
Zeitschrift: Helvetica Physica Acta

Band: 49 (1976)

Heft: 3

Artikel: Meson exchange currents in nuclei; the triton beta decay as an example

Autor: Jaus, W.

DOI: https://doi.org/10.5169/seals-114778

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-114778
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Helvetica Physica Acta, Vol. 49 (1976), Birkhäuser Verlag, Basel 475

Meson Exchange Currents in Nuclei ; the Triton Beta

Decay as an Example

by W. Jaus

Institut für Theoretische Physik der Universität Zürich,
8001 Zürich, Schönberggasse 9, Switzerland

(7. I. 1976)

Abstract. The method used to reduce the four-dimensional Bethe-Salpeter equation to the
three-dimensional Schrödinger equation, thus defining a potential in terms of the field theoretic
interaction, can be generalized to define a consistent exchange current by considering the relativistic
interaction of a current with a bound state of nucléons. This covariant approach allows a unified
treatment of exchange current effects, renormalization of the nuclear wave function due to meson
exchange, relativistic corrections and negative energy contributions to the wave function, and we
discuss in detail how these effects influence the Gamow-Teller matrix element for the decay
3H —* 3He + e + v. We calculate one and two-meson exchange processes, including nucléon
resonances in intermediate states, and find good agreement of theoretical and experimental
predictions for the GT matrix element.

1. Introduction

The nucleus as a bound state of nucléons is usually described in terms of a wave
function which is the solution of a Schrödinger equation with an appropriately chosen
potential. We shall not touch upon the difficulties associated with the many body
aspect of the Schrödinger equation, but assume this problem can be solved, at least
approximately, by the methods of nuclear physics. But even if the wave function is
known exactly, from a more fundamental point of view it does not contain the complete
information concerning the bound state. This can be seen more clearly if one uses field
theory, which is the appropriate model to formulate the relativistically invariant
interaction of particles, and starts with the Bethe-Salpeter equation. Since this is a
covariant equation for the bound state with a symmetric treatment of space and time
variables (i.e. to each constituent of the bound state is ascribed an individual time),
its content and predictions are not immediately clear if one is used to a single-time
description of bound state problems. It is therefore of great help to consider merely a
special class of solutions of the Bethe-Salpeter equation ; which class is defined by
fixing the time components of the variables in some manner. The necessary prescriptions

are usually chosen in such a way that the Bethe-Salpeter equation is transformed
thereby into a Schrödinger-like equation and one of the practical consequences of this
procedure (termed the quasipotential method) is that the resulting kernel of the
3-dimensional equation defines a nuclear 'potential' in terms of the field theoretic
interaction. A guide to the vast literature on this subject can be found in Refs. [1, 2].
Both types of equations are equivalent, but neither the 4-dimensional Bethe-Salpeter
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equation nor the 3-dimensional quasipotential equation can be solved exactly since
their respective kernels cannot be given in closed form. Moreover, the number of
terms included in the quasipotential is larger than those of the Bethe-Salpeter kernel
and depends upon the specific reduction scheme by which it is defined. Consequently,
infinitely many quasipotentials can be constructed and this freedom could be used in
principle to design a 3-dimensional equation in terms of a kernel which is reasonably
approximated by a few low order graphs. Preliminary work in this direction has been
reported in Ref. [2].

The interpretation of matrix elements between bound states as given by field
theory [3] can be given along similar lines of reasoning. We consider specifically the
matrix element of the current operator and generalize the quasipotential formalism in
order to express the matrix element in terms of the single-time wave function [4]. This
approach defines a quasicurrent, which describes the (relativistic) interaction of a
current with a many body bound system in the framework of quantum mechanics.
Thereby information about the bound state (e.g. its behavior if particles move off
the mass shell, negative energy states) that gets lost when a wave function is defined,
is transferred to a quasioperator. More specifically, the quasicurrent describes also the
interaction of the bound state with the current for those values of the energy-variable
of the bound particles which are excluded from the wave function. It should be
emphasized at this point that the above derivation is exact, i.e. field theory and quantum
mechanics together with quasioperators are equivalent. Since the behavior of the
quasioperators under Lorentz transformation is known, relativistic effects in nuclear
physics can be discussed in a consistent way.

The quasicurrent can be represented as a sum of «-body currents (where n specifies
the number of nucléons interacting with the current and with each other), and for
« >2we have what is usually termed exchange currents, the details of which depend
upon the quasipotential method by which it is defined, i.e. upon the particular choice
of the wave function. It should be mentioned also that the wave function cannot
simply be normalized to unity, because mesonic effects change this normalization.
This means, the bound state of nucléons can exist in virtual states where there are
pions present beside the nucléons or some nucléons can be in resonant states, and the
probability for these virtual states must be included in the normalization conditions
for the wave function. Exchange current effects and the normalization correction of
the wave function must be treated on the same footing. This can be seen quite clearly
if a conserved current is considered: the renormalization of the charge due to exchange
current corrections is exactly cancelled by the effect of the normalization correction of
the wave function, which guarantees that the total charge of the bound state equals the
sum of the charges of the bound nucléons.

For practical applications, we assume that the nucleon-nucleon interaction can
be reliably approximated by the exchange of bosons B n, p,co etc. and including a
few low-lying nucléon resonances N* in virtual states. An especially attractive example
for the application of these formal developments is offered by the process 3H -> 3He +
e + v. Exchange current contributions to the Gamow-Teller (GT) «-matrix element
published in the past [5-10] amount to about 13%, while the experimental results
demand a correction of about 6%. It has been argued [10, 11] that inclusion of the
normalization correction of the wave function might reduce this discrepancy, but no
detailed calculations of this effect had been done. The main reason for this sizable
disagreement of theoretical and experimental predictions seems to be the selective
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treatment of meson exchange effects and therefore, one has good reason to expect that
a consistent theory of meson exchange currents which uses a correctly normalized
wave function gives a more satisfactory result.

For the practical development of these ideas, the quasipotential approach of Gross
and Fronsdal [12-14], in which all nucléons except for one are kept on the mass shell
(this is the prescription which fixes the energy of each bound nucléon, thus inducing a
single-time wave function, a quasipotential and a quasicurrent in the manner described
above), proves to be especially suitable, since it allows a representation of exchange
currents by Feynman-like diagrams, instead of time-ordered diagrams. We shall
discuss in this paper two-body currents only and neglect all three-body interactions,
which assumption is supported by the fact that there is no evidence as yet for important
contributions of three-body forces to nuclear properties. One boson exchange (OBE)
and two boson exchange (TBE) currents are considered. It is a crucial property
of our method that by means of simple approximations, TBE currents can be
represented analytically in momentum space, thus enabling an easy discussion of these
effects1).

In Section 2 of this paper, a relativistic wave function is defined, upon which the
discussion of meson exchange effects in later sections is based. In order to make the
connection with the wave function of nuclear physics, another (nonrelativistic) wave
function is derived. The difference between these two wave functions will give rise to a
relativistic correction. In Section 3, the relativistic matrix element of a current between
bound states is discussed and expressions for the 2-nucleon current are derived, which
can be represented in terms of Feynman-like diagrams. The main assumption for later
applications is that the 2-nucleon current can be approximated by a few low-order
graphs, and that the effect of the 3-nucleon current can be neglected. Section 4 presents
details of the calculation of exchange current contributions to the GT-matrix element
of the triton /3-decay. Meson exchange effects are classified according to the number
of mesons exchanged between two nucléons and we consider the cases where there is
no meson exchanged (impulse approximation), one meson exchanged (OBE current)
and two mesons exchanged (TBE current). The impulse approximation gives the
GT-matrix element as predicted by (nonrelativistic) nuclear physics, with additional
relativistic corrections (the discussion of relativistic corrections is continued in
Appendix 2). OBE currents have been discussed in Refs. [5-10] and are included for
comparisons. We mentioned already that TBE currents can be treated analytically.
These TBE currents are highly singular operators and the necessary matrix elements
are determined using a method by means of which the two-nucleon short range
correlations of the three-nucleon system are accurately accounted for (further details
about the handling of matrix elements are given in Appendix 1 and 3). The renormali-
zation of the wave function due to the exchange of mesons is considered in Section 5,
and it is shown how this effect can be represented also by Feynman-like diagrams.
The contributions of the various processes are collected in Section 6 and we discuss
the corresponding change of the GT matrix element.

The same method could in principle be used also to represent the quasipotential in
configuration space. Analytic expressions are available of course for OBE potentials (at least in
the nonrelativistic limit), but TBE potentials are known as yet only numerically. For example,
the two pion exchange potential essentially is a superposition of (singular) Yukawa-type
functions and Bessel functions.
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2. The Definition of the Wave Function

We shall first present the exact relativistic equations for the two particle bound
state. Once the two particle problem is understood, the final formula can be generalized
for many particle bound states.

The Bethe-Salpeter equation for the bound state vertex function for two nucléons
can be written as

rP(p) (1^îj d*kU(p, k, P)G(k, P)TP(k) (2.1)

where [15]

G-\k,P) |y(| + k} - m + «j(1)[y(^ -k}-m + /vT^ (2.2)

P is the energy-momentum 4-vector of the bound state with mass M, i.e.

P2 M2, (2.3)

p and k are relative 4-momenta, U is the interaction kernel consisting of all irreducible
diagrams for two interacting nucléons of mass m. The superscripts (1) and (2) refer to
the two nucléons. We have omitted spin and isospin indices.

The Bethe-Salpeter equation (2.1) is not immediately applicable to bound state
problems which are described by a single-time wavefunction, as is the case in nuclear
physics. For this purpose, the quasipotential method has been developed, where the
4-dimensional equation (2.1) is reduced to a 3-dimensional equation. This can be
accomplished by writing for the Green's function G the identity

G g + (G - g) (2.4)

with an appropriately chosen function g. In terms of this new Green's function, we can
rewrite equation (2.1) in the form

VP(p) (2^3 J d*k&(p, k, P)g(k, P)FP(k) (2.5)

and the effective interaction kernel & is given by the equation which we write in
operator notation as

& U + U(G - g)&. (2.6)

Equation (2.5) is a 3-dimensional equation if the function g is chosen appropriately
and can be solved once the kernel & can be obtained from equation (2.6). It is entirely
equivalent to the 4-dimensional equation (2.1). However, none of these equations can
be solved exactly, since their respective kernels cannot be given in closed form. The
general procedure is to expand both U and & into series which consist of terms which
correspond to the number of bosons exchanged between the interacting nucléons

u uai + u{2) +¦¦¦
& #<1) + #C2) +
#<!> Um
&<2» C/(2) + Um(G - g)Um
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and so on. The approximation consists of truncating these series after the first or
second term. For example, solving equation (2.1) with U Ua) gives the ladder
approximation to the Bethe-Salpeter equation. &m is called the OBE potential and #<2)

the TBE potential. The detailed form of the TBE potential is seen to depend on the
choice of g. A critical comparison of different 3-dimensional reductions of the Bethe-
Salpeter equation has been made in Ref. [2], however it seems difficult to differentiate
between them as to their relative rate of convergence toward the exact 4-dimensional
equation, when the effective interaction kernel & is approximated in the manner
indicated above.

We shall use two reduction schemes. The first restricts one of the nucléons to its
mass shell everywhere in the equation. This prescription proves to be especially useful
for the formal developments of this paper. A second reduction formalism requires both
nucléons to be on their respective mass shells, which then leads to the Schrödinger
equation.

Following the work of Gross [13], we choose

gik,P) -2nis((^ + k}2 -m2}

rzz, s. [y(P/2 + k) + mp[y(P/2 - k) + mfU Wo)
(p/2 _ k)2 _ m2

(2.7)

By this covariant prescription, particle 1 is put on the mass shell. This procedure has
been discussed also by Fronsdal [14]. Inserting equation (2.7) into equation (2.5) gives
a 3-dimensional quasipotential equation

Tp(P) (2^fJS m k'P)ê{k'P)Tp{k) (2.8)

where

k _ fcgg + *> + -r%vß- h * «i- (2.9)
(P/2 — k)2, — m2,

k (k0, k) p (p0, p)

ko Ek- Po/2 po Ep- Po/2 (2.10)

Ek (m2 + k2)1'2 (P/2 - k)2 - m2 -P0(2Ek - P0).

