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The Effect of Radiative Capture on Threshold =p
Scattering and the Theory of the Panofsky Ratio

by G. Rasche
Institut fiir Theoretische Physik der Universitit, Schonberggasse 9, CH-8001 Ziirich, Switzerland

and W. S. Woolcock

Research School of Physical Sciences, The Australian National University, Canberra, Australia

(6. II. 1976)

Abstract. The effect of the (yn) channel on threshold =~ p scattering is considered. The
symmetric 3 x 3 matrix of s-wave scattering amplitudes is written in terms of the components of
a real symmetric 3 x 3 matrix, which can be expanded in a power series in g2. The behaviour near
the =~ p threshold of the cross-sections for the processes =~ p — #°n1 and =~ p — yn is obtained and
the Panofsky ratio in flight is calculated. The 2 x 2 matrix of s-wave scattering amplitudes for the
open channels (#°n), (yn) below the =~ p threshold is also obtained and shown to be unitary.
The theory of the Panofsky ratio for the decay of the =~ p 1s state is developed.

1. Introduction

In previous papers [1-2] we reviewed work on electromagnetic corrections in
pion-nucleon scattering below 300 MeV and obtained convenient parametric forms
for the s-wave amplitudes for the processes #w*p — 7*p, m~p — 7 near the w*p
threshold (that is, W = M + p or g2 = 0).%) In the latter case we neglected the effect
of the (yn) channel on the (7~ p), (7°n) system and considered the two channel problem
only. It was emphasized by us previously [3] that, if electromagnetic effects in pion—
nucleon scattering are to be considered consistently, it is necessary to take account of
the (yn) channel, as well as Coulomb and mass difference effects, in the analysis of the
results of =~ p experiments. The purpose of this paper is to consider the effect of the
(yn) channel on =~ p scattering at very low energies.

When the (yn) channel is taken into account we have a three channel problem
for the s-wave amplitudes. We shall not be considering partial waves with / > 0 in
this paper; for each such partial wave there are in fact four channels, as discussed in
[3]. In Section 2 we write the symmetric 3 x 3 matrix & of s-wave scattering amplitudes
in terms of the components of a real symmetric 3 x 3 matrix A which generalizes the
2 x 2 matrix A of [2]. The components of A are real for g2 > 0 and there are good
reasons for believing that A(g?) can be continued to a complex neighbourhood of
g®> = 0 to give a function analytic at g2 = 0. Assuming that this is the case, A(g?)

)  We use the notation of references [1-2] and label equations from these references with the
prefixes 1-, 2- respectively.
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has a power series expansion in g2 which is valid in a neighbourhood of g = 0; one
would then expect to be able to analyse data from very low energy =~ p experiments
in terms of s-wave scattering lengths and curvatures. From the expressions for
F,- and & ,_ (where the subscript y labels the (yn) channel) we shall calculate the
cross-sections for the processes =~ p — 71 and =~ p — yn, respectively, and thus
evaluate the Panofsky ratio (the ratio of these cross-sections) in flight at very low
energies.

In Section 3 we shall obtain from the 3 x 3 matrix & of Section 2 the 2 x 2
matrix #@ for the open channels (7°n), (yn) when one goes below the =~ p threshold.
It will be checked explicitly that this matrix derives from a unitary 2 x 2 S-matrix.
The matrix #, considered as a function of total centre-of-momentum frame energy
W, has a simple pole with factorizable residue just below the real axis, very close to
the energy of the 1s state of a #~p atom with only the Coulomb potential acting.
From this fact we obtain the expression for the Panofsky ratio for the decay of the
7w~ p ls state (which is a ‘very nearly bound state’ in the terminology of Taylor [4]).
This is the ratio which has been measured experimentally with considerable accuracy
[5]. Section 4 is devoted to some numerical considerations, including the relationship
between the measured value of the Panofsky ratio and our present knowledge of very
low energy =~ p charge exchange scattering and =~ photoproduction from neutrons.

