, + T(y f duV(Z(x + o),  + 0, 1))
— € d/dxfdp i dyu ((x + v+ 7+ p

X Vizx+v+nup,x+ 0+ 9 pn. (3.44)
Subtracting (3.43) and (3.44) we get the balance equation

dldt (— p(Yiage,) + dld; (e + 85 — Vi)
— dldx; (e + 80T () f duV(z(x + v, ), x + v, )

+ d/dx]du dux + v+ +pVzx +o+9p),x+0+9u)
Dy,

= poslx + O — J (%) f duVolz(x + v, p), % + 0, p). (3.45)
In analogy to (2.14) we write
dfdt pilx) + djdx, #;(x) = Q(x), (3.46)
where (c.f. equations (2.17) and (2.21))
Di(x) = — p(X)iuy . = J(X)pe(x + v), (3.47)

0L() = po.slx + V(N — I(3) [ duValale + 0,1, % + 0, )
= J(x)Qu(x + v), (3.48)
and therefore [ pl(x) dx = [ p(m) dm; [ Qk(x) dx = [ Q(m) dm, so that (3.45)~(3.46)
is the balance equation for the quasi momentum in terms of local coordinates,

P'(x) being the local quasi-momentum density, #'(x) being the local quasi-momentum
flux, and Q'(x) the local production-density of quasi momentum.
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For the integrated value of the quasi-momentum flux we find
fﬁ}cj(x)dx = fdm{‘i‘Po(m)ﬂidi(uf,k + 85 — polm)utiu; i}
- f dm du(uy, + 8,)V(z(m, p), m, p)

_ (=) f f dm dulsy + ufm + 1) — it m + WV {2m, p), m, p). (3.49)

4. Discussion and Final Remarks

In several places in the foregoing sections we have interpreted the state u = 0,
# = 0 of the system as an equilibrium state. This interpretation is only possible if
u(m, t) = 0 is a solution of the equation of motion (2.4). A necessary and sufficient
condition for this is

| v s, = Vs = 1) = 0 @.1)

In many models of physical systems one takes a form of the potential energy that does
not contain terms linear in . In our notation:

V,i(:u'5 m, f“‘) = 0. (42)

This condition is much stronger than (4.1). It implies that the equilibrium state
u(m, t) = 0 does not correspond only to a minimum of the total potential energy of
the system, but rather to a simultaneous minimum of the potential energy of any of
the different two-particle interactions. We note this point because the linear terms
of V contribute to the harmonic terms of the local fluxes for linear momentum,
energy and quasi momentum.

Another familiar assumption is that one has no macroscopic motion of the system,
i.e. no motion of the center of mass of the system:

djdt f sl = dil f (o 3 vl = f )i o = 0, 4.3)

Therefore this assumption implies that the total linear momentum is zero. A con-
sequence hereof is that elementary excitations of the system (phonons) do not carry
any linear momentum unless such an elementary excitation is related to a motion of
the center of mass. This statement seems trivial. Nevertheless we pointed this out in
order to emphasize that the k vector of a phonon in a crystal lattice defined in the
usual way has nothing to do with the linear momentum.

Unless (4.3) yields a zero total linear momentum, the linear-momentum flux does
not vanish, neither does its volume average. From (2.18) it is readily seen that
fvri,(m) dm vanishes only for linear systems (i.e. ¥ ;;; = 0). The harmonic terms of
the integrated substantial linear-momentum flux depend on the cubic terms of the
potential energy. Comparing (2.18) and (3.36) one deduces

[ iy dx = [momy dm = [ dmpotmyay + (-

x [ [ dm dutuom + ) = wpV.izom, ), m ). (4.4)
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For many physical applications one is mainly interested in the harmonic terms of the
fluxes or its integrated values. From (4.4) it is seen that the difference of the harmonic
terms of the substantial and the local flux is not zero. Nevertheless it can be shown
that for long enough periods the time average of (4.4) vanishes.

