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Energy Loss of Charged Particles in a Medium of Resonant
Atoms in the Presence of an Electromagnetic Field

by S. P. Andreiev?)

Départment de Physique Théorique, Université de Geneve,
CH-1211 Genéve 4, Switzerland

(3. 1I. 1976)

Abstract. The process of the energy loss of a massive charged particle in a medium of inde-
pendent atoms in the presence of a resonant electromagnetic field is investigated. It is shown that
the field changes radically the character of the movement of the particle, from elastic to inelastic.
The sign of the energetic losses depends on the sign of the difference between the frequency of
the field and transition frequency of atoms.

1. The Description of an Atom Interacting with a Resonant Electromagnetic
Field in the Language of Compound Systems. The System of Equations

A number of workers have recently considered photon absorption by atoms
colliding in a strong electromagnetic field [1-4]. We shall say that an electromagnetic
field ¢, cos wt is strong if it effectively changes the densities of the atomic levels during
the time of an atomic collision.

For such a field V. S. Lisitsa and S. I. Yakovlenko have solved the problem of
absorption of light due to collisions between resonant atoms and charged par-
ticles [1, 2].

S. P. Andreiev and V. S. Lisitsa have solved the same problem for a system of
identical resonant atoms [4]. But the question of the energy loss of charged particles
(or atoms) in such collisions is still open. This question is especially interesting be-
cause:

1. For slow particles the energy loss is zero when the electromagnetic field is
absent.

2. It is not evident what the sign of the energy loss will be in the presence of the
field. :

3. A more complete experimental investigation of the interatomic interaction
is possible by measuring the energy loss of massive particles in gases [2].

We shall investigate the energy loss of a massive charged particle moving in a
medium of independent identical atoms, excited by an electromagnetic field ¢, cos wt.
The hamiltonian describing the interaction between an atom of the medium and a
charged particle in the presence of the electromagnetic field is

A=V.+V (1.1)

1)  Permanent address: Department of theoretical physics, Moscow Engineering Physics Institute.
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where
Vee = —d, 2, cos wt

interaction hamiltonian between the electromagnetic field and the atom (x).

d, = dipole moment operator of the atomic electron.
V = interaction hamiltonian between the atom and the charged particle.

We shall assume that the distance between the atomic energy levels (E; — E;)
is close to the energy of the quanta of the field, i.e.

w — (E, — E)/h = Ao < . (1.2)

If the effective impact parameter between the particle and the atom p; is larger
than the atomic size dy(pes; > dp) and the velocity of the particle v, is small enough

Vo/Pets < (Ez — Ey)[h (1.3)
then the hamiltonian ¥ can be written in the form:

eqr?

V= 0 (1.4

Here e is the charge of the electron of the atom; 7 its radius-vector; g is the charge
of the massive particle; 7(?) is the trajectory of the particle, which for a massive par-
ticle can be assumed to be of the form

Fo(t) = P + Tot, *p-3,=0 (1.5)

and p is the impact parameter.

In the resonant situation the wave-function of the atomic electron can be written
as a combination [5]:

¢, = Clei(ACDtm)‘[,l + Cze—i(AmtIZ),’bz (1.6)

in which ¢; is a wave-function with energy level E; (i = 1, 2). It is very simple to
obtain a system of equations for the coefficients C; from the Schrodinger equation.
The result is:

i(Cl + i% C1) = —V.C; + ViiCy, (1.7a)

. . Aw

l(C2 - 1‘2_ Cg) = —Ve*Cl + V22C2 (1.7b)
where

d)oE 12

Ve — ( %’Ihz 09 ka = <¢k|hl¢‘k>s k = la 2

now we shall make a change of variables:
VE . Qo . ¢ ’ ’
b =|b_C; + l—V—lb+C2 exp —1—2——t + zf Ui(t') dt (1.8a)

144 Qit L[ N
b = | ~b.Cy + 35 b_Co expz-2—+zf Un(t) dt’|. (1.8b)
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Here:

1 A/ Aw _ > 3
bi'"‘-;-/—z- li‘gl_o', Qo—\/Aw +4|V€i,

UI = b2_ V11 + b%. sz, UII = b?{- V]_l e b2_ V22.
The system of equations for the coefficients b; and b;; becomes [2]:

iy — bty 74 Iexp{_,[goz_%?f x(r')dr’]},

t
iby = by (1) Ig—‘l-exp{i[ﬂot — -/'\fij %(t") dt’]},
0 QO -

x(e) = Clo* + o372, € = ~F (=D, r? = Wlrlho>. (1.10)