2. The Three-Channel Scattering Matrix

We recall the result of [2] that, for the two-channel (=~ p), (#°n) case, the matrix
&, of s-wave amplitudes is given by the equation

Fil=C3'A71C3 + H, — iQ,, ¢))
where |
C, O Cy2Bh O
= H =
c, (0 1), . ( ) 0),
2

Qz = (q 0 )a A, = (A__ Ao_)-
0 4o Ao~ Ao

This result comes from (2-65) and (2-72). We have suppressed the energy dependence
of the quantities appearing in (1) and (2) and will continue to do so most of the time
through this paper. It will be convenient to think of all the quantities as functions of
the variable W. In the model developed in [2], the matrix A, is analytic at g2 = 0
provided the inner potential matrix W(q?; r) is such that d(g?) is analytic at g2 = 0.
Since g*(W) is analytic at W = M + pu, we can equally well consider A, to be analytic
at W=M+ p.

When the (yn) channel is taken into account it is natural to assume that there

exists a 3 x 3 matrix A which is connected to the 3 x 3 matrix & of s-wave scattering
amplitudes by an equation exactly like (1), namely

F-1=CAIC! + H - iQ, 3)
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where

Co 00 Co?Bh 0 O

C=|0 1 0), H= 0 0 0},
0 01 0 0 0

4)

q 0 0 A__ Ao._ Ay_

Q = 0 qO 0 ’ A = AO— AOO AYO )
00 k A,_ A, A,

with k£ the magnitude of the momentum of either y or » in the centre-of-momentum
frame. The assumption expressed in (3) and (4) is the natural extension of the result
for the two-channel case and is in accord with intuitive expectations resulting from
Gamow factor arguments. Further, it leads to results in accord with empirical observa-
tion, such as the finiteness of the Panofsky ratio. One would also expect (though a
rigorous proof does not exist) that the matrix A is analytic at g2 = 0, so that its
elements have power series expansions in g? valid in a (complex) neighbourhood of
g®> = 0. As in [2], we shall write

AW)=a+ ag® (W) +---. ()
The next steps are just complicated algebra. From (4) we have

det A(C-'A-C! + H — iQ)

Cf)-z(ADOAvv — A?O) CE I(A:r—AVO CO— 1(A0—A)'0
+ Co2Bhdet A — igdet A — Ay_4A,,) — Agod,-)
_ - (A- -4, —47)  (Ao-4,-

- Co I(Av—Avo - AO—ATY) — _iq:,wdet A — A_ “Ayo) 4

- Ayg_A,_ A__Ago — A%_

Co*(o-oo = Asody) o A-_4,) s, e
(6)

where

detA = A_ _AogAyy + 2A0—A?—A‘YO — A__.A-,z,o —_ AooA?- - A-yyAz_. (7)

From (3) and (6) it follows that
Co?AF __ =A__ —iqo(A_-_Ago — A_) — ik(A__A,, — A2_) — qok det A,

(3)

CilAF o = Ao — ik(do_A,, — A,_A,0), ©)

CilAF,_ = A,_ — igo(AoAd,. — Ag_A,0), (10)
AF oo = Ago — ik(Aoodyy — AZ) + (Bh — igC2)A - _Aoo — A3_ — ik det A),

(11)

AF,o = Ay + (Bh — igCEA_ _Ayo — Ag_A,), (12)

AF,, = A,, — iqgo(Aeed,, — AZ) + (Bh — igC3)(A - _A,, — A2_ — ig, det A),
(13)
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where
A =1 —igodoo — tkd,, — qok(Aood,, — Ao
+ (Bh — igCRA__ — iq(A_ _Aoo — A3_) — ik(A_ _A,, — A2.)
— gok det A] (14)

and det A is given in (7). These results should be compared with those in (2-73)-
(2-76) to see the modifications produced by the inclusion of the (yn) channel. Note
that from (3) it is clear that & satisfies the unitarity relation

F1 - F1 =20Q.

It follows from (1-1), (1-17), (9) and (10) that, taking the contribution of the s-wave
only into account, we have

Og-. = 47Tq0q‘_1C(2)|Al—2[A0_ b ik(Ao_Ay-y - Ay_.A-yo)|2,
oy = dnkq  C3|A| 2|4, _ — igo(AooAy- — Ao-A,0)|> (15)
Thus the Panofsky ratio in flight, o, _/o,_, has a finite limit as W | (M + p), namely

. - - — ik(ay_a,, — a,_a,)|?

Gy o= qo| a0 _l 0-4yy r=dy0)l . 16
wia+w 0y~ Kk|ay_ — iqo(@oe@, - — @o-ay)|? (16)
it is understood in (16) that g,, k are to be evaluated at W = M + pu. It is expected
that measurements of the Panofsky ratio in flight will eventually be made at very low
energies. To analyse the results, it will however be necessary to take account of the

variation of ¢, k and A with energy (using for A the first two terms in the expansion
(3)) and also to include the contribution of the p-waves to o,_, o, _.