The relation between the integrated values of substantial and local energy flux
is obtained by comparison of (2.19) and (3.42):

f siE)dx — f s,m) dm = f dmypo(myii, + f f dm dutt,V (z(m, 1), m, 1)
+ (=) [ [[am dutuom + ) — wyistm + W)V z0m, ), m, 4.5)

under the assumption (4.2) the harmonic terms of _f si(x) dx and j s{(m) dm are
identical. In general these harmonic terms differ by

[sio ax = [25,0m) dm = [ [ dm duisfoaton + ) = w)V, s, )

+ (=) [ [ dm duisgon + Xasom + ) = w)V s m, ). (4.6)

We have an analogous situation for the integrated value of the quasi-momentum
flux. Comparison of (2.20) and (3.49) yields

| #ts0) dx = [#1om) dm = [ dmboctomyinan i — 2
— [ [ dom dust @, 13, m, )
G| f dm dy (m + p)aufm + ) — u)V (2(m, 1), m, ). 4.7)

If we only consider the harmonic terms we have
f 241 (x) dx — f %, (m) dm = — f dm dyaty yum + 1) — w)V i, m, 1)
—(-)® f dm dyats, ((m + pum + 1) — W)V (u, m, ). 4.8)

The present results can be applied to crystal lattices. Several authors have already
worked in this field: For Bravais lattices Choquard [4] discussed the substantial
energy flux, whereas Hardy [5] discussed the local energy flux. De Vault [6] applied
Hardy’s method to the local linear-momentum flux, Enz [7] generalized the method
to non-Bravais lattices. Pokrovsky and Sergeev [8] have given a rather general discus-
sion of local fluxes in crystals. Furthermore they have described a transformation
from the local flux to the flux in a material description, as they called it.

An application of the present theory to crystal lattices permits a more general
approach of fluxes in crystals. Local as well as substantial fluxes can be calculated for
energy, linear momentum and for quasi momentum. This is the program for a
forthcoming paper [9]. There we will also give a comparison of our results and those
- of the cited authors. Without going into details about the discrete crystal structure
here we can discuss Pokrovsky’s and Sergeev’s transformation of a local flux into a
‘flux in a material description’.
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Let a quantity j,(m) be given in substantial coordinates. Then, we have because
of (3.2), (3.9) and (3.11)

f dm djdm, j(m) = f dxJ (x) dJdm,, i (m)
- f dx] () Ay dJdx, julx + v)

- f dx djdx; (— Ay (xX)i(x + v))

+ f 70 + v) dldx, (J()Ay). 4.9)
Furthermore we note that
d aJ(x Y

7, 004 = 58 0y + I G 4.10)
or with (3.17) and (3.20)

dldx, (J(x)Ay) = J (x)vi,ﬂ(AﬁAlk = AuA:fk) = 0. (4-11)
From (4.9)-(4.11) it follows

f dm dldm, j(m) = f dx djds, (), 4.12)
where

jz(x) = — ApJ (X)ji(x + v). (4-13)

If ji(x) is the flux in a local description, it is, according to Pokrovsky and Sergeev,
natural to define ji(m) as the flux in a material description. This formulation may
insinuate that j(m) is a substantial flux if j(x) is a local flux. But this is not true. A
local or a substantial flux has to be related to local conservation laws (balance
equations) in local or substantial coordinates, respectively. In the paper of Pokrovsky
and Sergeev the flux j(x) in a local description corresponds to our local flux, i.e. a
flux through a local point x. On the other hand j(m) is not a substantial flux, i.e. a
flux through a material point m, but rather the same local flux in another coordinate
system. Therefore physically j(x) and j(m) are the same. The reason why j(m) is not
a substantial flux is that the time derivative d/dt in a local conservation law in local
coordinates has to be taken at constant x. On the other hand in a local conservation
law in substantial coordinates d/dt means differentiation with respect to 7 at constant m.
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