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The Scattering Matrix is Non-Trivial for Weakly
Coupled P(g), Models

by Konrad Osterwalder *-2)
Jefferson Laboratory of Physics, Harvard University, Cambridge, Mass. 02138 U.S.A.

and Roland Sénéor

Centre de Physique Théorique, Ecole Polytechnique, Palaiseau, France

(21. 1. 1976)

Abstract. We show that for sufficiently small coupling constant A, the AP(¢): quantum field
theory models have a scattering matrix which is different from 1. Our method is to write the
scattering matrix elements as polynomials in A, whose coefficients, though themselves functions
of A, are uniformly bounded for A sufficiently small. The first order term in that expansion is the
one given by perturbation theory.

I. Introduction

Weakly coupled P(¢), quantum field theory models have an isolated one-particle
hyperboloid [8, 9]. Hence by the Haag-Ruelle theory [10, 16, 12] they also possess
a well defined scattering matrix, at least for non-overlapping in-going and out-going
velocities, see Ref. [11]. In this paper we show that this scattering matrix describes
a non-trivial collision process. This result is of course strongly suggested by pertur-
bation theory and also by the results of Dimock [1] and Eckmann, Magnen, and
Sénéor [2] who showed that the Schwinger functions have a perturbation expansion
which is asymptotic and even Borel summable. A further indication that these models
are not trivial is Frohlich’s proof [3] that their algebras of local observables are not
in the same Borchers class as the free field algebras.

For a AP(¢); model, P(£) = £€2" + lower order terms, we consider the S-matrix
elements between k in-going and / out-going particles, and show that they can be
written as polynomials in A (of order k& + /) whose coefficients are themselves func-
tions of A, bounded uniformly in A for A sufficiently small. If we choose k + / = 2n,
then the first order term in that expansion is the one given by perturbation theory.
This shows that for A sufficiently small, the scattering matrix is different from 1.

To obtain this expansion for the S-matrix we start from a similar expansion for
the Euclidean Green’s functions and obtain the expansion for the time ordered
Green’s functions through analytic continuation. From there we use the LSZ
reduction formulas [13] in the version of Hepp [11] to get the S-matrix elements by
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amputating the time ordered Green’s functions and then restricting them to the
mass shell.

In Section I1 we derive the expansion for the Euclidean Green’s functions. In
Section III we discuss the analytic continuation of this expansion to real times and
the expansion for time ordered Green’s functions. Finally in Section IV we prove
that amputation and restriction to the mass shell can be carried through term by
term in the expansion of the time ordered Green’s functions. This leads to the expan-
sion for the S-matrix elements.

II. Expanding the Euclidean Green’s Functions

Euclidean Green’s functions for a AP(¢), model are defined by

Sp(xy- - -xy) = <1j (I)i>

j iq @, exp(—A [, :P(®): (x) d2x) diup,
" A-R? [exp(—A [, :P(®): (x) d*x) dpt,

see €.g. Ref. [8]. Here ®; = ®(x;) and du,,, is the free Gaussian measure on &'(R?)
with mean 0 and covariance C = Cy,, = (—A + m3)~!. Glimm, Jaffe and Spencer
have shown [8, 9] that for m, > 0 fixed, there exists a A, > 0 such that for all A € [0, A,]
the mass operator M = (H? — P?)V/? has eigenvalues 0, m and no other spectrum
in [0, m']. Here m' = 2m, — € and me (my, — €, my, + €) for some € = ¢(},) which
tends to 0 as A, gets small. Once we have determined the physical mass m we may
perform a ‘mass shift’ (in the finite volume theory, preferably with periodic boundary
conditions) [5], such that without changing the Euclidean Green’s functions we re-
place in (1) m, by m and simultaneously replace : P(®): by a new polynomial : P(®):,,
where : :, means Wick ordering with respect to C,. The coefficients of P will in
general depend on m and thus on A (the coefficient of the highest order term is of
course always equal to 1), but they are uniformly bounded as A varies in the interval
[0, A;]. From now on we will always assume that m, has been replaced by m and we
write again P instead of P.