In Figure 1 we give the graphical representation of the bound state vertex function

!-P

*¦<%¦
X

V

l-p2 2

Figure 1

Graphical representation of the Gross equation (2.8) for the bound state vertex function VP(p).
The symbol x on the upper nucléon line indicates that this particle is on its mass shell.
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in terms of the usual Feynman diagrams with the additional restriction that particle 1

is on its mass .shell according to equation (2.7). The quantity of physical interest
however is,the wave function of the bound state, which is related directly to the vertex
function. This fact can be demonstrated by using the following identity for the positive
and negative frequency projection operators on a free nucléon [15]

m
2

(yq + m)., ¥(Eq+ q0) J u<i!\q)ü^(q)

2

+ y(q0- E9) % tf>(-q)S?>(-q) (2.11)
a1 s=l

where u and v axe the standard Dirac spinors which are normalized by the condition

H«(q)M<s>(q) -S"»(q)p»(q) - Srs.

The solution of thè quasipotential equation (2.8) gives a vertex with nucléon 1 on mass
shell, while nucléon 2 is off the mass shell and can be in a particle or antiparticle state.
Accordingly, one can define two wave functions (for the bound state at rest)

j.+(n\ m äi(p)i/2(-p)rp(p)
9 W V2M EP(2EP - M)

é-M «_ %(p)^(p)rP(p) (2-12)
9 W V2M EVM

P (M, 0)

where we have used the indices 1 and 2 as a shorthand notation for spin and spinor
indices. In terms of these wave functions, equation (2.8) splits into two coupled integral
equations:

(M - 2EPW(ri) l^fff\ d?k(V++(p, k, M)n) + (k) + V+~(p, k, M)ip-(k)]

MA(P) T^TfJ d3k[V-+(p,k,M)t+(V) + V--(V,KM)<p-(V)] (213)

and the potentials are given by

V+ +(p, k, M) AC üi(j,)ü2(-p)&(p, k, M)ux(k)u2(-V)

V+ "(p, k, M) -=-=¦ üi(p)ü2(-p)&(p, k, M)Ml(k>2(k)
E-pr-k

V-+(p,k,M) AÇ ûi(j>)v2(p)&(P, k, M)ui(lL)u2(--k)

V- "(p, k, M) — ûi(p)v2(P)&(p, k, M)ui(k)v2(k).
LpL-k

(2.14)
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The wave functions must satisfy the following normalization condition [13]:

z ^3p«+(p)l2 + I<£-(p)I2}

~(èyJd3p ^^pfMiß, M) Alp [&(P, q, M)]g(q, M)VP(q) L (2.15)

The above equations provide a completely relativistic frame for the discussion of
bound state problems, and we shall use this frame to present a consistent treatment of
exchange current effects in nuclei. In order to make a comparison with nonrelativistic
nuclear physics calculations, we note that the wave function </i+ is the solution of a
relativistic Schrödinger equation with an effective potential which in general is complex,
energy-dependent and nonlocal

(M - 2Ep)ipHp) 7^jf\ d3kVett(p, k, M)6+(k). (2.16)

A formal expression for the effective potential Vett can be obtained by eliminating ip-
from the system of integral equations (2.13) with the result

VeIt V++ + V+-(2m- V~-y1V-+. (2.17)

This is one nuclear 'potential' obtained from a field-theoretic description, but the
solution of the relativistic equation (2.16) for i/i+ has not been accomplished as yet.
We shall discuss meson exchange effects in the framework given by the relativistic
wave function ip+ and are interested in the resulting changes of quantum mechanical
predictions, which are based upon the usual wave functions of nuclear physics and
these are solutions of a nonrelativistic Schrödinger equation. The difference between
these two wave functions induces additional relativistic corrections.

As a preparation of the discussion of relativistic corrections of the nuclear wave
function, we shall briefly give the derivation of a nonrelativistic Schrödinger equation
potential, again starting from our field theoretical model. This approach has been used
in Ref. [1], where the Blankenbecler-Sugar method [16] is generalized.

Instead of the relativistic propagator (2.7) Lomon and Partovi [1] use the following

nonrelativistic expression for g in the center-of-momentum system of the two
nucléons

olh wì - inrirVV \ kïë* ~ Y k + m]m[y0Ek + y k + m]<2)
g(k, M) - -2n,8(k0)

Ek(M2 _ 4m2 _ 4k2)
(2.18)

The function g contains the correct Schrödinger propagator and only positive
frequency projection operators, as can be seen from equation (2.11). The resulting
wave function will consist of only one, positive frequency component. The factor Ek
in the denominator (instead of E2 as one would expect from (2.7)) is necessary for a
correct reduction to a Lippmann-Schwinger form and is also connected with unitarity
[1].

The procedure to derive now an alternative quasipotential equation in terms of the
nonrelativistic function g, equation (2.18), is the same as before. The result is a wave
function

(p(p) _L_ l]nüi(v)ü2(-r,)rP(p)
9W V2M JEp2m-M + p2/m ^lV
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where now

P (Po, P)

% 0 (2.20)

which wave function is the solution of the Schrödinger equation

(2m-M + ^}ep(s>) -JLg j" d3kV(j>, k, ilOrfp) (2.21)

and the Schrödinger equation potential is given by

V(p, k, M) JÄ^ üx(j>)ü2(-jf)&(p, t, M)ux(k)u2(-k). (2.22)

The potential operator & is defined by equation (2.6) where equation (2.18) for g has
to be used now. It is completely determined by the underlying field theoretic model
which specifies the interaction kernel U. Comparisons of V with the standard
phenomenological nuclear potentials have been made and fairly good agreement has been
obtained [1,2]. The authors of Ref. [2] conclude that this agreement improves
progressively as further information on the elementary process is included. For the
later applications, we shall therefore use the wave function derived from such a
phenomenological potential as a reasonable approximation to the solution of the
quasipotential equation (2.21).

The quantum mechanical framework constructed by means of the Blankenbecler-
Sugar method in principle provides a natural basis for the discussion ofmeson exchange
effects. However, we prefer Gross' treatment of the relativistic bound state problem,
since it still allows the use of covariant perturbation theory (with minor modifications)
and therefore a representation by Feynman-like diagrams instead of time ordered
graphs. Another technical advantage will become apparent later, when the details of
the calculation are presented. As mentioned before, this approach entails a correction
of the nuclear wave function for relativistic effects, which are however well defined.

A relativistic description of the nucleus automatically takes account of its mesonic
degrees of freedom. This means that the nucleus is not only a bound state of nucléons,
but it can be in a state containing nucleon-antinucleon pairs (this state is explicitly
described by the wave function component ip~) or pions, or we can have a bound state
of nucléons and nucléon resonances. Therefore, the normalization of the wave function
ip+ is not unity, but is given by equation (2.15). We shall see below that the one boson
exchange part of the quasipotential &(p, k, M) is independent of the mass M of the
bound state, but the many boson exchange contribution to & makes it depend upon M,
and it is here that the above mentioned mesonic effects affect the normalization of the
wave function. This normalization will be considered on the same footing with other
meson exchange effects, which we are going to discuss in the next section.

3. The Matrix Element of a Current between Bound States

Mandelstam has shown how to calculate matrix elements for bound states in the
framework of the Bethe-Salpeter equation [3]. His approach can be used also with
minor modifications in the quasipotential formalism (see e.g. Ref. [4] where further
references can be found).
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Following Mandelstam, we consider the Fourier transform of the five-point
function

K(Pi,Pziqi, q2) dixi dix2 d^i d*y2

x eiPl-xieiPr,-x2e-iQ1-yie-iq2-y2R^XiX2.yiy^

Ru(xix2;yxy2) <0\T{<pi(xi)<p2(x2)Ju(0)yi(yi)cp2(y2)}\Oy (3.1)

where cp,(x) is the Heisenberg field of the /-th nucléon and Ju(x) is the operator of a
vector or axial vector current (the derivation holds for any operator). Again, we restrict
the domain of the function R by putting particle one on the mass shell and define

K(P,q;P,Q)= Hm (pî-m2)(q2-m2)RAPi,P2',qi,q2) (3.2)
p\ q2 m2

Pio>o,p2o>o

where in analogy to equation (2.10), we put

Pi =P/2+p qx ß/2 + q

p2 P/2 - p q2= ß/2 - q

P (Po, P) q (4o, q)

Po Ep- Po/2 q0 Eq- Qo/2. (3.3)

Similarly, we consider the Fourier transform K(px, p2; p[, p'2) of the propagator

K(xi, x2; x'i, x'2) <0\T{cpx(xi)cp2(x2)yi(x'x)y2(x'2)}\0/ (3.4)

and define

£(p,p';P)= lim (pì-m2)K(pi,p2;p'i,p'2). (3.5)
v\ p-\ m2

PlO>0.!'io>0

Before we continue, we note that the usual matrix products, e.g. equation (2.6), include
integrations over the full range of momenta of intermediate states except for
conservation of the total four momentum. This point is illustrated by the explicit form of
the Bethe-Salpeter equation (2.1). The requirement that particle 1 in intermediate two
nucléon states be put on its mass shell restricts the integration over the momenta, as
can be seen in the Gross equation (2.8). If we introduce the convention that the
following matrix products are to be carried out according to the above prescription,
namely that particle 1 is on shell, the integration over the momenta of the intermediate
two-nucleon state is given by

2 (2^5 \ d'Pi dW(p? - m2)8\P - px - p2) JL J g- (3.6)

In order to establish an expression for the matrix element of the current operator Ju
between bound states in terms of the bound state wave functions, Mandelstam [3]
introduced the many particle current Au with the help of the operator equality

ÊU(P, Q) Ê(P)AU(P, Q)&(Q) (3.7)
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and the matrix element of the current operator /„(0) between the bound states is then
given by

<p\JM\Q>

(éy j Iep Je„ Tp(p)8iP> p)A(P, q; P Q)m QWoiq)

P2 Q2 M2 (38)
where V is the bound state vertex function, equation (2.8), and g the free 2-particle
Green's function, equation (2.9). In Figure 2 we have drawn diagrams that represent

R*
a)

b)

Figure 2

Feynman-like diagrams whose interpretation is the same as of those of Figure 1. (a) Definition of
the 2-nucleon current A„, equation (3.7). (b) The matrix element of the current operator Jß between
bound states is expressed in terms of the 2-nucleon current A„, equation (3.8).

equations (3.7) and (3.8). Using equations (2.12), the matrix element given in equation
(3.8) can be expressed with the help of the wave function components if>+ and ip~ :

<P\JM\Q> i i ij d3pd3q
2M(2n)e.
x W(p)A; +(P, q; P, ß)^(q) + fetàK (p, q; P, Q)fa(q)

+ <Ap (p)A; +(p, q; p, Q»$(fù + 4>;(s>)K ~(v,q; P Ô)</-ë(q)}

(3.9)

where the functions A^ ± (p, q ; P, Q) axe defined in complete analogy to equation (2.14).
The definition (3.7) completely determines the 2-nucleon current Aß since the five-point
function Êu and the propagator K axe known in the form of power series expansions,
which series can be represented by Feynman diagrams. In order to derive the perturbation

series for the 2-nucleon current A„, we use the following operator equation for
£[14]

K(P) (g-\P) - &(P)A (3.10)
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where & is the quasipotential, equation (2.6), and finally obtain the equation for A„

K(P, Q) [g-KP) - HP)]KiP, QM-KQ) - HQ)]- (3.11)

We expand now all quantities in a series the terms of which correspond to the number
of bosons exchanged between the two nucléons

An A«» + A« + A«) +...
& #<" + &s2) +...
Ru R™ + RC» + Rf»+...
<P\U0)\ Q> <P\Ju(0)\ ß><0, + <PW0)| ß>d) + • • • (3-12)

and find

A<0)(P, Q) g-\P)Rr(P, Q)g-\Q). (3.13)

In this order, there is no interaction between the two nucléons and A\f» corresponds to
the diagram of Figure 3a, which is meant to include all radiative corrections (by this
we mean all higher-order Feynman graphs in which each extra meson is emitted and
absorbed by the same nucléon line). These radiative corrections can in principle be
accounted for by using the correct form factor for the interaction of the off-shell
nucléon with the current Ju. When inserted into the matrix element (3.9) A«" gives rise
to the impulse approximation.

+

B'

B|

l

uxrvr,
i

+ iB

,*l
+ +

b) 0
Figure 3

Diagrams representing the 2-nucleon current A„ as a sum of the impulse approximation term and
many boson exchange currents (only the OBE currents have been drawn). The letter B stands for
w, p, to, etc., and N* for the nucléon isobars.

In first order, we have the sum of all terms with one boson exchanged between
the nucléons :

Ai" g^Rf'g-1 - Û^R^g-1 - g-WfW»
g-^g-1 - ^(1)gA<,°> - a£»#»>. '/:•;.:.•; • (3.14)

This is the proper one-boson exchange current which is induced by the particular
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choice of wave function in this paper, and in general depends upon the approach used
to define a 'potential'. Some typical terms of this order have been represented in
Figure 3b and c. The two-boson exchange current is formally given by

Af g-'Rf'g-1 - &™gAf» - A«»g#<2>

- &mgA™ - A™g&™ + #<»£A«»g#» (3.15)

and the graphs of this order have been drawn in Figure 4. We wish to point out that
the matrix element (3.8) of the complete box diagram of Figure 4a can be partly
reduced to the matrix element of Figure 3a by using the Gross equation, Figure 1.