3. The (#°n), (yn) Scattering Matrix Below the =~ p Threshold

To make the necessary analytic continuation to obtain the 2 x 2 scattering matrix

y(z) — ('9;00 eg;"J’O)
fﬂ) f’??
for M, + po < W < M + p, we note that, above the =~ p threshold, one may write
Bh(n-) — igC3(n-) = Bg(n- + i.0) + imf cothmy_, 17
where

gln_ +i0) = lilnt} gn- + ie),

#(z) = —2f0 i e ZQ)Zez"‘ —5+ z¢R (18)

The next step is to define new variables «, ¢ for M, + po < W < M + u by
k= @WAHUW?2 — (M — p?l[(M + p)? — W2, x>0,
§ = B/2x, (19)

and to recognize that when W is in this interval the correct forms of & ,, &0, & ,,
are obtained from the expressions in (11)-(14) by replacing (84 — igC%) by the right
side of (17) and then replacing n_ by i£. This gives

Bh(n-) — igC3(n-) — BLf(€) + = cot n¢], (20)
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a real valued function of W, where, from (18),

1O =2 @ 1)

With the replacement (20) we then have for the elements of #® the expressions

AF oo = Ago — th(AgoAy, — AZ) + x(A_ _Ago — A%~ — ik det A), (22)

AF o= Ao+ X(A- Ay — Ag_A,_), (23)

AF,, = A,y — igo(AooAy, — A%) + x(A__A,, — A%_ — ig, det A), (24)
where

A =1 —igydgy — ikA,, — qok(AgoAy, — A%
+ x[A__ — iqo(A_ Aoy — AF-) — ik(A__A,, — A7) — qok det A], (25)
x = B[f(§) + = cot =¢], (26)

and f(£) is given by (21). To check explicitly that #‘® as given by (22)—(25) satisfies
the usual unitarity relation it is simplest to invert it. Some tedious algebra shows that

Adet FO = (dgod,, — A2,) + x det A, @7
so that
(90 O
[5‘"2"1 + 1(0 k)][(AooA,,, — A2p) + x det A]
_ ( Ay + x(A- Ay — A43-) — Ay + x(4o-4,- — A——A?O)).
_Ayo .3 X(AO_AJ,_ =, A__Ayo) Aoo ot x(A__Aog = Ag..)

Thus

=) - - {90 O

F-1 _ Fg@-1 _ ) ,

’(o k)

as required.

This result can also be obtained more transparently as follows. Note that, because
of the Coulomb interaction in the =~ p channel, it is the matrix C~2.% C ~! which is
to be analytically continued below the =~ p threshold (cf. Ref. [6]). Using the replace-
ment (20), we have from (3) that the continuation of C# ~!C for M, + p,
<W<M+pis

0 0 O
B—IO qo 0'
0 0 £

where
x 0 0
B=A"1+|0 0 0]
0 0O
a real matrix. From this it follows that

ga}.—(z)_l o (‘BOO B‘J’O) _ B_1 ( B2— BO—BT—) _ i(qﬂ O)’
Bo B,) "~ \B,_B, B2 0 k
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so that

. g O
Im FO-1 = _ .
" (o k)

We look now for the position of the pole in #F® which lies very close to the
position of the 1s bound state of the =~p atom with only the Coulomb potential
acting between =~ and p. This bound state is at «k = 8/2 or ¢ = 1. Suppose then that
the pole in #® is at the value of W corresponding to

§o =1+ 8, (28)

where &, is complex and |8,| « 1. In fact, using (34)-(36) and numbers given in
Section 4, |8,] ~ 103, Since the pole position is so close to £ = 1 we shall take
go, k and the elements of A to be fixed at their values for ¢ = 1, which are real. The
value of W corresponding to ¢ =1 is given by M + p — W, = B?/8m. We are
obviously justified in using nonrelativistic kinematics and therefore replace the first
equation in (19) by

M+ p— W= «22m. (29)

In finding the pole position we are continuing in ¥ away from the real axis; « becomes
complex and so then do ¢ and x (see (19) and (26)). Since we are working in the
neighbourhood of ¢ = 1, we shall generalize (28) and use the variable & defined by

§=¢— 1. (30)
From (19), (29) and (30)
M+ p— W= (B8m)(1 + 82 (D)

Also, from [7],
S(€) = —In & + 126 + #(9),

so that
S =—y+4=-00772.--.