We get an expansion for the Euclidean Green’s functions by repeated applica-
tion of the standard integration by parts formula (see Ref. [7])

<(D1A> = C1<81A> - ’\C1<V1A>- (2)

(D

Here A is some product of Wick monomials, C; = f dy,C(x; — 1), ..., 8; = 8/8D(y)),
and with P®(¢€) = (d/dEYP(€),V(y) = :PO(D(y)):.

Lemma I. For k > 2,
(110 =S [TT (@] cw-2a) TTP00 Y- @

Here the sum runs over all partitions = of {1, 2, .. ., k} into |=| nonempty mutually
disjoint sets o, with || taking all values 1,..., k. { »>T means the truncated vacuum
expectation value. |o| = the number of elements in o.
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We prove this lemma in Appendix I.
Glimm and Jaffe [6] have shown that the generalized Euclidean Green’s func-
tions

T
e = (TT V76 ) @
gEN

which are real analytic at points of noncoinciding arguments (y; # y; for all i # j)
have the same local singularities as the corresponding expressions in a free theory.
(This actually holds not only for P(p), but also for (¢*); and probably for all super-
renormalizable models.) This shows that the y,-integrations in (3) are well defined
(as principal values) and that ([ [¥_; @,>7 is regular for all values of the variables x;.
Notice also that due to the truncation, (4) decreases exponentially at large separa-
tion of the arguments [2].

III. Time Ordered Green’s Functions

The Euclidean Green’s functions <{J[f.; ®,> = &,(x) and the generalized
Euclidean Green’s functions &€,(y) = Tlsex V'), X = (X1,..., X)), ¥ =
(¥15 - - -» Vin1), satisfy all the axioms of Ref. [15] and can therefore be analytically
continued in their time variables x? and y? respectively to all of C* or C'*' minus
points where Re x = Re x? or Re y? = Re )? for some i # j. We can therefore
define time ordered (generalized) Green’s functions by

(1] ] my = lim o0 s
i=1 u—1
and

{TT] 00 ) = lim ey, ©

where px = (puxi, X1, ..., px2, %), (x° X)eR?; ¢, = ¢(x;) is the relativistic field
corresponding to the Euclidean field @(x;) and v'(y) = :P®(p(»)):. T means time
ordering and p — i means 0 = { — 8 and & | 0. More precisely we have

Lemma 2. For fe #(R?), G. = {xeR%* | [x) — xJ| > eforall i # j}

(/) = limlim |~ @,(ux)f(x) d%*x )
) = limlim | &,(u)1(w) d*y ®

define tempered distributions which are Lorentz invariant and which coincide with
the (generalized) Wightman distributions <] ¢(x;,)> and <{[[; v(y;,)> in each sec-
tor where x?, > xP,---x) and y? > y) >--+, (iy, ..., ix) a permutation of (1, .. ., k).
They are bounded uniformly in A for A € [0, Ao], in the sense of distributions.

A proof of this lemma is given in Appendix II. Truncated time ordered Green’s
functions are defined in the same way from truncated Euclidean Green’s functions.

Notice that the existence of time ordered Green’s functions has been first proven
by Nelson [14], see also Ref. [4].
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Next we want to ‘analytically continue’ the expansion (3). The analytic con-
tinuation of the free propagators C is given (for x # 0) by

elpx

C¥) = Cu®, %) = s | ; %, ©)

P+ pPo
where px = p°x° — pX¥ and o = w(p) = (P2 + m?)Y2. For later purposes we also
define C (x) by

(Cy* C7)(x) = 8%(x). (10)

Because the singularities at points of equal times are weak (namely logarithmic),
the function