The 'reducible' part of the box diagram is represented in Figure 4c and only the

+ _ I

b) d)

-*r iu J KK-r 7-K
•s.r
/ \ / \

9)

4
• \ /\ /\ //\// \

+ + _A
X i X

k) I) m)
Figure 4

Diagrams that contribute to the TBE current A(„2>. Solid double lines represent nucléon isobars N*
in virtual states.
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difference of these two terms gives an 'irreducible' contribution to the TBE current.
The same argument holds for the box graphs of Figure 4h and i. These remarks should
illustrate how the series of diagrams which represent the interaction of a system of
two unbound nucléons with a current, as given in terms of the five-point function by
the operator g-1Rug~1, have to be modified if these two nucléons are bound, to take
into account that a well defined class of diagrams is already properly included in the
bound state vertex by means of the integral equation for the vertex function (represented

in Figure 1). These reducible diagrams are removed from the 2-nucleon current
by the additional terms in the equations for Af». The formal derivation of the 2-
nucleon current presented here, of course includes the effect of radiative corrections.
This means that besides the meson exchange graphs drawn in Figures 3 and 4, there
exist higher order diagrams, which we have not drawn, which represent the radiative
corrections to meson exchange currents. But radiative corrections to one and many
boson exchange graphs can no longer be treated in an exact manner. This difficulty
usually is circumvented for the OBE current by using low-energy theorems for this
process [5, 10]. These low-energy theorems are derived from current algebra, the
hypotheses of a conserved vector current (CVC) and a partial conservation of the
axial-vector current (PCAC), and the additional assumption that the complete set of
intermediate states inserted in the equal-time commutation relations can be saturated
by a few low-lying single-particle states. This means in our case that the OBE current
is well described by including the diagrams of Figure 3c with intermediate states N*
corresponding to nucléon isobars. We shall adopt the same procedure for many boson
exchange currents and absorb the effect of radiative corrections by admitting nucléon
isobars in intermediate states, and using physical masses and coupling constants.

Up to now, we have derived the matrix element of a current /„ between a two-
nucleon bound state in terms of the two-nucleon current Au. In general, the matrix
element between a many nucléon bound state is a sum of two, three and more nucléon
currents, which are derived in exactly the same way as the two-nucleon current. We
shall present explicit calculations for the three-nucleon bound state and the corresponding

matrix element has been drawn in Figure 5. In this paper, we shall consider only
the two-nucleon current contribution to this matrix element and neglect the three-
nucleon current (compare Figure 6). In this approximation, the third nucléon is a
spectator and is accounted for by an additional integration and summation variable
in the preceding formulas.

In order to see this more clearly, let pl5 p2, p3 be the three momenta of the three
particles and introduce the new variables

P Pi + P2 + Ps, ki i(pi - p2), qx |p3 - KPi + Pa) (3.16)

Figure 5

The matrix element of the current operator JJA) between three-nucleon bound states. Two of the
three bound nucléons are on their respective mass shells.
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^
5-S*k' 54**'_ 3 2 3 2 *

p.a.,,«
3 2 K 3 2 K

3- nucléon
+ current

Figure 6

The many body current of Figure 5 is represented as a sum of a 2-nucleon current and a 3-nucleon
current. The 2-nucleon current has been represented in Figures 3 and 4. The momentum variables
have been chosen according to equation (3.17).

and their cyclic permutations k2, q2 and k3, q3. The vector p is the total momentum,
kx is the relative momentum between particles 2 and 3 and q! is the relative momentum
of the particle 1, the spectator particle, with respect to the cluster 2 — 3. These
variables are the most suitable ones for our purposes and any pair {k,, qj} can be used
for the description of the system. The following relation will be useful also

Pi iv + <h, P2 iP - i<li + ki, Pa ÌP - Mi - ki (3.17)

The matrix element of the current operator Ju between three particle bound states in
the rest system, i.e. for P Q 0, is given by

<P\JM\ Q> 2^ (2^ \ 2 ,/ d3pi d3p'2 d3p'3SiPl + P2 + Pa
2M(2r,

x J" d3p"x d3p"2 d3p"38(p-x + p"2 + pS)S(P; - po

x (f?(A, Pa, p5)a*ô(K, v", p;, p;-; p, öW(pi. P2, pa) + • • •}

+ 3-nucleon current (3.18)

which in terms of the new variables (3.16) reads

1

W.(0)|ß> ^^l-(gj d%d%d3k7f2M (2n)

x {^(q„ k'j)A77,7j(k'j, k'„ q,; P, Q)ip$(qh k',) + ¦ ¦ ¦}

+ 3-nucleon current (3.19)

where ABiM is the two-nucleon current of particles i and j as shown in Figure 6. In
writing down equations (3.18) and (3.19), we have for brevity omitted those terms
formed with the functions A+^, A~y and A"^, but these can easily be read from
equation (3.9).

4. Exchange Currents in the Triton Beta Decay

We shall now discuss the contributions to the matrix element of the current /„
according to the number of bosons exchanged between two nucléons, and we have
given the corresponding Feynman graphs in Figures 3 and 4. The many boson exchange
potentials induce a renormalization of the nuclear wave function, equation (2.15),
which we shall calculate simultaneously.
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I

ti
I

I

P, P2

Figure 7
Vertex corresponding to the reaction N + n -+ N.

For the nNN vertex of Figure 7 we use a coupling of the form

lg*Tn(Xy5 + (1 - X) ^- y -qyf) (4.1)

which is a linear superposition of pseudoscalar and pseudovector couplings with
0 < A < 1. This choice of coupling could serve, if necessary, as a convenient means of
suppressing the influence of antinucleon states in the domain of nuclear physics. In
order to see this more clearly, let us consider the nNN vertex in the limit of
nonrelativistic nucléons

*(p2)(Ays + (1 - A) ± y qyMPi) ~> -^ (4.2)

S(-p2)(Ay5 + (1 - A) ^- yqy5)u(px) -> - A + (1 - A) |2- q p2 - px.

(4.3)

According to equation (4.2) the coupling between nucléons is independent of A, while
equation (4.3) shows that the nucleon-antinucleon coupling is reduced by a factor A

compared with the conventional pseudoscalar coupling. (Usually the virtual nucléons
are not very far off the mass shell and therefore q0 « 2m.) The coupling (4.1) is used
too by Gross [13] who evaluates potentials for a simple one particle exchange model
and compares them with Reid's soft core potentials. For these fits, Gross took A 0.41.
We shall not choose here a specific value for A but shall discuss below, when the final
result is obtained, which value is consistent with experiment. In the meantime, the
parameter A can be used to trace the negative energy contributions.

As a realistic example for the application of the formal developments of the two
preceding sections, we choose the beta decay of the three nucléon system

3H -> 3He + e~ + ve. (4.4)

The// value for this decay is

ft - 2tt3 In 2 „Jt - G(\MF\2 + gA\MA\2)
{ '

where G is the vector coupling constant and gA 1.23. The Fermi matrix element MF
is equal to 1 and the conserved vector current theory guarantees that there are no
meson exchange corrections for MF. More exactly: the exchange current contributions
are cancelled exactly by the normalization correction of the wave function (see
Section 5 for further details). The Gamow-Teller matrix element MA however is
modified by exchange current effects and we shall discuss these effects in the following.
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4.1. The one nucléon current

We shall first treat the case where there is no boson exchanged between the
nucléons. The matrix element of the axial current Af\x), where n 1, 2, 3 is an
isospin index, between the decaying state 3H with four momentum ß and the daughter
state 3He with four momentum P (graphically represented in Figure 8) is given by
equation (3.18).

g +

2*

P q=-^--k3 2

Figure 8
Lowest order contribution (impulse approximation) to the matrix element of the current /„(x)
between three-nucleon bound states with four momentum P Q.

We neglect the mass difference between initial and final state and evaluate the
matrix element in the rest system

P=Q (M,0, 0, 0)

and find using (3.11) and (3.12)

<PK+>(0)|ß>(0)

2M (2njr .2 J d3P»- d3P2 d3P3$ÌPi + P2 + Pa) |r
x $p (Pi> Pa, p3)"<(Pi)y«y5T-+"i(p>>Ae(Pi, P2, p3)

+ 0p (Pi, p2, P3)Wi(Pi)y«y5-r+yi(-Pi)<Aö(Pi> P2, Ps)

+ fp (Pl, P2, P3)Ci(-Pi)y«y5T+Wi(Pi)iAQ(Pl> P2, Pa)

+ >Pr~(Pi, P2, p3)ûi(-pi)yHy5T+i'i(-Pi)'/'5(Pi> P2, p3)} (4.6)

where A]f» Af» + iAf and E, (m2 + p2)1'2. For nonrelativistic nucléons, the
bilinear covariants in equation (4.6) can be reduced in the following way

|U(P.-)yoy5T+H,(pO ~(rd+ + 01^}

m
E

m

m

Mi(Pi)ymy5T+"i(Pi)

(ai)m(Ti)+ + 2ffj2 [PimaiVi Vfiai)m](Ti) + + U)
Ui(Pi)ymy!>T+Vi( _Pi)_.(P^(Tj)++0^m

-ßVi(-VOymy5T + Vi(-Vi) (CTi)m(Ti) + + •(£)•

(4.7a)

(4.7b)

(4.7c)



Vol. 49, 1976 Meson Exchange Currents in Nuclei 491

We see that the first term of equation (4.6) corresponds to the Gamow-Teller (GT)
matrix element without exchange current corrections, but including relativistic
corrections. The second and third term is the pair excitation current discussed in
Ref. [5], while the fourth term has not been discussed in the literature thus far.

4.1.1. The Gamow-Teller matrix element without exchange currents
In calculating the GT matrix element using (4.7a), we include the relativistic

terms oforder pf/m2 induced by the space components of the axial vector current A\.+ »

and the contribution from A(0+\ and find

M^(l + 8'rex) -Lg 12 j d3pi d3p2 d3p38(px + p2 + p3)

(4.8)X M - gm^J0 + (Pl,P2,P3)ffi(n) + 'A + (Pl,P2,P3

where we write for the uncorrected GT matrix element

M^ (<p3He, J Oi(TS)+<FH). (4.9a)
i

We have expressed Mf» as usual in terms of the ordinary wave function of nuclear
physics cp which is the solution of a nonrelativistic Schrödinger equation, as given in
equations (2.19) and (2.21). The ground state wave functions of 3He and 3H are
superpositions of a dominant spatially symmetric »S-state component and small D- and
antisymmetric 5"-state components

<P <Ps + <Ps< + <Pd (4.9b)

which gives for the GT matrix element (4.9a)

M<£> VXWA - iWs-l2 + iWnl2). (4.9c)

Following Ref. [8], we shall choose the values for the probabilities given below

\cps\2 0.897, \<ps,\2 0.017, \cpD\2 0.086. (4.9d)

The symmetric S-state wave function can be written as a product of the totally
antisymmetric spin-isospin function if)mt and the radial function R (see Appendix 1,

equation (Al.8))

<ps rlp.
Since we shall study exchange current effects in the S-state, it is convenient for later
applications to define the following matrix element

M<o» A«t J ai(TJ)+ p*\, \MT\ MT V3 (4.9e)

where the expression Mf has been obtained after the proper summation over the
spin directions m and m'.