Since we are considering values of § for which |§| « 1, we also have
mcotwé ~ 1/8.

It is now clear that f(£) may be neglected in (26) and that, to a very accurate approxi-
mation (around 1 part in 10%),

x = Bl8, xo = B[8,. (32)
We now write
AFP = N1 + xNQ,

A = D, + xD,,
where
N1 — (Aoo - ik(Aoko - A%o) ‘ Ayo \ )’ (33)
ATO Aw - lgO(AOOAw - Ayo)
A__Agy — A2 — ik det A A__A,, — Ag_A,_ '
Ng — ( 00 l € 70 ) 0 . 4 ), (34)
A__Ay — Ay_A,._ A__A,, — A2_ — igodet A
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D, =1 — igoAoo — ikA,, — qok(AooAy, — A7), (3%
Dy =A__ —igy(A__Aoo — AE.) — ik(A__A,, — A3_) — qok det A. (36)
Thus the pole in F® is, to an excellent approximation, at the position where
Xo = —Dy/Dy, 8, = —BD,/D,, 37

the values of D,, D, being calculated at W = W,. Using (31), (32) and (37), we may
write for @ the following approximate expression which is valid very close to the
pole:

N; + x,N (D;N; — D;N,) { B® o )
(2) A 1 02 o _ olN1 1Ng s 3 2 _ L

e Dy(x — x0) ~ D2 (4m (1 + 80)°xg 3(W — Wy)~%. (38)

From (33)-(36),
2
D2N1 _ D1N2 — ( L) OCO‘:V)’
ey Oy

where

€y = Ao_ = ik(Ao_A-y-y = Ay—AyO)a
(Z’, = Ay_ — iqo(AooAy— - AO—AYO)'

Thus the residue of @ at the pole factorizes, a result which follows from (27) with-
out direct calculation. The expression (38) for #® then becomes

(39

- 2 =
Fon -] (g° 2) ”Z(CZ‘; "25) (g° 2) P — wo, (40)
where
Co = (290)"(E°/4m)""*DY(D; — BD;)""us,
¢, = (2k)'*(8°/4m)'*Di'*(D; — BD,)~ % a,. (41)

Since D, and (D; — BD,) are close to 1, it is clear which square roots are to be taken
in (41). Since it is an approximation (though a very good one) the expression (40) is
not exactly unitary when W is real and close to Re W,,.
In accordance with the standard theory for narrow multi-channel resonances
(see, for example, Ref. [4]), the total width of the resonance is
I' = |eo|® + || = (B°/2m)| Dy || Dy — BDy| 2
X [qodS- + kA7 + qok*(Ao-A,y — Ay-Ayo)®
+ gdk(AooA,- — Ao-A,0)%], 42)

while the partial widths I'y, T', for decay of the resonance into (#°n), (yn) respectively
are

Lo= |65 L= &P (43)

For this interpretation in terms of the exponential decay of a nearly stable state to
be consistent, it is necessary that

—2Im W, =T. (44)
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Since the expression (40) for #@ is only approximately unitary, (44) is not exactly
true. It is, however, true to a very high level of accuracy. For, from (31) and (37),

—21Im W, = (B%/2m) Im(D, D,)| D, — BD,|~*[| D,|* — B Re(D,Dy)].
Now from (35), (36) and (39),

Im(D; D) = qolao|? + ke |2,
whilst it is also true that

|Di|* — BRe(DD,) X | Dy|| Dy — BD,|;

since B Im(D,D,) ~ 6-10-5, this equality is accurate to 2 parts in 10°. Thus (44)
holds to the same accuracy.

We conclude that the Panofsky ratio as measured experimentally for the decay of
the 1s state of the =~ p atom to (#°n) and (yn) is, from (39), (41) and (43),

To _ Go| %o — GolAo- — ik(Ao-A,y — Ay-A4,0)|*
I‘y kla,,|2 klAy— = qu(AOOA'y- — Ao_Ayo)Iz

The values of g,, k and the elements of A are to be taken at W = W,. These values
hardly differ at all from those at W = M + u, as we shall see in Section 4, so that,
comparing (16) with (45), the Panofsky ratio measured in flight at very low energies
will differ very little from the value measured for the decay of the 1s state of the = p
atom. In the next section we shall assess the present situation concerning the indirect
calculation of the Panofsky ratio from the right side of (45).