(1.9)

For further calculations it is necessary to know the wave function of the atom in
the resonant electromagnetic field. We can use directly the expression for the wave
function of the atomic electron from Ref. [5] and supposing that at time 7, the elec-
tron occupies the lowest energy level, we can write:

f = [cos % (t—t,) — ?2 Sln — (t s )] eHARIDt),
0

ge 2 sin 9_ (t = 3 )e-—i(Am!Z)t"[J (111)
0

Using b; y-coefficients it is not difficult to rewrite the last formula as:

b = BOeMQDhY 4 Yo=Kl

BY = b_e @Dt Y = —p, @0/Diy, (1.12)

The functions ¢ 1; are normalized, orthogonal and they describe the two-level
compound system, with average quantum-mechanical energies E; = b2 X E; +
b% x E,and E; = b2 x E; + b%2 x E,, as it is shown below:
Fs
[Vel
V*
%]
The distance of the energies E; — Ey; is

+ i

o = by = Db pe o, B = BAE, + BYE;;

iy = by iy i B0IDE b _ifge i B0IDE E; = b2E, + b2 E,

A
E; — Ey = -Q%’(Ez — E) (1.13)

so we can tell from (1.9), (1.12), (1.13) that in the presence of a resonant field we have
interaction not between the particle and an atom, but between the compound system
(the atom + the field) and the particle. Every collision between the compound sys-
tem and the charged particle is described by the system of equations (1.9) and leads
to an absorption of light proportional to [4]:

AEabs ™~ m (E2 - El) (114)
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but the energy necessary for such a transition is proportional to #Q, < (E; — E,)
as can be seen from equations (1.9). From this it is possible to conclude that, in a
resonant field, the energy loss of charged particles will take place, though it will not
in a non-excited medium. The energy necessary for a transition of the atomic electron
in the absence of the field is proportional to (E; — E;) > Qoh.

2. Energy Loss of the Charged Particle Interacting with the Compound System

For further calculations it is necessary to obtain a general expression for the
energy loss of the particle in terms of the density amplitudes of the compound system
states by, by

The atomic potential of every point of space can be written as:

2
o) = ' “ff 1; )Il oy, | @.1)
Making the same assumption which has been used to obtain (1.4), and using the
expression for the wave-function (1.6) we can rewrite the last formula in the form:

#F) = —S (O[T + |Ca0)[r. @

Hence for the intensity of the electric field at the point where the charged par-
ticle is, we shall have:
39?0([)

ra(?)

The work done by the field in unit time, i.e. the rate of change of energy of the
particle is:

dA dE
ar = ar qu(t o

Eyt) = — {{G@)[ri & |Co(0)[?r3}. (2.3)

and by integrating this expression in time, we obtain the change of energy of the
charged particle:

tjétz]sm [[C:(®)|2r? + |Ca(2)]?r8). (2.4)

sy guzs 2
AE = —3equvj J: T

With the help of expression (1.8), it is not difficult to write the formula for energy
loss of the particle in terms of the coefficients by, by;, which characterize the compound
system. But we shall not consider the energy loss of the particle due to the individual
act of collision, but the energy loss of the particle in the medium of the resonant atoms.
So, multiplying (2.4) by 2mnyp dpv, and integrating over the impact parameter p,
we have

dE tdt 1A
dt Gﬂnohcvoj‘ p dpf [p + 02t2]5/2 { Qw [lbl(t)lz ]bII(t)lz:l

I Vel Re[bl(t)bn(t)exp( 2:9—A(t)+zﬂot)]} (2.5)
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Here:

I ~ 1, C vol
AG) = 5 f_w M)t = s [1 + v&m] (2.6)
and n, = density of the resonant atoms.

The system of equations (1.9) and the last formula (2.5) describe completely the
process of energy loss of massive charged particles in a medium of resonant atoms
in the presence of an electromagnetic field. But in general it is impossible to solve the
system of equations (1.9) for the compound system coefficients. However, we can
investigate some special cases and in this way obtain a rather full picture of the pro-
cess. It is evident from (1.9) and (2.5) that in the absence of the electromagnetic field
the energy loss of the particle is zero, i.e. the movement has an elastic character.