3 (=3 [T (e TT Cutrs = 3 @ty 1)
n e OERN =]

is analyticin pe M = {u | |larg u| < 7/2,% < |u| < £} and bounded uniformly in €
for u in any compact subset of M, x fixed and G. = {y | [} — }3| > & [} — x?| > €
for all ¢ # ¢, i € o}. By Vitali’s theorem we may therefore take the limit € | 0 in
(11) and obtain an analytic function which at Im u = 0 equals (3) (with all the
variables scaled by u). By the uniqueness of analytic continuations we thus find that
forpe M,

@ = 3 (—w [T] (dya [T Cutx: ya)) &, ()" (12)

OEN ieo

(with [ = lim,, | ¢’ *)- By (5) the limit p— i of (12) yields the time ordered
Green’s functions. It remains to be seen that this limit exists for every term in the
sum on the r.h.s. of (12) separately, at least when tested with appropriate test func-
tions. Fortunately we will only be interested in amputated Green’s functions. Amputa-
tion will eliminate the factors C, from (12) and hence the discussion of the product
of distributions in (12) (as x — i) can be avoided.

IV. S-Matrix Elements

By the LSZ reduction formulas [13, 11] we obtain the scattering matrix elements
by amputating the time ordered Green’s functions and restricting them to the mass
shell. In [11] Hepp has shown how this can be done rigorously in the framework of
Wightman’s axioms, if the in-going and out-going particles have all different velocities.
Following Hepp we let #(G) be the space of test functions fe & (R2) with
suppfe{p® > 0|0 < p? < m'?}. For fe #(G), and w = w(P) = (F% + m?)? we
define

f(x, t) — (2#)‘1fe’””f(p)e“”°‘“’" dzp

(13
f@) = @b fee 1) =L 0.

We call {f} € #(G) non-overlapping if for all p; € supp f;, ; = w(p)),
wi P # wip; for all i # j.
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Then by Hepp’s beautiful analysis [11], for non-overlapping {f;} the connected part
of the S-matrix element

{font. o four | fud .. fm

is given (up to constant factors) by

Jﬁ dt, f:[_.[ dxiﬁ(xb 1) H dx, f(%;, ti)<T ﬁ P ) - (14)

i=n+1

Writing f(x, ¢) as
f(x’ t) - _Zé;fdzpeipx(l){_(?;)ei(po_m)t[pz _ m2] (15)

one sees that the factor [p? — m?] provides for the amputation while the #-integration
restricts the momenta to the mass shell. We set

s _ KD
&(p) = P tw € (@),
and
s, 1) = e g(pets-» 2. (16)

Notice that the {g;} are non-overlapping if the { £} are.
From (9), (10) and (15)

fi=limgx C;*

in the topology of . Here (g, * C, *)(x, t) = f g(y, )C; Y(y — x) dy. Now we substi-
tute (5) and (12) in (14), to find that (14) is equal to

lim fﬁ dxi(— g * C; 1 )(x;, 1) ﬁ dxi(g * C; )X, 1)Gp 4 m(pX)”
n— = i=n+1
= lim 3 (=3 [T dy,rl (—2)0u 1) ] H 20 DY)
= > [T dy,r[ (=8 1) H el n)<T1‘[ 07(3,)

(17)

when integrated over all the #-variables. We have used the convention that y; = y,
for i € o. The following lemma shows that the #-integrations can be done separately
on every term in the sum >, in (17).

Lemma 3. For {g;} € #(G) non-overlapping, and any partition = of {1, ..., m},
the functions

fI—[ {dya [ ] & ff)}<T [ T2 (18)

OER ieo JER

are in &(R™) in the variables #,,.. ., ¢, with bounds uniform in A for A€ [0, A,].
Here g* means g (complex conjugate) or g; y; = ¥, With o(i) determined by i € o.
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Postponing the proof of this lemma we now state the main result of this paper.
Theorem. For non—overlapping {f} € #(G), the connected part of the S-matrix

element {fu. . .fout | fin ... fin N s given by

3 (=i f "ﬁ[ a [T1 dycﬂ( D0at) L] &0t Tﬂv'ﬂ(ya)>

gEN f=n+1 gER
(19)

where f; and g; are given by (13) and (16) respectively. The coefficients of (—i))'®
in (19) are bounded uniformly in A for A € [0, A,].