Poyp = (45)

4. Numerical Considerations

In [2] we considered Coulomb and mass difference effects which shift a_ _,
do_, doo and «_ _, ag_, g from their strictly nuclear (charge independent) values.
When the (yn) channel is taken into account, as we have done in this paper, there
may be further shifts in these six quantities. The very low energy experimental data
on 7~ p— 7w~ p and =~ p — 7% should be analysed using for the s-wave amplitudes
the equations (8), (9) and (14) of this paper rather than (2-73), (2-74) and (2-76).
But, as we pointed out in [2], the analysis will not be possible unless the six = p
parameters required can be reduced to four charge independent ones, about two of
which (namely aj, «3), there is information available independently by analysis of
w*p experiments. Since we can see no way of estimating the shifts in the six para-
meters which may arise from the presence of the (yn) channel, the only course open
is to assume that these shifts can be neglected and to use only the corrections which
we calculated in [2] neglecting the influence of the (y#) channel. It is worth emphasizing
that there is no point in making more refined theories for the two-channel electro-
magnetic corrections as long as the three-channel problem cannot be treated in a
better way.

For the scattering length parameters we thus take the charge-independent
scattering lengths of (2-88) and modify them by the corrections suggested in Table
3 of [2], giving

a._ = 0.0783 u-t,
Go_ = —0.1192 u~1,
Qoo = —0.0040 [L_l. (46)
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With the scattering lengths of (2-88) the curvatures given in (2-87) will be modified
in order to fit the present (rather poor) very low energy s-wave data. Using the
corrections suggested in Table 3 the curvatures become

o__ = —0.0153 "3,
oo = —0.0412 u-2, |
oo = _0.0139 “—3. (47)

Using (46) and (47) we see that the change in A__, A,_ and Ay, in going from
W =M + uto W = W, is far beyond the last significant figure.
The experimental value of the Panofsky ratio [5] is

Py = 1.533 + 0.021.
This gives, using (45) and the values
go(Wy) = 0.20113, k(W,) = 0.92716,
the result

|4,_(W,)| = (0.0448 + 0.0011) 1,

The error comes from the error on P.,, and an uncertainty of 0.0021 on a,_ obtained
from the third and fifth columns of Table 3 of [2]. This last uncertainty may be a
substantial underestimate. Note that, as we shall see later when rough numbers are
given for a,, and a,,,

I“O(Wl)l = IAO—(Wl)ls |06,,(W1)l = |A,,_(W1)|,

to an extremely high degree of accuracy. To sum up, since W, is so close to (M + p),
we have

la,_| = (0.0448 + 0.0011) "1, (48)

The sign of a,_ cannot be determined; we take it to be positive. Once this is fixed,
the approximate charge independence of the pion-nucleon interaction resolves the
sign ambiguity for ..

We now consider the input leading to (48). Time-reversal invariance has been
assumed and there are no grounds for questioning this assumption. The theory of the
Panofsky ratio has now been formulated in a much more satisfactory way than
previously and the value of the Panofsky ratio is a firm experimental number. The
value of @, and the uncertainty to be attributed to it are much more doubtful pieces
of input. The calculation of (¢, — a3) by Bugg et al. [8] has defects connected with
the unsatisfactory nature of the electromagnetic corrections they apply (see Section
4 of [1]). Moreover, their quoted error does not include systematic uncertainties
which may be substantial. There is uncertainty in our calculation in [2] of the difference
between a,_ and (4/2/3)(a; — a;) and there is a further correction arising from the
presence of the (yn) channel which cannot be estimated. We are therefore somewhat
skeptical about the value of a,_ and its error, which we have used as input to (48).

We now review the evidence on a, _ from results on the photoproduction reaction
yn — =~ p. Such results are obtained from experiments with deuterons which look
at the reaction yd — =~ pp. The analysis of results on such experiments involves
making a ‘spectator approximation’, which takes account of the presence of the
spectator proton in the deuteron. There are also several approximations made in all
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analyses of data on pion photoproduction from free nucleons; the final state theorem
is used, the pion-nucleon interaction is taken to be charge independent and mass
differences are neglected. This last approximation introduces a substantial uncertainty
into the extrapolation to threshold of the multipole amplitude E,. since for each of
the four photoproduction processes this amplitude is rapidly varying near threshold
and the extrapolation has to be made from some 15 MeV (in laboratory energy of
the photon) above threshold. We hope to consider these approximations in the
analysis of pion photoproduction data in a further paper.