3. Perturbation Theory

In the second approximation of perturbation theory the coefficients of the com-
pound system have the form:

bi(t) = bY — ib%; |gzl ft x(t )exp{mz[ﬂot - %-w—- 2A(t' )]}

e |V|2f dt %(,)exp{_,[goz — %ﬁzA(t )]}

x f ) exp{i[Qot” - -?2—‘” 2A(t”)]} dt"; 3.1)

Qol f (1 )exp{ [Qot - -£—2—2A(t )]}

iy Ve ]zf dt 't )eXp{ [Qot B %ZA(I )]}

" f fm x(t") exp{—i[Qot” By 2A(t”)]} dt". (.2)

The conditions for the validity of the perturbation theory are different for the cases
of high and low frequencies Aw. They can be written in the form [2]:

V| « |Aw| if |Aw| « Qy 3.3)
and

|V « (QupAn?)® « |Aw| if |[Aw| > Qy (3.4)

bn(t) = b?l - 1

Qw = v3?/|C|Y2 = vo/pw is the characteristic frequency scale.

It is necessary to mention here that although we have developed the perturbation
theory for the compound system the inequalities (3.3-3.4) automatically lead us to
the perturbation theory for the atom when |V,| « |Aw|, i.e. the resonant electromag-
netic field must be small enough so that the probability of finding the atomic electron
on the high energy level will be small compared with one. But the inequality (3.1)
is absent in the usual atomic perturbation theory. By substituting (3.1-3.2) in the
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expression (2.5) for the energy loss of the particle, and by extending this expression
to all possible times #,, and by introducing new integration variables vyt = px;
vot’ = px’, p/pw = y: we readily obtain:

dE Vel (®d
= = 6m othol | ay

Aw? py 0 »t

SR S P W S

y3o(x+1) Y /x4 1
X

5 x dx 1
+ Mesn (xg_|_—1)5,2 sinf Byx — Teaw 33 7=

i)

e dx’ 1 x'
<[ el - e ] )
Here

1/2

G

Vo

= |Aw|Pw/vo; Neaw = SEN(CAw); py = (3.6)

From the expression (3.5) it follows that if conditions (3.3) and (3.4) are satis-
fied, then the energy loss of the particles is proportional to the square of the resonant
field.

Let us investigate the expression (3.5) for high and low values of the parameter 8.
If the inequality

|Aw| < vo/py, ie B« 1 (3.7

1s satisfied, the first terms in the arguments of the sine and cosine in (3.5) are small
and we immediately obtain:

Vel

sgn(Aw)SBwnohIC[vol ~ Aw |C'|l | (3.8)

dE
dr
Now we shall study the =xpression (3.5) for large values of S:

|[Aw| > vy/pw, ire. B> 1. (3.9)

This limit is determined by the relative <igns of Aw and C, which determine the
presence or absence of a stationary phase poist x = Aw in the arguments of sine
and cosine in (3.5). In the first case, if we evaluate the integrals in (3.5) by the method
of steepest descent on the real axis [3] we have:

dE 877 V.2

Ve
' noft| C |ve e p—sgn(Aw) Aw[C|| I .

(CAw) > 0;  (3.10)

and in the second case (no stationary phase point) the integrals in (3.5) are deter-
mined by the pole of the function (X2 + 1)~%72, in the upper half plane. The result
of integration is

2 Q5/3
o = —3mno|Cloo LT B e-ormo sgn(aa) ~ exp(— Awtpiofed®). @11
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4. Resonant Situation (Aw = 0)

In the case of exact resonance Aw = 0, the formula (2.5) for the energy loss of
the particle can be rewritten in the form:

dE ® e tdt
B L2mnhCof fo a.dp j_ o Relbhe™] (4.1)

and from the system of equations (1.9) in the case of exact resonance we can obtain
very easily that the average value of the integrated function (4.1) is equal to zero
(we have in mind averaging over all the possible times #,). So in the exact resonant
situation we have:

dE

= =0. (4.2)

5. Impact Approximation

If the velocity of the particle is sufficiently high
Do > (QoAwC)? (5.1)

the resonant electromagnetic field changes the b-coefficients of the compound system
very little during a collision between the particle and the compound system. In such
a situation we can obtain the solution of the system of equations (1.9) in the form of
a perturbation series with a small parameter

Qo : ﬁw/l)o X ].. (5‘2)

Here py is a modified Weiskopff radius [2] gy = pw(Aw/Qy)Y2 characterizing the
collisions in a strong electromagnetic field.