The equation (4.8) consequently defines the relativistic correction 8'rel, since the
relativistic wave function <z/+ is known in principle. This means that the relations (2.12)
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and (2.19), which define ip+ and cp can be used to express the matrix element of equation
(4.8) in terms of the nonrelativistic wave function cp. Generalizing equations (2.12) and
(2.19) for three particle bound states, we can write

+, */ m3 3m — M + p\/2m + p2/2m + p|/2m* (Pl'P2'P3) - 4e^3 Ei + e2 + e3-m
x 9<Pi> P2, Ps) + A<p (4.10)

with Pi + p2 + p3 0. The additional term Acp accounts for the fact that the operator
function T has different arguments for ^i+ and <p. The essential contribution to Acp

comes from the fact that if)+ and cp axe determined by different potentials. It is sufficient
for our purpose to consider only the one pion exchange parts of the two potentials,
which are essentially given by

1

m2 + (k' -k)2
and

1

m2 + (k' - k)2

(k0 k0)
foxif)+ (4.11a)

for<p (4.11b)

where /c0 and k'0 have been defined in (4.10). We shall show in Appendix 2 that the
contribution from Acp results into a very small relativistic correction to the GT matrix
element of —0.03%. The discussion of the kinematic factor in equation (4.10) is much
easier, since using a triton binding energy e 8.5 MeV and a mean value of v/c for a
nucléon in 3H or 3He of 0.12 [8], and with

m3 € + pf/2m + pl/2m + p|/2m > ì _ pf + pj + p|
EXE2E3 Ei + E2 + E3 — M 12m2 12m

e 3m - M (4.12)

it is seen that the relativistic correction is small. Therefore, it is sufficient to calculate
it for the symmetric S-state only and ifwe neglect Acp in equation (4.10), we can rewrite
equation (4.8) in the following way

M?(l + 8'Tel)

nfrfy J d3pxd3p2d3p38{$x + p2 + p3)(l - g |^W*(Pi, p2, Ps)

X 2 °i(Ti) + «P(Pl' P2> Ps) \if)+\2 (4.13a)

\V\2 (2^6 j d3pi d3p2 d3p38(px + p2 + p3)|^+(Pl, p2, p3)|2. (4.13b)

This factor \if)+ \2 is cancelled by the same factor which appears in the normalization
condition for the wave function (2.15), and the only surviving relativistic correction
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Srel of the GT matrix element M^ is obtained from equation (4.13) by omitting
l<£+|2:

Wl + «rei)

(2üy J d3pi d3p2 ^P^1 + P2 + Pa)!1 - 6m^)9'*(Pl' P2' Ps)

x 2 aiiTì)+<PÌPi> P2> Ps) Srel -0.24% (4.14)

where the above mentioned mean value of 0.12 for v/c has been used.
From now on, we shall discuss matrix elements of exchange currents and the

above result shows that we need then no longer distinguish between i/)+ and cp. In
practice, this means that we can safely calculate matrix elements in the nonrelativistic
approximation.

4.1.2. Matrix elements with wave function ib~

For the remaining part of the matrix element (4.6), we need to know the wave
function component ib~, which is given by equation (2.13). The solution for i/)' in
terms of if)+ is an infinite series, which we approximate by that term which corresponds
to the exchange of one pion (OPE), i.e. we neglect those terms describing the exchange
of two and more pions and of vector bosons. Generalizing equations (2.12) and (2.13)
for the three particle bound state, using the variables defined in (3.16), we have in the
OPE approximation (see Figure 8 for the kinematics)

é-(a k
m312 "3(q3)»i(-iq3 + k3)g2(jq3 + k3)rp(g3, k3)

3' 3 V2M VEXE2E3(M - Ei- E3 + E2)

(M-Ex - E3 + E2)ip-(q3,k3)

7TTs 2 \d3k'jV2A(n;kj,k's)ib + (qj,k'j) + 0(V2) (4.15b)
(A*) itï%2J

Ei (m2 + (k3 - iq3)2)1/2; E2 (m3 + (k3 + iq3)2)1/2; E3 (m2 + q2)1'2

(4.15c)

and nucléon 1 and 3 are on the mass shell, therefore

q3 (iso, q3), q30 -M/3 + e3
k3 (k30, k3), k30 -M/3 + iq30 + Ex. (4.16)

Analogous equations hold for if)-(qx, kx) and î/<"(q2, k2).
For the OPE potential, we take the linear combination of pseudoscalar and

pseudovector interactions given in equation (4.1)

&,j(n) gl^j Ci%~^%7)2kd (4.17)

Q(k, - k',) X(y5)i + (1 - X) ± y, ¦ (k, - k'j)(yA (4.18)

If nucléon i is on shell, we have to replace k, — kj by k, — kj, where

k,-k', (E, - Ej, k, - k',).
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Using (2.14) and (4.3), we find the following expression for the potential of equation
(4.15) in the nonrelativistic limit

Vfj Hn; k„ ki) gl(^j) A m2°i\-%' (4.19)

The elimination of the wave function component ib~ from the matrix element of the
current operator/„, equations (3.9) and (3. ^^consequently induces another class of
effective exchange currents, let us call these A +\ff, which are defined as currents of
positive energy nucléons. The exchange currents A+jJ and Af/, together define the
complete exchange current of a bound state of positive energy nucléons, described by
the wave function ib+ or by ep, if the nonrelativistic limit is taken.

In calculating the correction to the GT matrix element due to the space component
of the exchange current A+ +, we shall not use the full wave function, but retain only
the symmetric 5-state of cp. We have shown in Appendix 1 that this assumption leads
to an especially simple expression for the matrix element of a two nucléon operator.
Using (Al.2), the correction is given by

(M<p>)mS J'y. \ d3q d3k' d3k"cp*(q, k") 2 Â-Vifr", k', M)v(q, k'). (4.20)

From (4.6), (4.7b), (4.15) and (4.19), we find for the pair creation current

Kfj(p.c.) -iX& |-/((k" - k") x aA^jfk" - k')(*j x x()+

+ ((Pi + PO x oj)mGj(k" - k')(r,)+
1

m% + (k" - k')2
(4.21)

where pj — iq — k! and p" — ^q — k". This current has been discussed already in
Ref. [5].

Inserting (4.21) into (4.20) gives a correction

S(p.c.) |A^/2<y0fe)> (4.22)

where

f2 w (4-23)

Y0(x) Ç (4.24)

with xn mnx, and the matrix element < Y0(xf)} has been defined in the Appendix
(Al. 12).

Similarly, the fourth term of (4.6) gives rise to another exchange current (decay
of the antinucleon)

Ä+ AN) - -JL -AL f dsk 3(k - k')(k - k")
Am,li(N) - {2n)3 (2w)4 J d /C

[m2 - ^ _ kT][m2 + (fe _ k«-)2]
(°i)m(Ti) +

(4.25)
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where we used

i-r.*i)ÌTt)+i*ti<) -3(n)+ (4.26)

with

èy\d3k£^2 tY»^ <4-27>

W/^SSTF*"*"-^1«^ (4-28)

Y'o(x) -{l+^Y0(x) (4.29)

and using the results of Appendix 1, we find from (4.20) and (4.25) a correction

S'(JV) -6A2/*<(y0fe)2>. (4.30)

The corresponding normalization correction of the wave function, 8"(N), will be given
in Section 5.

4.2. One boson exchanged between nucléons

The one boson exchange current A{f» has been represented in Figures 3b and c
and has been discussed already in detail for the cases where there is one n, one p and
one eo exchanged between the nucléons [5-10]. In a classification scheme according to
the number of bosons exchanged between the nucléons, the one boson exchange
current should give the dominant contribution and therefore the current A*,1' has
received almost exclusive attention in discussions of exchange current effects in nuclei.
We shall present here for completeness sake the results of these papers.

For the calculation of the correction to the GT matrix element due to the space
component of the exchange current Af» equation (Al. 1) must be used, to give

iM$»)m8 T±1s 2 f d3q,d3k',d3k\
V*) itfuiJ
x cp*(q„ kDA+àOt,, k;, M)cp(q„ kj). (4.31)

The simplifications that led to equation (4.20) cannot be made here since the complete
wave function cp equation (4.7b) is necessary to reasonably estimate the exchange
correction S. It is sufficient however to consider only the S- and D-state components
of the nuclear wave function. The OPE current has been determined in Refs. [5, 6]
using the low energy theorem and in Refs. [7, 8] by a phenomenological model which
approximates the pion-production process by the pole diagrams of Figure 3c with
nucléon isobars N* treated as stable particles, in virtual states. The calculation of
Ref. [8] is restricted to the three lowest-excited nucléon resonances 7V*(f+, f) A
(1236), N*(i + i) and N*(A, i), but only the A gives an appreciable contribution to
the GT-matrix element. The exchange current due to virtual excitation of A (1236)
has a nonvanishing matrix element only between S- and D-state components of the
wave function. The numerical results of Ref. [8] have been collected in Table I. The
low energy theorem of Adler and Dothan [17] can be used in conjunction with the
vector dominance model to derive the vector meson exchange current in terms of pion



496 W. Jaus H. P. A.

photoproduction amplitudes V,±-0). The pion exchange contribution to V,(±'0} is

represented in Figure 3b (with B nandB' p) and has been discussed in Refs. [5-8].
Those parts of the pion photoproduction amplitudes coming from the exchange

of the A (1236) (Fig. 3c with B p), the p- and the ««-meson (Fig. 3b with B p,
B' co) have been considered in Ref. [10] with the result

Ss(p;A) 0.24%, S0(p;A) -2.79%. (4.32)

The numerical results of Table I are either taken from Ref. [8] or based upon the
nuclear matrix elements calculated there in terms of the trinucleon wave function,
which is the solution of the Faddeev equations for the Reid soft-core nucleon-nucleon
potential. One of the essential points of the method of Ref. [8] is that the short range
behavior of the nuclear wave function is correctly accounted for (at least according to
our present knowledge) and matrix elements of transition operators that are singular
for small distances can be evaluated reliably.

A more convenient model that uses the information contained in the wave
function of the deuteron to describe the short range correlations of the trinucleon wave
function has been proposed in Ref. [18]. The correlation function for the subsystem
of two nucléons in the trinucleon is defined by

g(x) j dÇAxd3y\cp(x, y)|2 (4.33)

where <p(x, y) is the wave function of the 3-nucleon system (we consider only the
symmetric S-state with cps <p(x, y) and the configuration space variables are defined
in (Al.5). The matrix element of e.g. a scalar two-body operator 0(x) between the
S-state components of the 3-nucleon wave function is then given by

<0(X)> j" dxx2g(x)0(x) (4.34)

with
r

dxx2g(x) \cps\2. (4.35)/¦
It has been emphasized in Ref. [18] that for small values of x the correlation function
g(x) very nearly coincides with the equivalent function for the deuteron

gd(x) J dQ\cpd(x)\2. (4.36)

This means that in the core region the influence of the third nucléon is small and g(x),
like ga(x), is generated by the short-range part of the nucleon-nucleon interaction
alone.

For operators like the highly singular TBE currents, which we shall discuss in this
work, the integrand of (4.34) contributes only for small values of the integration
variable x, and following Ref. [18] we can put in this region

g(x) gaix). (4.37)

For the explicit calculation of matrix elements, we parameterize the deuteron wave
function for the Reid hard core potential [19] such that

(NU — p-B(r-rc)-\2r-2p-2ar r > rc
Sair) A[ \r e

(4 3g)
^0' r < r„
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with

a 0.2316 fm"1

rc 0.548 fm

/3 2.202fm-1. (4.39)

The factor N is determined by the normalization condition (4.35). With

xa max (4.40)

|<ps|2 0.897 (4.41)

and using the approximation (4.37), we find for the matrix elements which are needed
in later calculations, the following values :

<Yl(xn)> 10.468 <(Y'0(xf))2> 0.4090

<r2fe)> 0.0707 <xnY2o(xfi) 0.0571. (4.42)

4.3. Two bosons exchanged between the nucléons

We shall take matrix elements of the two boson exchange current Af» between the
.S-state component cps of the nuclear wave function only and neglect those between
S- and Z)-state components, since the latter effectively correspond to processes where
three bosons are exchanged between the nucléons (compare the discussion of the
D-state wave function in Ref. [7]). The resulting change of the GT matrix element then
can be calculated according to equation (4.20) with A+J} replaced by A+j}.

4.3.1. The two pion exchange current
The Feynman diagrams which are associated with the TPE current are the box

diagrams of Figure 4a and b and the crossed box diagram of Figure 4c. We shall
examine the box diagrams in some detail in order to demonstrate the procedure we
shall follow in the calculation of TBE effects. The NNn vertex ig„d(q)(Ti)n which we
shall use has been given in equation (4.1) and the operator Ct(q) is defined in (4.17).
The current associated with the general box diagram Figure 9 is given by the usual
Feynman rules [15]

A;,i+2(4a) «i(-ip + k>2(-ip - k')A„jl2(4a)
x ui(-ip + k>2(-ip - k") (4.44a)

A„.i2(4a) ç^TîgiJ ^/eC^TaXT-O+CüiTa)

Ci(k' - k)[y(P/3 - p/2 + k) + m]m
[(k' - k)2 -m\ + ie][(k" - k)2 - m2 + U]

Y
Ci(k - k")C2(k - k')[y(P/3 - p/2 -k) + mf

[(P/3 - p/2 + k)2 - m2 + k][(P/3 - p/2 - k)2 - m2 + ie]2

x y„y6[y(P/3 - p/2 - k) + m]<2)C2(Ä;" - k). (4.44b)
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2-K

J* M*" ffc'"P P

2^* 1 «
1

«
'

i

p_p_k„ 7k"k pp. !k"k p p
3 2 K

i 3 2 K
| 3 2~"

Figure 9

The exchange current associated with the box diagram. The spectator particle has four momentum
P/3 + p and is on the mass shell.