The proof of this theorem follows immediately from equation (17) and from Lemma 3.

Corollary. Suppose the interaction polynomial P(¢) is of the form £2" + lower
order terms. Then for non-overlapping {f;} € #(G)

<fIQUt' ' 'fn?ut 1fn11r-ll-1 o 'fzir?>connected
= _i)‘(zn)!fﬁﬁz%) a5, n JA0D) s,

i=m+1 2(0
m 2n 2n

X 3(2 w; — zl wi)S(z B — Zl B) + 0(X2).
m+ 1 m+

Hence for A sufficiently small, the S-matrix is non-trivial.

We now prove Lemma 3, following closely Hepp’s arguments in the proof of
Theorem 3.1 in [11]. In a crucial way we will use the support and decay properties
of the test functions g; and the fact that the finite mass renormalization has been done
correctly (see Lemma 4). Our first goal is to partially remove the time ordering in (18).

The test functions g;(x, ¢) have their support ‘essentially’ in a neighborhood of

{(x, 1) | x° = t, ¥ = 8t for some & € #;}

where ¥; = {7 | § = p/w, (p° B) € supp &; for some p°} is the set of velocities admitted
by g;. More precisely, gi(x, ) is in #(R*) in the variable = = x° — ¢ and a smooth
solution of the Klein—-Gordon equation in the variables (¢, X). From this one easily
derives the following uniform estimates on g; and all its derivatives

| &i(x, 1)| < const (1 + |3° = ¢)7* for dist(t~1%, ¥7) < 7
B (I + [x* = )71 + X2 + ¢%)~"  otherwise.
(20)

Inequalities (20) hold for all M, Ne Z,, n > 0, the constant depending on g;, M, N
and » but not on x and ¢, see Refs. [16] or [12].
Because {g;} are non-overlapping, there exists 5 € (0, ) such that the sets

Si(t) = {x| |t/ 1x° — 1] < =, dist(#; X, ¥7) < 7}

are mutually space-like separated, whenever

Ty 1y
Now we choose and fix #,, ..., #, and set ¢ = sup|t;|. We study (18) for various sec-

tors in the space of the ¢’s. All bounds will be uniform for A € [0, A].
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(a) Suppose |t; — t;| > «t?, with « = 9/n, 0 < B < 1 and o(i) = o(j). Then
either |f; — »9| > («/2)t? or |t; — 3| > («/2)t# and (18) with all its derivatives is
o(t~M) for all M e Z ., due to (20).

(b) Suppose |#; — ;| < «t® whenever o(i) = o(j). Let us consider the sector
where ¢t > 1 and

t=t 2zl 21t 22 I, (22)
and for some ke{1,..., n}

ti“ti+1<at8 fori=1,...,k—1

ty — toyq > otb. %)
(Other sectors are dealt with similarly.) In this sector, for i,j < &

|t —t;] < mt? and =¢8>t — ptf > /2 (23)
butfori < k <j

ty — t; > at? and (i) # o(j). (24)

It follows that the partition 7 of {1, . . ., n} consists in a partition 7, of {1, ..., k} and
a partition =, of {k + 1, ..., m}. Again by (20) we make only an error of o(t~%) if
we restrict the y,-integrations of (18) to the region %, defined by

|90 - 4] < g t8,  forall i (25)

and
. (P "
dlSt(;—,'Vi') <7 fori=1,...,k.
i

In this region y? > »? for i < k < j (by (24)) and by (25) and (23)

t719 — 1] <7 and "-‘"—‘f <n  forije{l,... k)