The conditions (5.1) or (5.2) do not mean that the electromagnetic field is small
in the sense of the inequalities (3.3-3.4), i.e. the coefficients of the compound system
levels can have the same order of magnitude b; ~ by.

The first two terms of the perturbation series for the solution of (1.9) in powers
of Qpw/v, is:

t
bi(t) = b(t) + |V€|e‘(A°’fﬁo’Af dt't'x(t")

® [—l)i’I(z,")e“““"‘o’A cos(A — A") — isin (A — A)

% (2|QV5| BO(t")eiBwifpa" _ %" b%(t').ei(nm/nom')]; (5.3)
0 V]

t
bu(t) = b1 + |Ve|-e~@aingn f dat’-t'u(t')

o [b?(t’)-e“‘““”“om'-cos(A-— A") + isin(A — A")

o %‘g’_ b:([)(t ’) . e—i(AmIQO)A')] (5'4)

% (2|£2Ve| b%(tf).ei(Amlﬂo)A'
0
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b(t) = e“A‘*’"‘o)A{b° cos A — z[b e + 2b% | ‘]] sin A} (5.5)
[N Q,
by(t) = e“m"”"om{b cos A + [bn — 2b? | gfl] sin A}. (5.6)
0 0

A= A@l), A@)= A

By substituting these expressions in the general formula (2.5) we get after some
calculations the following formula for the energy loss of the fast (5.1) particles:

| V

Sgn(A(ﬂ) Sﬂnohl CI Qo. (5.7)

@ Qo

In the limiting case |Aw| > 2| V| this expression becomes (3.8). The right-hand
side of (5.7) has a maximum when |Aw| = 2|V,|. For this point we shall have:

%l; = sgn(Aw)2mnfi|C|- | V|. (5.8)

6. Static Approximation

We can solve the system of equations (1.9) in the other case when the velocity
of the particle is rather small (i.e. when the electromagnetic field influences very
strongly the individual collisions between the particle and the compound system):

2o < (QoAwC)S, (6.1)

This is the so-called static region [1-4].

We have used in this case the method of an approximate solution proposed by
L. Vainshtein, L. Presnyakov and I. Sobel’'man [6].

Let us introduce the new variables 8; and B;; as:

Bi(t) = by-e=W80I008; B (1) = b - HA0IAPA, (6.2)
The system of equations for these coefficients is:

—iﬂt

e = S #(0B + 14 '

X , (6.3)
B = — 50 #(0)Br + 'Q—' (1B €%

This system of equations was solved in [6] for the special case of initial condi-
tions By(—o0) = 1; Bu(—o0) = 0. We have other initial conditions

Bu—0) = b_-e™i3; —fr(—c0) = b, - (6.4)
In this case the solution of (6.3) for slow particles has the form:
Bi(t) = {b--e7"%'+P.cos y(t) — b, -t/ sin y(1)},

6.5
Bu(t) = ie' It amar, {—b, -Dt=/D.cos p(t) — b_ e~ "Qt=/D . gin (7)) (6.5)



Vol. 49, 1976 Charged Particles in a Medium of Resonant Atoms 545
Here

¢ & 2 2
0 =2 [ weyarcos [ f(0-g2un) + Tl wars 69
QO . 0 Qo 4

40 = 0 - f (2 - gex) + AL ©.7)

As has been shown in Ref. [6], the expressions (6.5) should be accurately expanc}ed
to second order in |V|. It is more convenient, however, to carry out the expansion
at a later stage. By substituting (6.5) into (2.5) we shall have after some transforma-
tions:

9 po +
%:24”0}1003'?;! j pdpf dt

* {3?’3 ?;: (p? f (ltz)zt?)af2 °°Sf (Qo — d(7)) dr

t t
. Sinfo (Qy — d(7)) dr T i§t2)512}f0 %(t") dt'-cos J; (Qo — d(7)) dr.
(6.8)