From the crossed box diagram of Figure 4c, we derive the analogous expression

A;,i+2(4c) «i(-ip + k')ö2(-ip - k')A„,12(4c)

x ui(-ip + k>2(-ip - k") (4.44c)

A(,,ia(4c) 7235 g* J ûf4^(T1)„(T1T2)(T2)+(T2)n

Ci(k - k")[y(P/3 - p/2 + k' + k" - k) + m](1)

\(k' - k)2 -m2+ U][(k" - k)2 -m\ + h]

Ci(k' - k)C2(k - k')[y(P/3 - p/2 - k) + m](2)
X

[(P/3 - p/2 + k! + k" - k)2 - m2 + /€][(P/3 - p/2 - k)2 - m2 + it]2

x y„y5[y(P/3 - p/2 - k) + m]<2'C2(/c" - k) (4.44d)

where P (M, 0, 0, 0).
In (4.44a, c) we have omitted normalization factors m/E since we shall take the

nonrelativistic limit in the end. The external particle 1 is on the mass shell, the same is
assumed for the spectator particle 3 with four momentum P/3 + p. This condition
gives

M 4- „ - F — -P° 4. Ir» _ f — -P0
-, t Po — r-p, -j 2 ' K0 — *---pl2 + k", -, o

and in the nonrelativistic limit, we can put

Po k'o k"o 0, M/3 m. (4.45)

We perform now the /c0-integration, using the residue theorem and close the contour
in the lower /c0 plane. We shall split the result in the following manner

A„,i2(4a) A„,12(4a; Nf) + A„>12(4a;ir) + A„,12(4a; N2) (4.46a)
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which are the residues from the pole of nucléon 1, the double pole of nucléon 2 and
the pion poles,

A„>12(4c) Aw>12(4c; n) + A„,12(4c; N) (4.46b)

here we have a sum of the residues from the pion poles and in the nonrelativistic limit
the nucléon propagators give rise to a triple pole.

The current ABl2(4a; Nx) corresponds to the diagram of Figure 4b, which is
defined as the residue from the AVpole, and consequently does not contribute to the
exchange current A<,2>. For the explicit evaluation of the currents A„>12(4a; n) and
A«,i2(4c; n), it is profitable to divide the Feynman propagator of the nucléon into a
particle and an antiparticle propagator according to the identity (see equation (2.11))

yq + m m u(q)û(q)
+

m v(-q)v(-q) (4 4_
q2 - m2 E„ q0 - Eq Eq q0 + E„

We shall need the space part of the current in the nonrelativistic limit, which can be
determined using equations (4.2), (4.3) and (4.7). Since

(tiT2)(t2)+(t1t2) (2tx - T2)+

only linear combinations of the spin matrices ax, o2 survive in the final matrix element.
Therefore we have

A:,î2(4a; n) Jig (2rx - r2)+ J" d3k

-Lg [(k' - k)(k" - kX*' - k)mC2(k" - k)
[(2m)4

- «k' - k)(k' - k))2(a2)m

+ (k' - k)(k" - k)(k" - k)mo2(k' - k)

+ ((k' - k) X (k" - k))0l((k' - k) X (k" - k))m]

X
a."2 1_(J L)- o>'2 \2o)"4 2w'4/

+
(2m)2

(k' ~~ k)(k" ~ k^CT2)m
(2m)2 eo"2 - eo'2 [2^ ~ 2ZT2)

•W

(2m)2
+ 70^2 P' - k)mo2(k" - k) - (k' - k)(k" - k)(a2)„

+ (k" - k)ma2(k' - k)] 2^ w,l2 _ w,2 P^-3 2w,3}

+ ^icr2)m jl^ „o
1

,2 (=L -±-\\ (4.48a)
(2m) co z — co * \2co leo J

and with

(Tl)n(T1T2)(T2)+(T2)n ~(2rx + T2) +
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we have

A+î2(4c; n) JjL (2ra + r2)+ j* d3k

-L, [(k' - k)(k" - k)(/c' - /c)mo2(k" - k)
[(2m)4

- ((k' - k)(k" - k))2(a2)m

+ (k' - k)(k" - k)(k" - k)mo2(k' - k)

- ((k' - k) x (k" - k))o1((k' - k) x (k" - k))m]

J__/J L\
- co'2 \2co"i 2û>'V

+ /o^2 (k' k)(k" k)(a2)m /0_^2 //2 _ w,a ^2w„2 2tu,2 j,^L (k' - k)(k" - k)(<r2)m prL,a
(2m)2 (2m)2 «>

A2

(2wj5 K*' - *)m°2(k" - k) - (k' - k)(k" - k)(a2)m

+ (Ä:" - k)ma2(k' - k)] ^ -^rZTfJ-2 [2^ ~ JJï)

- A^ (2m)3 ^T"2 (i - A)} <4-48b)

where

o,' (m| + (k' - k)2)1'2, w" (m2 + (k" - k)2)112

and we have approximated the antiparticle propagators by

_1 _1_
2m + eo' 2m

Furthermore, we have neglected small terms corresponding to the creation of a
particle-antiparticle pair by the axial current (terms of order A and A3).

A crucial approximation of the approach presented here is that we calculate the
TPE current in the nonrelativistic limit, i.e. for absolute values of the three-momenta
p, k', k" and k much smaller than the nucléon mass m. This procedure is certainly
legitimate for the external momenta p, k', k" which are suppressed by the wave
function (when the matrix element of the TPE current is formed) due to its behavior
at small distances. The same mechanism however acts also to restrict the intermediate
momentum k to low values. This can be seen in the following way: Since the integrand
of the TPE current essentially depends upon the momenta through the combinations
k' — k and k" — k, the corresponding matrix element which has the general form as

given in equation (Al.2) can be reexpressed in configuration space by equation (Al.6).
This matrix element receives contributions only from the region outside the nuclear
core, where the TPE current is predominantly determined by small values of k' — k
and k" — k.

The same argument can be used to remove possible divergent parts of the TPE
'<ci>frent, which generate 8-function like singularities in configuration space. However,

/""warft 9i
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the matrix element of the S-function vanishes since the repulsive nuclear core prevents
the two interacting nucléons to overlap.

With these arguments in mind, we shall consider primarily that finite part of the
TPE current which is determined by low external and intermediate momenta. We note
here that we shall explicitly account for the fc-dependence in Section 5.2.2, when the
effect of the A (1236) in intermediate states is discussed.

The integrands of equation (4.48) which are of order A2 and A4 can be replaced
by expressions which are more suitable for an analytic treatment, by means of the
following integral representation

i_ _
2 r dz-J^,. (4.49)

We shall show in Appendix 3 that the identity (4.49) is sufficient to make the currents
Am,i2(4a;7r) and A+J;2(4c;tt) completely separable, i.e. these are products of two
functions of only one of the momentum variables k' — k and k" — k. Therefore, the
methods of Appendix 1 can be applied to derive from equation (4.20) the following
correction of the GT matrix element

S'(4a,b,c) =/4j-f<(7oXxJ)2> + K(l - xn)Y2(xA

+ 4X\(Yj,(xA)2}

+ xil^XhK^}} (4-50)

where the Bessel function is given by the following Fourier transform

1 C e_ikx m2 2 1' d3k 2« £ _L Ki(xn)- (4.51)
(2tt)3J cu 4nnXn V *'

We turn now to a short discussion of the third current A„12(4a; A^) of the sum
in (4.46a) which is the contribution of the negative-energy pole, i.e. nucléon 2 is on
the mass shell and has negative energy. The virtual nucléon 1 and the two pions in
turn are very far from their respective mass shell (which makes their propagators
small) and it needs very high values of the momentum variables to make this current
have any importance at all. However, the high momentum part of a transition operator
is damped by short distance effects, and these effects completely suppress the
current AH 12(4a; N2). For the same reasons, we can neglect the current A„ 12(4c;

N) of equation (4.46b), which is again the contribution of the negative-energy
pole.

The box diagrams which have been discussed above give corresponding
contributions also to the normalization condition (2.15). These we shall treat in
Section 5.2.1.

4.3.2. The two pion exchange current with a virtual A
We have considered the TPE current in the lowest order only, and since we are

dealing with strongly interacting particles higher-order Feynman graphs (with only
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two pions exchanged between nucléons, but additional pions emitted and absorbed by
the same nucléon line) may be just as important. Following the discussion of this point
in Section 3, we shall account for the effect of meson radiative corrections by diagrams
with virtual nucléon isobars, and we expect those diagrams with only one A (1236),
graphically represented in Figure 4d-m, to give the leading contribution. In accordance

with the work of Refs. [5, 8], we shall use the following vertex for the process
A"(px) + n\q)^N"(p2)

4p^<li»<r|fa> (4.52a)
mn

where q p2 — px, pc is the vector index of the A and the Clebsch-Gordan coefficient
takes care of the isospin dependence, and the following expression for the spin — f
propagator

(ga, - Wv) - -
1

- (4.52b)
ypi — ma

where px is the four momentum of the A. In writing down the propagator (4.43b), we
have dropped terms of order />i/mA, since the corresponding error in the resulting
exchange current is effectively of the same order as the relativistic corrections, which,
as we have seen, can be safely neglected. In Figure 10, we have drawn the two basic

yt Tt / \ it Tt '
\ / \ /\ A / \ A /

/
/TC +

/
a) b)

Figure 10
Pion-nucleon scattering graphs with the nucléon isobar A (1236) in the intermediate state.

pion-nucleon scattering diagrams which are necessary to determine the Feynman
diagrams of Figure 4d-m, and we shall use PCAC afterwards to replace the pion line
by the axial current. The general isospin structure of the amplitude for the process of
Figure 10a is given by

M(10a) M(nm(q) + N(pf) -> nn(k) + N(p2))

M(10a) ü(p2)(A8nm + B[rn, rm])u(pf).

Introducing the appropriate Clebsch-Gordon coefficients at each vertex, we find

M(10a) - 5(p2)(|8nm - i[rn, rm])R(l f)M(Pl) (4.53a)

and the scattering process n+p^n+p gives

fnNA J_

ml mA - (/c0 + ^2o)Ril I) ^ar 777—7T77—r-^7-\ (M ~ ÌKXqJ (4.53b)
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where we have regarded the positive energy A-contribution only. The amplitude
corresponding to the process of Figure 10b can be derived in the same way

M(10b) M(-rT + n+ + N(p,)->nn + N(p2))
M(10h) Ü(p2)(rmrnT+ - irmT+Tn + T+rmrn - ir+8nm)Rbu(Pl)- (4-54)

We shall not need the knowledge of the isoscalar function Rb.
An immediate consequence of equations (4.53) and (4.54) is that the exchange

currents corresponding to the Feynman diagrams of Figure 4d and e give no contribution

to the GT matrix element, since these currents have the form (tx + t2)+ in isospin
space and the matrix element of this operator vanishes between space symmetric
S-states (see also Appendix 1 where we have listed all possible matrix elements). The
crossed graphs of Figure 4f and g lead to a small correction of the GT matrix element
of about 0.1 % and we omit the discussion of these graphs.

In order to evaluate the remaining diagrams of Figure 4, we replace one pion of
the scattering process of Figure 10a by the axial current A7j. Since only the space
components of the axial current are needed, we obtain from equation (4.53) and using
the hypothesis of PCAC the following expression for the amplitude in the nonrelative
limit

M'(10a) M'(N(pf) + A + (0)-+N(p2) + n\k))

M'(10a) - /2m^^ l-

gn m% mA - m - k0

x (ÌT+rn + ÌTnT+)(|/cm + iienijkrcjj). (4.55)

In calculating the exchange currents associated with the diagrams of Figure 4k-m, we
proceed in the manner that has been demonstrated in the last section. The box diagram
will be approximated by the residues from the pole of nucléon 1 and the pion poles,
the crossed diagrams by the pion pole contributions. According to our classification
scheme of exchange currents, the currents corresponding to the residues from the
AVpole, Figure 4i and m, are one boson exchange currents Aj,1' and are already
contained in the graphs of Figure 3c with N* A, B n. We have noted that this
particular OBE current has vanishing matrix elements between fully space symmetric
states because of spin-isospin selection rules, and we have taken the matrix element
between S- and Z)-state. The Z)-state component of the wave function was approximated

in Refs. [7, 8] where the assumption has been made that the main part of the
tensor force comes from one pion exchange. It is therefore not unexpected that the
matrix element of the exchange current of the type shown in Figure 4i, taken between
^-states, leads to the same correction Sd(tt; A) of Ref. [7] if only the propagator of
nucléon 2 (M — 2Ek — Ep)'1 is replaced by the effective denominator — 1/Ais. The
matrix elements of the exchange currents of Figure 4k, 1 and m, taken between S-states,
vanish again, because of the above mentioned selection rules.