For the present, we have attempted to extrapolate to threshold the real part of
E,, for the processes yn — =~ p, yn — #°n and yp — =*n, using values taken from
Figures 1, 5 and 11 in the paper of Berends and Donnachie [9]. From Appendix B
of [3] we have?), for the partial wave withJ = 4, P = —1,

Fy- = —V2ER,
F o = —/2 EFT™.

At the energies from which the extrapolation is made, C, & 1 and so, using (10) and
(12) and noting that the second terms on the right sides can be neglected, we have as
a result of our extrapolation

a,_ ~ —+/2(—0.0318) p~* = 0.0450 ",
a0 ~ —4/2(0.0020) p=! = —0.0028 u~ 1. (49)

Another way to obtain a, _ is to use the threshold value of E33™" *n namely 0.0274 .~ 1,
and the threshold value of the ratio (do/dQ)(yn — 7~ p)/(do/d Q)(yp — = *n) given by
Adamovich et al. [10], namely (1.336 + 0.017), to obtain

a,_ ~ 4/2(0.0274)(1.336)"2 =1 = 0.0448 1. (50)

We have not quoted errors on these determinations of a,_ since the values of Re E,,
which we used have no errors assigned to them. There is no doubt, however, that
the error on either of the above determinations of a, _ is at least 0.0015. On comparing
(49) and (50) with (48) and noting that the error in (48) is also an underestimate, it
is clear that there is satisfactory agreement between the experimental value of the
Panofsky ratio and the value deduced indirectly from data on very low energy pion—
nucleon scattering and pion photoproduction from nucleons near threshold. The
agreement is obviously much better than we have any right to expect, and it looks as
though there will have to be substantial improvements in our knowledge of low
energy pion phenomena before there is any danger of this agreement being upset.
Note that the almost perfect agreement between (48) and (49) or (50) depends very
much on using a,_ and not 4/2/3(as — a,) in calculating |a, _| in (48). The importance
of this was pointed out in [2], in the remarks around (2-89). The use of 1/2/3(a; — a,)
would give |a,_| = 0.0459 in (48). The agreement with (49) or (50) is still satisfactory,
but the effect of the difference between a,_ and 4/2/3(a; — a,) on the calculation of
|a,_| from the Panofsky ratio will become more important as data from experiments
involving very low energy pions improves.
We mentioned at the beginning of this section that to analyse data on the s-wave

2)  This result differs from that given in Appendix B of [3] by a factor i. This change is necessary
if we use the pion photoproduction amplitudes given in the literature and keep to the con-
vention for time-reversal invariance used in the helicity formalism.
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amplitudes for #~p—=~p and =~ p—=°n at low energies, one should use equations
(8), (9) and (14). To do this one seems to require values of a,_, a,, and a,, and also

of &, _, «, and «,,. From data on Re E,, for pion photoproduction already discussed,
we have

a,_ ~ 00448 u=1, o,_ x~ —0.0192 "3,

51
ay, ~ —0.0028 =1, «,0 =~ +0.0024 3. Gh

For a,,, ., we rely on the result of Pfeil et al. [11] for Compton scattering off protons
that, at energies near the pion photoproduction threshold, f; is almost exactly equal
to the sum of the Born term and the integral over the physical region; other terms in
the dispersion relation are negligible. If the same is true for Compton scattering off
neutrons, we deduce that

a,, ~ +0.0035 7%, a,, ~ —0.0009 p~2. (52)

Even if the values in (52) and (53) are only very rough estimates, it is true that at
very low energies, to an extremely good approximation,

CiF__ A .., CFp.2 Ay_. (53)
For example, at W = M + u, using (46), (51) and (52),
Ci# __= (0.0783 + i0.0050) u~t, CoF - =(—0.1192 + i0.0004) p.~1.

Since the experiments at very low energies will give only |# _ _|% and |#,_|? it is
clear that the approximations (53) are extremely good and that the numbers given in
(51) and (52) are not needed for the analysis of =~ p elastic and charge exchange
scattering experiments at very low energies.

One of us (G. R.) wishes to thank Prof. K. J. Le Couteur and the Research
School of Physical Sciences, Australian National University, for their kind hospitality
during an 8 months stay as Visiting Fellow.
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