L+

Therefore by (21), in %, the points y,, ¢ € m,, are mutually space-like separated and

T[] =11 v“"(ya)(T [ v""(ya))-

OER gEN] GETo

We conclude that in the sector determined by (22), up to an error of o(z~"), (18) is
equal to

Pl—[ {dyal_[ gr s, ti)}<1_[ v'U(,) (Tl—[ v!el( y,,))>. (26)

oER ieo OENy CEnNg

e

By Schwarz’ inequality the modulus of (26) is bounded by

Jl:_[ {dyal;_[ g (e ti)v""(ya)}>“ ! Tl;];z {dyal;l ¥, ti)UIGI(yG)}> H
27

The second factor in (27) grows at most polynomially in the #;’s, while we claim that
the first factor in (27), in the sector determined by (22), is o(¢~%) for any N. Proving
this claim we end the proof of Lemma 3.
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We expand the square of the first factor in (27) into a sum of products of trun-
cated vacuum expectation values and show that each factor

I T] st woviira} > 28)

i€eo

in that expansion is o(z ~"). The product [ [, now runs over o contained in some sub-
set of two copies of 7,. In case there are more than two factors g* in (28) the proof
goes exactly as in Ref. [11] (with an appropriate choice of 8) and we will not repeat
it here.

For the remaining cases we claim (28) is zero. Namely

T
L ([ detumr)) = [ e -0
= EX0)e** () = 0
because of the support properties of gi.

2. < [ gt w830, t,-)vz(y)> =0

as for i # j and {g}*} non-overlapping, supp &* Nsupp ¥ = &. Of course, terms of
this form with i = j do not occur in (28).

T
3, < [ @vidyasron, 820 rj)vl(yl)vl(y2)> =

because of the following lemma.
Lemma 4. The Fourier transform {&*(p)t'(q)>T of {v*(y,)v*(y2))T is of the form

const 8(p + q) f dp(a®)8(p*)8(p* — o).
Proof. Using integration by part (2) we find
(D,0,57 = Clxy — x3) — A f Clx1 — PC(xs — YKV dy

& & f C(x1 — y1)C(xg — y XV y)VH(y2)>" dy,y dys.

Heitige: A2 VST = C-HO0 7 C Y — CL + AF2,

Analytic continuation of this equation to real times shows that the Fourier trans-
form of {Tv'»*)>T has no singularity on the mass shell. Hence it must have a Killen—
Lehmann representation of the form

const 8(p + q)f dp(@®)(p® — a® + i)~
The lemma follows immediately. This ends our proof of Lemma 3.

V. Concluding Remarks

Our expansion (19) of the S-matrix elements reproduces ordinary perturbation
expansion only in lowest (non-trivial) order. To get more of the perturbation expan-
sion one would have to continue using integration by parts in (3) and then repeat
the rest of our arguments. This method is suitable to prove that the perturbation
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expansion of the S-matrix is asymptotic. The advantage of this procedure over the
straightforward Taylor expansion with remainder term is that one never has to deal
with derivatives of the mass m(A).

Our arguments should also be applicable to show that other models with weak
coupling have a non-trivial S-matrix. The essential input into our proof is the exis-
tence of an isolated mass hyperboloid and the local integrability of the (generalized)
Euclidean Green’s functions.
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Note added in proof: After the publication of the preprint of this work, another
preprint appeared [18], containing similar results.

Appendix I: Proof of Lemma 1

We use the calculus of formal power series, see Ref. [16]. Let F, G be functions
from subsets of {1, 2,...} to C and define F + G, Fx G, F~! and I by

~

(F + G)(N) = F(N) + G(N)
FxGN)= > FHN)IGNy)

NiUNg=N
1 if N =
(F~* % F)N) = I(N) ={ Y =
0 otherwise.
Now for 4 = (4;, A, ...) we define F,, F, , and F} by

FA) = (TT A ), AaM) = EAN UK, forke N,

ieN
FEJ{: = FA,k‘ *F;l.
The order of the factors in [ [;ex 4; is corresponding to the indices. For 4; = @, =
®(x;),and 4 = © = (D, ,,...) FE(N) is a Euclidean Green’s function and
FE(N) = (Fo,. * F&1)(N) (A1)
is the truncation of it.