There remains to calculate the sum of the exchange currents of Figure 4h, i and j
Al2,i2(4h, i, j). Using (4.55), the box diagram Figure 4h has the following form in
isospin space

i(^2)+(tiT2)2 + i(tir2)(r2)+(xxXn) -$in)+ + Î(t2)+ ~ *'C*i x ^2)+

and for the crossed box diagram Figure 4j, we find

-2(^2) + (TziAAl^y-rfln + i(T2)n(r2)+(T1T2)(T1)n %(rx)+ + f(r2) + + i(xx X T2)+.
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This gives the following expression for the exchange current

A£»12(4h,i,j)

2(2$^J^{[(-fTl + fT2-/TlXT2)+

x f((k' - k)(k" - k))>2)m + f(r2)+((k' - k)(k" - k))2

x (-£°-2 + i°i + è"»i X a2)m

+ f(r2)+(k' - k)2(k" - k)2(-icr1 - iiox X a2)m]

1 _J / 1 1 \
X

(2m)2 eo"2 - eo'2 \2eo"3(mA - m + co") 2eo'3(m& - m + eo')j

+ A2l(r2)+f((k' - k)(k" - k))(a2)mi

X
oj"2 - w'2 \2co"2(mA - m + oj")

~
2eo'2(mA - m + co'))

j
+ tensors of rank r ^ 1. (4.56)

Following the discussion in Appendix 1, we have represented Aml2 as a sum of
irreducible tensor operators in momentum space and have written down the scalar
part only. We have merely considered the case where nucléon 2 and A are in positive
energy states, since this gives the dominant contribution. The factor 2 in front of
equation (4.56) accounts for the fact that there are two possible decay processes
N + A7j -> A (represented in Figure 4h, i and j) and A + A7j -> N.

Introducing the exchange current A^)12(4h, i, j) into equation (4.20) and using the
rules of Appendix 1 gives a correction of the GT matrix element

S(4h, i, j) ^f2 g |04g?> + <£31> + A28 ^ <^12\'>|. (4.57)

The matrix elements which appear in equation (4.57) are defined by

<A™} ÌW~2J d3p d3k d3k' d3k"v*(V> k>(p' k")mr m-4"2r

1 / 1 1 \
X

eo"2 - eo'2 \2co"n(mA - m + eo")m 2co'n(m/, - m + eo')"1}

x [(k' - k)(k" - k)]r (4.58a)

<Bnm) ^-n J d3p d3k d3k' d3k"ep*(V, k>(p, k>rm"8

_J / 1 1 \
co"2 - co'2 \2co"n(mA - m + co")m 2«j",(mA - m + eo')m)

x (k' - k)2(k" - k)2. (4.58b)

We shall discuss these matrix elements in Appendix 3.

4.3.3. The current due to the exchange of one pion and one vector meson
One of the crucial assumptions in the field theory of the nucleon-nucleon potential

and the meson exchange currents is that the expansion into terms which correspond to
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the number of bosons exchanged between the nucléons is reasonably convergent as the
number of exchanged bosons increases. Since the TPE currents, which we have
discussed thus far, give an appreciable correction of the GT matrix element, one might
be interested to have at least some information about the magnitude of the matrix
element of the current due to the exchange of three pions. We shall not present here

any calculation of the uncorrelated three pion exchange, but consider briefly the
correlated multipion exchange current, which we approximate as usual by the exchange
of vector mesons. Vector meson exchange currents are given again by the graphs of
Figure 4, which are meant now to represent the exchange of one pion and one vector
meson.

We have calculated the current associated with the diagrams ofFigure 4a, b, and c,
but considered only the eo- and p-exchanges and found a correction of about

S;,m(4a,b,c)~-0.05 10-2

where the value A 1 has been used.
From the currents of the graphs of Figure 4h-m, we expect a correction of about

the same magnitude. But these effects can certainly be neglected at the present level of
precision of theoretical predictions.

5. Renormalization of the Nuclear Wave Function due to the Exchange of Mesons

The ground state wave function cp of 3He and 3H is a superposition of S-state,
5"-state and .D-state components and this wave function, equation (4.9b), has been
normalized to unity, i.e.

I«ps]2 + \n-\2 + Wd\2 l. (5.1)

Mesonic effects however change the normalization of the wave function, and the
condition (2.15) holds instead of (5.1). The correctly normalized nuclear wave function
is therefore given by

•Pnorm ^172 9 ß-2)

where Z is defined by equation (2.15) and |<p|2 1. The normalization factor Z can
be discussed in complete analogy to our treatment of the matrix elements of exchange
currents, and even the same diagrams can be used. This can be seen more clearly if the
matrix element of a conserved current is considered. We take the electromagnetic
current which is the sum of an isoscalar and the third component of an isovector

rr-(x) jfKx) + jf\x).
The two components are separately conserved currents. This requirement determines
the isoscalar charge, in which we are particularly interested, of a three-nucleon bound
state of mass M to be

<P\jnO)\Py l^ (5.3a)

with P2 M2. This condition (5.3a) is equivalent to the normalization condition
(2.15) for the wave function. Accordingly, we define

Z t<P|y00)(0)|P>2M (5.3b)
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and choose P (M, 0, 0, 0). The interpretation of (5.3a) is such that the renormaliza-
tion of the isoscalar charge is cancelled exactly by the normalization correction of the
wave function. The equation (5.3b) for the factor Z enables us to use the methods of
Section 3 and again allows a convenient representation in terms of Feynman-like
diagrams, where only the processes N + y00> -*¦ N and N* + j'00) -> N* are possible.
We shall classify the various contributions once more according to the number of
bosons exchanged between two nucléons, hence we write in analogy with equation
(3.12)

Z Z(0) + Z<2)+•¦•. (5.4)

The matrix element of the current represented in Figure 3a, where there is no
interaction between the two nucléons, corresponds to Z<0), while the matrix element of
currents of the type shown in Figure 4a-g gives the TBE contribution Z<2).

5.1. No boson exchanged between nucléons

The normalization factor in this order is graphically represented in Figure 8 and
is given by

Z<°> |*+12 + \r\2 (5.5)

where |</r+12 and \tb~ \2 are defined as in equation (4.13b). The relativistic wave function
ib + can by means of equation (4.10) be expressed by the nonrelativistic wave function cp

with \cp\2 1. Bearing in mind that the correction of the GT matrix element due to
Acp is small (as calculated in Appendix 2) and that the kinematic corrections cancel
(see the discussion following equation (4.12)), we can replace \ib+\2 by |<p|2:

Z<°> 1 + |^-|2. (5.6)

In the OPE approximation ip~ is given by equations (4.15) and (4.19), and in a similar
manner as in Section 4.1.2. we find

-8"(N) \r\2 10A2/If<(y0fe))2>. (5.7)

5.2. Two bosons exchanged between nucléons

We shall calculate now the factor Z<2) of equation (5.4) using the definition (5.3b),
which means that we must determine the exchange current A0jü induced by the
isoscalar current j'00). There are no one boson exchange currents for this particular
interaction, and the matrix element of the two boson exchange currents A02)y taken
between the S-state component <ps of the wave function is related to the normalization
factor Z(2) by an equation similar to equation (4.20),

Z<2>
5 (èrf J d3q d3k' d3k',(p*(q' V) 2 Aó%+ + <V, k', M)cp(q, k). (5.8)

Since most of the arguments have been presented already in Section 4.3, we shall keep
the discussion of equation (5.8) as brief as possible.

5.2.1. Contribution from two pion exchange
The TPE current is represented by the diagrams of Figure 4a, b and c, and

equations analogous to (4.44), if only the axial current operator y„y6r+ is replaced by
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the isoscalar current operator iy0. The relevant spin-isospin matrix elements are
listed in Appendix 1. We find the following contribution to the normalization factor
Z(2):

-S"(4a,b,c) Zm(4a,h,c)

-fï\4<(YO(xA)2}

- 4<(1 - x„)Y*0(x„)y + 4A2<(70(xJI))2>

+ ^2mK^>} (5-9)

where we have used again the approximation (4.49).

5.2.2. Contribution from two pion exchange with a virtual A
The information needed to discuss this particular contribution is contained

already in Section 4.3.2. Perhaps it should be mentioned that the interaction of the A
with the isoscalar current can be derived unambiguously from condition (2.15) using

\ Ttm Tt"/\
Figure 11

The isoscalar current^0' interacting with a virtual A (1236).

the process drawn in Figure 10a, whose amplitude is given in (4.53). We find for the
amplitude of the process of Figure 11 in the nonrelativistic limit and for positive energy
A's in the intermediate state

M<°> M<°Vfo) +7o0)(0) + N(pf)-+n»(k) + N(p2))

frfio) _ _Ajva 1

2ml (Eè2+k -m- k0)2

x (fSnm - i[rn, Tm])($qk + ii(q x k)a)

E^k (ml + (p2 + k)2)1'2. (5.10)

This expression is used to determine the current represented by Figure 4d and f. The
box diagram of Figure 4d is essentially a sum of the residues from the pole of nucléon 1

and the pion poles. The crossed box of Figure 4f is given by the pion pole contribution.
The evaluation of the nucléon pole contribution requires a slightly more refined
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treatment than the one used before and we present it first. The corresponding normalization

correction is found to be

-8(4d;Ni) =Z^(4d;Nx)

f"^fl-cj §p J" d3p d3k d3k' d3k"

x9*(p,k>(p,k")m-4G2(AÂ:)
1

-2 [|((k' - k)(k" - k))2 - i(k' - k)2(k" - k)2] (5.1 la)co'2eo"2

with

W).mi_m + <E^M. (,llb)

Following a similar approach as in Ref. [20], we simplify the calculation by dropping
the /»-dependence in GA(p, k). This is a reasonable approximation since the integrand
of (5.11a) varies slowly with p. Therefore, we shall use the following expression for
GA(p, k)

Ga(p, k) 2m},2 (5.1 lc)
mf + k2 mA — m

m? 2mmA — ~ (4.05 mA2-
mA + m

The integrand of (5.11a) is now quite sensitive to variations of k2 since the effective
mass mx is small.

The authors of Ref. [20] assume that the «S-state wave function cp(y, x) factorizes
into a form Ui(x)u2(y). Since we calculate the matrix element of a highly singular
operator, we need to know the 3-nucleon wave function only for small values of x,
therefore we put

fix, y) cpd(x)u(y)

where <pd(x) is the S-state wave function of the deuteron. This assumption is completely
consistent with the model for short range correlations in the 3-body system [18], which
we described in Section 4.2.

The matrix element (5.11a) is then given by

- S(4d ; Nx) f2 &£ (~^j) ' ^ iXtix*), X2(x„)) (5.12a)

where the scalar product is defined by

(Xn(xa), Xmixg)) dxx2xt(xa)xm(xf) (5.12b)
Jo

and

Xn(xA ^i^Uxi)^ dx'(x')3'%(x'i)Yn(x'A9a(x'A

+ UxAJ™ dx'(x')3'2Kv(x'f) Yn(xjj)<pAx')\ (5.12c)
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where v n + f, xx mxx, and the functions Kv and /„ are modified Bessel functions
of fractional order.

For the pion pole contributions of the diagrams of Figure 4d and f to the normalization

correction we found

-S(4d, f; n) Z™(4d, f; n) f2 f-f± | j- (A®) - <B22>

+ A212^-<^>) (5.13)

where the definitions (4.58) have been used. The contribution of the current of Figure 4e

and g is derived in the same way. The residue of the double pole of nuclear 1 results
into a correction

-8(4e;N,) Z<2>(4e; Nf) =f2^ {jf^TJn) ' ^ W4 XaW) (5-14a)

while the pion pole contribution is given by

-S(4e,g;7r)=Z<2>(4e,g;ir)

/- % l i -KA®> + <B3fy - A26<^(A>>}. (5.14b)

Regarding the terms of order A0, this result differs from the correction (5.12), since the
contributions from the box graph of Figure 4e and the crossed box of Figure 4g have
the same sign, while the box and crossed box of Figure 4d and f have opposite signs.

There is an alternative way to calculate the diagrams of Figure 4e and g, as a sum
of the residues of the pole of the virtual A and the pion poles. The individual residues
are singular due to the finite mass difference mA — m, however the sum is regular and
leads to a result identical with what we have given in equations (5.13) and (5.14).