The second term in the brackets in (6.8), divided by the first, is of the or('ier of
(v6/(Q2,AwC)¥?)? « 1, and can be neglected. After that, by introducing the variables
vot = px; vot’ = px'; vot" = px"; p = Pw-y, we can rewrite (6.8) in the form:

dE 5 _1|V]2 1 dyJ‘*“’
@ = SmohCoo g - pWJ Y

X cos a(x; y; f) j T)—g,acos o5 y; B) (69

P i i 1 4|V|? l 1
a(x; y; B) = J; ,/(B — Ncaw'y (xz-i-__l)T"z) + (9] y (x ¥ 1)3 y dx;
None = SEN(CAw). (6.10)

In (6.10) when 7,,c > 0, the main contribution to the integrals (6.9) occurs in
the region where 8 — [y~2/(x% + 1)®2]is small. (This is the so-called case of Landau
and Zener [7].) For this case, we have:

dE _ 7 noi[CL* |Vil? [Bwpw [ 0o 2 4]V

a4 v, Aw? 05, 3—[}?- |Awpy | vo| -sgn(Aw).
(6.11)

Here
B = |Awpy | vo| » 1; |Aw| > |V].

In the second case, when 7¢,, < O (this case was considered by Stueckelberg [7])
the estimate of the integrals in (6.10) gives us:

dE 1V]-|C|-Aw

2 1/3
T = 3 nofivdpw-exp —( 5 ) -sgn(Aw). (6.12)
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Here
|[Ve| » |Aw|. B = ‘%Vl’(|V€|Aw)1f2 >» 1.
0

So we can conclude that in the case (Aw-C) > 0 the sign of the energy loss of a
charged particle in the medium of resonant atoms depends only on the sign of Aw.
If Aw > 0, the particle moving in the medium gains the energy of the field through
interaction with the compound system. If Aw < 0, the particle loses its energy. For
the fast particles the same conclusions can be drawn if (CAw) is negative.

In both cases (CAw 5 0) the change of energy is exponentially small for slow
particles. In the exact resonant situation (Aw = 0) the movement of the particle has
an elastic character.

The above effects are of direct interest because they can be seen even in fields
€, much lower than the characteristic atomic field e,, = 0.5-10'° v/cm. We estimate
the order of magnitude for the characteristic parameters used above for the point
of maximum energy loss | V|pw/vo ~ 1. For vy, & 10° cm/sec, C ~ 10 at. units (1.16)
d./h ~ 2 at. units, we obtain py ~ 1077 cm, ¢, & 10* V/cm < €, [1].

Variable-frequency laser beams with a power per pulse of ~1 MW are now
available. By focusing this beam into a spot of radius 10~2 cm it is possible to achieve
€ = 10* V/cm [8]. Such an experiment would provide a test for the theory presented
in this paper.

We have not investigated in this paper the dependence of the excited atomic
level on the different projections of the angular momentum. In the case of fast par-
ticles, it leads to a negligible change of the results, but for slow particles such depen-
dence can be more important.

The author is grateful to V. S. Lisitsa and C. P. Enz for useful discussions, and
to V. Jones and E. Gerelle for the attention to style in their careful reading of the
manuscript,

REFERENCES

[1] V. S. LisitsA and S. I. YAKOVLENKO, Zh. Eksp. Teor. Fiz. 66, 1550 (May 1974).

[2] V. S. LisitsA and S. I. YAKOVLENKO, 1.A.E. Preprint 2392 (1974).

[3] L. I. Gupzenko and S. I. YARKoVLENKO, Zh. Eksp. Teor. Fiz. 62, 1686 (May 1972).

[4] S. P. ANDREIEV and V. S. LisiTsa, I.A.E. Preprint (to be published).

[5] L. D. LanNDAU and E. M. LircHITZ, Mécanique quantique, Moskow 1960.

[6] L. VAINSHTEIN, L. PresNYAkov and I. SoBEL'MAN, Zh. Eksp. Teor. Fiz. 43, 518 (August
1962).

[71 N. F. Mott and H. S. Massey, The Theory of Atomic Collisions (Oxford 1965), Ch. XXI,
§s.

[8] A.I. KovriGiN and P. V. Nikies, JETP Lett. 13, 313 (1971).



	Energy loss of charged particles in a medium of resonant atoms in the presence of an electromagnetic field