We want to use the integration by parts formula (2) on the factor Fy; in (Al).
~We write ¥, for the operator C,(8, — AV}), with C, and 8, as in Section II and
Vi = :PO(®(y,)):. By convention §,Q = 0. Then for k& ¢ N,

et = I,

- (o lle)

= @ + 2V T <I>i> 4 <ck(8k T <1>i>

ieN ieN

leN
i<k
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Here Cy; = C(x, — x;), and the sum .y ,<x in (A2) comes from moving ¥, =
Ciu(8, — AV) to its right place using [V, ©;] = Cy.
Substituting (A2) in (A1) we find, again for k ¢ N,

leN
i<k

If N contains more than one element then the first two terms on the r.h.s. of (A3)
vanish and we find

Fg‘,lc(N) = F(%l.wz ..... ‘rk,...),k(N)- (A4)

Fa,,05,... %) -1V U K}k — 1})

(for those N which contain k£ — 1). Hence we can repeat our argument and integrate
by parts with respect to @, _,. Notice that we never have to move @, _, across 1.
Finally after sufficiently many steps we find with ¥ = (%'}, ¥, ..., ¥, ...)

Fg(N) = Fg,(N)

for N containing more than one element. Now we choose N ={1,2,...,k — 1,}
k > 2 and find that

FEL(N) = <H @)
- ra) = (T o= a7y (A5)

i=

Expanding the product in the last term of (A5) proves the lemma.

Appendix 2: Proof of Lemma 2

We only prove (7), the proof of (8) is similar. We use the methods of [15] to
construct the analytic continuation &,(ux) of &,(x) = <J [¥-; ®;> and to find bounds
on it.

Lemma Al. Let x € R®* with x # xJ foralli # jandp =i — dwith0 < & < 1.
Then there is a constant ¢, depending on k only (in particular not on A for A € [0, A;])
such that

|&k(px)] < ¢(1 — In €)2k.§-Ek+11D (A6)
where

e = min{l, |x) — x?| for 1 <i<j <k}

Proof. The estimates of [6] and of [8] show that

|G (x)| < a"k!n (1 — In €)%*

for some constant « not depending on A for A € [0, A,]. (We remark that this bound
is the source of the uniformity in A of all the estimates in this paper.) Now we look
at the sector in R2* where

x} o ) masam af,
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(Other sectors are dealt with similarly.) In this sector, using the notation of [15],
Si(x) = Si-1(8)
E=Fysinbiei)s & =T Ei) eR? & =xip1 — X
Then the methods of [15] show that for Re u < 0 and some constant ¢ = ¢(k)
Iékm‘é)l = |Sk—1(l‘g)l
< clargp — 7/2|~Z(1 — In €')%*

where ¢ = min{l, |Re p&f| fori =1, 2,..., k — 1}. Hence Lemma (Al), as
largu — 7/2| > §/2and (1 —In€') € (1 — Ine)(1 — In d).

From estimate (A6) it follows by standard methods that (6) defines a tempered
distribution. Namely with p = i — 3, fe ¥(R*¥) and

) = [ @) fee) dx, )
gg; o(f) = fC"Sk(.ux) . 2: (H %0 xtk) f(x) dx. (A8)

Choosing ¥ = 2k + 1 and using (A6) we find by integrating (A8) y times that (A7)
is uniformly bounded as 8 — 0 and converges (to a tempered distribution). The
remaining assertions in Lemma 2 follow immediately from the results of [15].
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