5.2.3. Contribution from the exchange of one pion and one vector meson
We continue here the discussion of the effect of vector meson exchange, which we

started in Section 4.3.3 and we consider the normalization correction due to the
exchange of one pion and one vector meson, which we choose to be the p- and to-meson.
The matrix element of the current represented by the graphs of Figure 4a, b, and c, is
again very small and the condition (5.3b) gives a normalization correction

-â;iffl(4a,b,c)=Z<2>(4a,b,c)
0.09-IO"2

where the value A 1 has been used.
In Ref. [10] we have shown that one can expect more significant effects to arise

from the exchange of vector mesons if one of the virtual baryon states is a A (1236),
and this type of process is illustrated in Figure 4d-g. In order to determine these
particular currents, we need to know the amplitudes for p-production of pions from a
nucléon drawn in Figure 12.

Using the low-energy theorem and the vector meson dominance model, this
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\\ „m

,\
Tt" /

/
/

W „mW P TtV
W /

W /
\\ /
V, /

a) b)
Figure 12

p-production of a pion from a nucléon with the nucléon isobar A (1236) in the intermediate state.
In (b) the virtual A interacts with the isoscalar current f-f».

amplitude can be expressed in terms of pion photoproduction amplitudes V,(±\ From
Ref. [10], we find an amplitude similar to equation (4.53)

M(12a) M(p^(q) + N(px)-+n»(k) + N(p2))

M(l2a) 2gpü(p2)(i8nm - i[rn, Tm])QR<A> - *JfXjfc)

PA y^qAA
+ lyAiPi + P2\qk - (pi + p2)qk>j]V2:+)

- ehaaukaqayuVi+)

+ iydq^qk - q2kK]VA

RA -lydyrfk - yqkx]VA

(5.15a)

(5.15b)

(5.15c)

where the indices m and n in equation (5.15a) refer to the isospin of the p and to.
The amplitude for the crossed process (interchange of p and n) is given by

M*(12a) 2gpü(j>n)Q8nm + i[rn, t„J)QP< + > + RA)u(Pi). (5.16)

The interaction of the isoscalar current with the A can be found in the limit of vanishing
momentum transfer by comparing the conditions (2.15) and (5.3b). Since the nucléon
from which the pion p-production of Figure 12a takes place is bound in a nucleus of
mass M, the operators RÇ*' are functions of the masses M and mA (and independent
of m). We put M 3m and find for the amplitude of the process of Figure 12b

M(pf(q) +7o0)(0) + N(pi)-+n»(k) + N(p2))

d

M(12b)

M(12h) -gpü(p2)(i8.. i[r„ ^ét^-ét«^
M*(12b) -g0ü(p2)(i8nm + i(rn, xn])^^) + JLrC-i}U(j,x)

(5.17a)

(5.17b)

The amplitudes V\±) have been derived in Ref. [21] using a hard-pion current algebra
model which satisfies the requirement of gauge invariance for virtual pions. We shall
quote only those parts of the amplitudes coming from the exchange of the A, and
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denote them by VA. With s (px + q)2, t (q — k)2 and u (p2 — q)2 we have

1 1 ' 1 m2 — m2\ 3mA 3mA/

B,

2q2 „ R
h°

h( + i l„ 16m 8m2\

A' B2 + ^| n Br,, B2 -A 2
32

t — q2 — k2 ml - m2

ml — m
I 16m

_
8m2\

\ 3mA 3mf/

p(-) _JtLA /_8- —
8m2 4m3\

3
m2A - m2 A\ mA 3ml 3m2,/

^4 - "a 2WA -16-24 r—ô- +
mA - m2 \ mA 3mf

H+> ,2_V_g2*a (5-18)

where A(+) —0.0667 m„ 2. If we describe the interaction of the field of p with the
nucléons by

<P2|p£(0)|Pi> gpÜ(p2)rJyÄ + ^-aA,qv}u(pi) (5.19)

where q px — p2 and x„ 3.7, one can evaluate the normalization correction
corresponding to the graphs of Figure 4d-g, using the same method as in Sections 4.3.1
and 5.2.2. The main contribution from this type of current is given by the residues of
the pole of nucléon 1 of Figure 4d and the double AVpole of Figure 4e, where the
latter is determined by the derivative of the operators RCA » with respect to k0 (the
kinematics are the same as in Figure 9, and k is the internal momentum variable).
The momentum dependence of the amplitudes Vj±} is for our purpose sufficiently
accounted for by making the replacement

(5.20)
ml - m2 (E£+Bl2)2 - (m - k0)2

We find the following normalization corrections

-8p(4d;Ni)=ZfKAd;Ni) ^2^
x {WAxiixA, XiiXp)) + a'3(xi(xf), xi(xp)) + ia'5(xo(x„), Xo(xp))}

(5.21a)

-8p(4e;Ni)=Z<2K4e;Ni) -fy^
x {îai(x2(Xrj), X2(xp)) + ia2(X2(xA, Y2(xp)cpAx))

+ a3(xi(xu), Xi(xP)) - aAxiiXn), Y'0(xp)cpAx))

+ ia5(xo(xx), Xo(xp)) + a6(xo(xA, Yo(xp)<pa(x))} (5.22a)
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where

aj 4Bxm% - j- (AmBx + 2mB2 + 2(1 + xv)VA + xyF|+))m4

-1.5734

- d _ mH + m2 d (f „ m„ „ _ m0\
a'3 -2m-r-Bi -? °- m3, - -r-[2mB2-2 + 2mB5 -2 m4

dm mp dm \ m„ m„/
0.3390

a'5 4P.!m4 - j- (4mBx + 2mB2 + 6mB5 + 8(1 + xv)VA ~ 2xvVA)m%

0.2904 (5.21b)

fll -(4mA! + 2m52 + 2(1 + xv)VA + XyVA) T \rr*A tïï

-1.5604

a2 (1 + Xy)(-4mBi - mB2 + |F|+)) —
m

0.5028

_ (2mBx ^±Ato + 2mB2^ + 2mB5<] -^,\ m„ mp mp mn] m2A - ma3

-0.0775

Û4 4^7' — + (i + Xy)(-2m51 + VA)mi + w' ^g+ 7™2

m,,
v "v " " ' mmp

2.0903

Û5 -(4mBx + 2m£2 + 6m55 + 8(1 + xv)VA - 2xvVA) Jf „,

-0.3797
ml — m2

a6 (l+ xv)(-îmBx + imB2 + VA)^
4
Tt

m

0.0906. (5.22b)

We have also estimated the contribution of the diagrams of Figure 4d-g, but shall not
write down the resulting lengthy expressions, since the numerical result is small. We
found the following approximate correction

S„(4d, e,f, g;7r) ~ -0.3-10"2

where the value A 1 has been used.

6. Numerical Results and Discussion

We shall collect in this section the result of the evaluation of the matrix elements
of the one- and two-body exchange currents discussed in preceding sections. We used
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the following values for masses and coupling constants

mn 139 MeV, m 939 MeV, mp 770 MeV,

mA- m 297 MeV,

/1 0.081, ^ 0.36, 4^ 2.4 (6.1)

and in Appendix 3, we have discussed the matrix elements necessary for the evaluation
of two pion exchange currents. The following numerical values have been obtained
with the parameters (4.39):

l(^Kx(2xSy =0.0566

l-2 Kx(2x„) - 1 K'x(2xa\ 0.1182 (6.2a)

<^<\>> -0.0877 iAi^y -0.0249

<^«)> -0.0546 01222'> -0.1499

(Aff) -0.1791

<£22> 0.0106 <531> 0.0129. (6.2b)

The scalar products (5.12b) have been calculated numerically also with the deuteron
wave function as given in (4.38) and (4.39) with the result

(X2(xf), X2(xA) 1.8391

(X2(Xn),X2(xP)) 2.4102 10-3

(X2(xf), Y2(xp)epa(x)) 6.1424 10~3

(7Xi(xA,Xi(x0)) 5.5848 10~4

(Xi(xA, Y'o(xp)cpAx)) -9.7911 IO"4

(xo(xf),Xo(xp)) 2.8048 10 "4

(Xo(xf), Yo(xp)cpd(x)) 3.7879 10 "4. (6.20)

The corrections of the GT matrix element already published in the literature have
been summarized in Table I. We note that the relativistic correction given in Table I
is already the net result, i.e. relativistic renormalization corrections are included
(compare the discussion in Appendix 2).

Table II shows that two pion exchange currents considerably reduce theGTmatrix
element and the largest effect is produced again by the isobaric current (i.e. when there
is a A (1236) in a virtual state). The various normalization corrections of the nuclear
wave function presented in Table III clearly demonstrate that those intermediate states
which produce an appreciable change in the wave function, which consequently have
large probabilities, will in general lead also to large exchange current effects. We note
also that in the case of a pure pseudoscalar pion-nucleon coupling, i.e. for A 1, we
have large contributions from those processes with nucleon-anti-nucleon pairs in
virtual states. This fact has been discussed also by Partovi and Lomon [1] in their
derivation of a nuclear potential from meson theory. This effect is not the result of
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Table I
Corrections S of the GT matrix element Mjf» as published in Refs. [5, 9, 10]. Si is the resulting
correction of the GT matrix element Mj1', both matrix elements are defined in equation (4.9).

Figure Intermediate states S (%)

3b B TT, B' p 2.43
3c B tt, N* N*(î+,î) 12.36
3c B= n,N* N*(i+,l) 0.44
3c B tt,N* N*(i',i) -0.30
3c B= p,N* N*(î + ,ï) -2.55

Pair creation correction of eq. (4.22) 0.50 A

Relativistic correction of eq. (4.14) —0.24

Total: S (12.14 + 0.5 A)%

s
8 ri 3.42 for A 0.41

1
Ws\2 + ÌWd\2 - iWs-\2 U3.20 for A 0

especially singular exchange current operators, but is merely the reflection of the large
mass ratio m/mn which multiplies the corresponding matrix elements, and the fact that
contributions from box graphs and crossed box graphs in several cases add with the
same sign. Combining the corrections listed in Tables I, II and III, we find the
following result for the Gamow-Teller matrix element

theory: MA MA»(1 + 8X + 82 + 8") (6.3a)

f 5.28% for A 0

8X + 82 + 8" I 5.89% for A 0.41

[ll.54% for A= 1. (6.3b)

This should be compared with the experimental matrix element [22], \MA\2
2.84 ± 0.06 (see also Ref. [23], page 90, for a discussion), which with the GT matrix

Table II
Corrections S of the GT matrix element Mj0) due to two-pion exchange currents as calculated in
equations (4.30), (4.50) and (4.57). 82 is the resulting correction of the GT matrix element Mju as
defined in (4.9)

Figure Pole 0(A»)

s (%)

0(A2) 0(A*)

4a
4a, b, c
4h,i,j

N
TT

TT

-0.35
-0.58

-1.61
-0.32

-10.21
1.00

Total: S f-2.94%forA
1.-0.93% for A

0.41

0

82 i 1

8

2 + iWo\2 - iWs-r-{: 3.20% for A 0.41

1.01% for A 0
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Table III
Normalization correction of the wave function caused by the exchange of two pions and the
exchange of one pion and one p-meson. The TPE contribution are given in equations (5.7), (5.9),
(5.12H5.14), and the VME contribution in (5.21), (5.22)

8" -Z<2>(%)

Figure Pole 0(A°) 0(A2) 0(A4)

Two pion exchange
4a Ni -2.68
4a, b,c t, 1.04 13.64 3.01
4d Ni -2.09
4e N, -2.09
4d, f tt -0.36 5.22
4e, g -n -3.59 -1.36

Vector meson exchange
4d Ni 0.56
4e Ni -0.38

x„to.. s» /-4-33 % for A °-41Total. 8 ={_6.91„/oforA 0

element Mi1' as given in equation (4.9) defines the correction Sexp demanded by
experiment

experiment: MA MAU(1 + 8exp)

Sexp (5.7 + 1.2)%. (6.4)

The theoretical value (6.3b) is consistent with experiment for 0 < A < 0.6 and the
admixture of a derivative pion-nucleon coupling (pseudovector coupling), as defined
in 4.1 is quite important to achieve agreement of theory and experiment. We note
especially that the value A 0.41, which Gross [13] used in his fits of OBE potentials
gives a consistent result also in our case.

The particular values for the parameter A chosen above should not be taken too
seriously since the isobar current corrections listed in Table I, based upon the work of
Refs. [8, 9], are probably too large because the momentum dependence of the A-

propagator has been neglected in those calculations. A preliminary investigation using
the methods presented in Section 5.2.2 and the model of the D-state wave function of
Ref. [20] indicates that inclusion of the correct momentum dependence of the virtual A
reduces the published values, which are to be multiplied by a factor of about i.
Consequently, values of A ~ 1, i.e. a dominantly pseudoscalar pion-nucleon coupling
would be favored.

In writing down the corrections listed in Tables II and III, which then lead to the
total correction of equation (6.3b), we have omitted the small vector meson exchange
contributions, estimates of which have been given in Sections 4.3.3 and 5.2.3. We
further note that in general the vector meson exchange corrections (excluding the
contribution of the current of Figure 3b) are small and since these can be interpreted,
as has been mentioned in Section 4.3.3, as an approximation of the contribution from
three pion exchange currents, we expect the latter to be small also. The same is true
for 3 nucléon currents which we have neglected, based upon investigations of the
effect of three body forces which seems to be small. Moreover, it does not seem
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reasonable to discuss in detail these more complicated processes without at the same
time improving the field theoretic model (we mention the problem of off-shell behavior
of the meson-baryon vertices) and more correctly account for the wave function at
short distance, the latter becomes even more important for higher order processes.
Therefore, in order to obtain a more accurate description of mesonic exchange effects
in nuclei, besides increasing appreciably the number and complexity of graphs that
should be included, one has to solve quite fundamental problems.

In summary, it is seen that the more modest program of this paper is already able
to explain the dominant features of meson exchange effects sufficiently, as far as these
show up in the GT matrix element for the triton /3-decay, to achieve consistency of
theoretical and experimental predictions.
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Appendix 1

Matrix elements of two-body operators for three particle bound states. Matrix elements

of spin-isospin operators. The matrix elements of two-body exchange currents for
three particle bound states which are considered in this paper are usually given
in momentum space. Generally, we have

2 Eò 7TV-2 2 i d3i' d3k>d3k'd3k>
i*ì A yZ7T) ititiJ

X ep*(p„ k",)Etj(k„ k'„ kiXjfc, k',) (Al. 1)

where we have chosen the momentum variables defined in (3.16) and (3.17). A typical
two boson exchange current has been displayed in Figure 8.

In evaluating this matrix element, we shall not use the full wave function, but
retain only the symmetric 5-state component. This part of the wave function does not
change if different configurations {p,, k,}, / 1, 2, 3 are employed, and we can use just
one pair of integration variables p, k. The above matrix element then can be put in a

more simple form

2 £«)> (ârpj d3p d3k d3k' d3k"

x <p*(p, V) 2 Eu(k, k', k>(p, k"). (Al .2)
i*i

In the nonrelativistic limit, the operator Ei} usually is separable, which means that it
can be split in the following way

£,Xk, k', k") fj(k - k')gij(k - k"). (Al.3)

This property is crucial to make possible the treatment of two boson exchange effects
with a reasonable expense. The consequence of (Al.3) can be seen most clearly if the
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matrix element (Al.2) is expressed in terms of the configuration space wave function
which is given through the relation

çfo, k,) j d3y, d3x,j e'w e^My,, xw) (A1.4)

where position variables are defined in analogy to equations (3.16) and (3.17)

x, + x2 + x3 0; x23 x2 - x3, yx xx ^—- (Al.5)

and the cyclic permutations x12, y3 and x31, y2. Since we are dealing exclusively with
the symmetric S-state wave function, it is sufficient to use only one pair of variables,
denoted by x, y. For the matrix element (A1.2) we find with the property (A1.3)

(ly Eò \ d3y d3xv*iy,x) Zf*ix)giiix)9iy, *) (ai.6)
\i*,i A J i*i

ÏÏ(*) -Ç^3\d3qê^ftj(q)

gii(x) r^r3jd3q e-«*gij(q). (A1.7)

The symmetric (S-state wave function can be written as

cp(y, x) rlR(y, x) (Al.8)

where ibmt is the totally anti-symmetric spin-isospin function, m, t are the 2-components
of the total spin and isospin respectively.

If we represent the operator/^(x)^w(x) as a sum of irreducible tensor operators in
configuration space, only the scalar operators contribute to the matrix element (Al.6):

fij(x)gij(x) V 0tj(v)hv(x) + tensors of rank r ^ 1 in configuration space.

(Al.9)

The operators 0w(v) are functions of the spin matrices o4, o, and the isospin matrices
Tj, Tj, and the index v numbers the various scalars that can be formed. The c-number
function hv(x) depends upon x |x| only.

The matrix element (Al.6) is now simply given by

^2^ <V" 2.0»W r*y<hv(x)y (ALIO)

</*v(jc)> f d3y d3x\R(x, y)\2hv(x). (ALU)

Using the results of Section 4.2, we can simplify this matrix element with equation
(4.34) in the following way

</zv(x)> f dxx2g(x)hv(x). (A1.12)
•'o
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In the treatment of the triton /3-decay, which is a spin i, isospin i system, we shall
encounter the following matrix elements:

1 _
2 Z °i,iAv)
'i*l

cv /fm-l-
3

2 (CTi)m(Ti) +
i i

and cx 4

and c2 4

Om,y(l) (»i x af)m(x, x xy)+

0m.ii(2) (Oi - a,)m(T* - Xj)-,

0m,«(3) (a, + 0j)m(Tt + t,)+ and c3 0. (A1.13)

Matrix elements of operators that are not fully symmetric under the interchange of all
particle coordinates vanish. For a more general discussion, we refer to [5].

In calculating renormalization corrections of the wave functions 3H and 3He, we
made use of the following matrix elements :

2 °«X")
i±)

dv

0W(1) TjTy and dx — 6

0j;(2) (t,Tj)2 and d2 30

0y(3) (TjTyXo^) and d3 -18
0y(4) (TtTj)2Sfj and rf4 216

0j/5) OiOj and d5 — 6. (Al. 14)

Appendix 2

Relativistic corrections to the matrix element of the axial vector current. We have
expressed the Gamow-Teller matrix element in terms of the wave function ep,

equation (4.9), and in equation (4.8) we have the matrix element of the same
operator between relativistic wave functions ib + From the discussion in Section 2,
we know that the difference between these two matrix elements is a relativistic
correction. Using the wave equations for tb+ and 95, equations (2.16) and (2.21), and
including only the one pion exchange part of the potential as given in equation (4.17),
then the matrix element of the current represented in Figure 13a corresponds to

(a) the matrix element of the current operator o,(rj)+ between relativistic wave
functions tb +, if nucléon 1 is put on the mass shell and only positive energy states of
nucléon 2 are included (negative energy states are discussed in Section 4.1.2),

fk-k |k'-k

-*—1 x—
1

fk-k
1

1

—1—*—
1

¦fk'-k
1

1

*k"-k
1

Ak'-k
1

J

a) b)
Figure 13

Diagrams required to determine relativistic corrections of the wave function due to the use of a
nonrelativistic OPE potential instead of a relativistic one.
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(b) equation (4.9a) if both nucléons are on-shell and the nonrelativistic limit is
taken for all propagators and vertex functions.

The use of different nucléon propagators in the relativistic and nonrelativistic case
results into a kinematic correction as shown by and discussed after equation (4.10).
Therefore, in this appendix we shall merely calculate the difference between evaluating
the matrix element of the current of Figure 13a with relativistic and nonrelativistic
OPE potentials. For the box diagram, we use the same kinematics as in Figure 9.
Nucléon 1 is on the mass shell

k --M + Po + eK0 —
3 T ¦Ck-l/2p

and analogous conditions hold for k'0 and k"0. The positive-energy propagator of
nucléon 2 is then — l/2/c0. The pion propagators are expanded in the following way

1

^ J_ (K - kp)2
.12 ' -im2 - (k' - k)2 ~ cu'2

1

_
1 (/Cp - kp)2

m2 - (k" - k)2 - co"2

m'2 m2 + (k' - k)2, eo"2 m2 + (k" - k)2 (A2.1)

and the terms of order I/tu4 in (A2.1) will give rise to a relativistic correction.
The difference between the relativistic and the nonrelativistic nNN-vextex

essentially is again a kinematic correction which is cancelled by the corresponding
contribution to the normalization correction, and we do not consider it here.

We shall now discuss the corrections to the GT matrix element resulting from the
various relativistic correction terms of equation (A2.1), where we use the methods of
Section 4.3. Since we calculate small correction terms, it is admissible to replace the
relativistic wave function ib+ by cp in taking matrix elements.

The terms A^/cu'4 and k^/eo'"1

The current associated with this term can be derived starting from Figure 13a.
We shall take the matrix element of this current between 5-state components of the
wave function, and therefore we write down only that part of the current which is a
scalar in momentum space and nonvanishing spin-isospin matrix combinations:

A,.,a(I3a) J^^jLj j d'k(r, - ra),(., - «2),J(k- - k)»(k' - ky»

AM+^)±A <A2-2>

If we insert this current into equation (4.20), replacing of course A*j} by Am,/13a),
and using the methods of Appendix 1, we find a correction to the GT matrix element

S'(13a) /?<^(f - l) Yg(xSy. (A2.3)
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77ie terms —2k0k'o/co'i and —2k0k'jl/co"i

The matrix element of the current associated with these terms cannot
straightforwardly be determined from Figure 13a. It can be cast however into a more suitable
form by using the wave equation (2.16) for ib+ to arrive at the matrix element of a

current which is now represented by one of the diagrams of Figure 13b. This current
is given, again except for tensor terms in momentum space, by

Am,12(13b) -^Lg—LjJ" d3ki(rx - t2)+(°i - of),

x [*K(k" - k)(k' - k))2 + A(k" - k)2(k' - k)2]

+ (ti x x2)+(a! X ff2)m

X f[((k" - k)(k' - k))2 - (k" - k)2(k' - k)2]j

v / 1 2k0k0 1 2/c0/c0\ 1 1_ (A? 4)
\Ak0k'0 «j'2 + Ak0k'o o;"2 / co'2 co"2' K '

This current gives a correction

S'(l 3b) -/3l4{12<( Y'o(xf>yy + Six, Y2o(xny + 2< Y2(xf)y}. (A2.5)

The terms k'02/eo"» and fc02/a."4

The nonrelativistic wave function cp is the solution of the Schrödinger equation
(2.21), and the nonrelativistic potential (2.22) can be derived from the quasipotential
equation (2.6) by using the nonrelativistic Green's function g of equation (2.18). The
OPE part of this potential is simply the nonrelativistic limit of the covariant OPE
interaction, and this fact has been used above to derive the relativistic correction. On the
other hand, the TPE part of the potential (2.22) contains relativistic correction terms
due to the fact that the internal momentum variable is not restricted to nonrelativistic
values. Expressions like fco2/«*'4 and k'jf/w'"1 which appear when the potential is expanded
as in equation (A2.1) are just such correction terms and are already included when the
matrix element is written in terms of the nonrelativistic wave function cp, equation (4.9).

There is a corresponding relativistic correction of the normalization of the wave
function. Following the arguments of Section 5, we can derive the resulting additional
correction to the GT matrix element in a similar manner as above and find

3"(13a) =A4{12<(70(xII))2> + 5<x„Yg(xn)y + 2<702(xJI)>}

S"(13b) -23"(13a). (A2.6)

The complete relativistic correction to the GT matrix element due to the use of a wave
function which is the solution of a wave equation with a nonrelativistic potential,
instead of the relativistic wave function if)+ is therefore given by

S'(13a,b) + S"(13a,b) -#{<Y20(xA) - i<x„Yg(xn)y}.
-0.028%. (A2.7)

Again we have a strong cancellation of the relativistic correction S', calculated with
the wave function cp normalized to unity, by the relativistic correction of the wave
function normalization 8".
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Appendix 3

Calculation ofmatrix elements. The residue of the pion pole of TPE graphs generates
matrix elements of the type given e.g. in equations (4.50) and (4.57). We shall show
here how the transformation (4.49) can be used to simplify these matrix elements.

In writing down equation (4.50) we used the following identities:

1 / 1 1_\ If 1 1 rA-n
co"2 - eo'2 \2co" 2cx>')~ n)0 Z2 + co'2 Z2 + to"2

K '

- eo'2 (2a/3 2oj'3) - J0 dZ[i
1

(Z2 + co'2)2(z2 + eo"2)

+
(z2 + eo'2)(z2 + eo"2)2\' (A12)

The resulting matrix elements can, with the help of (4.49), be reexpressed in terms of
the Bessel function (4.51):

j" dz |j < 7o2(*2)> <^g Kx(2xn)y (A3.3)

f
°°

dz g < Y$(xf)(l + xffy /1 Kx(2xf) - 1 K'i(2xa\ (A3.4)
Jo "ln \Xi Xx /

with x, m,x and

m2 z2 + ml. (A3.5)

The matrix elements (A^my and <jBnm) defined in equation (4.58) can be treated in a
similar manner. As an example of the method, we shall derive the matrix element
(Afjty. Starting from the identity

1 I 1 I \
o"2 - oi'2 \2o>"3(mA - m + co") 2co'3(mA -m + co'))

1 1

(mA - m)2 2eo'2eo"2

n mA-m J0 "' W+ (mA ~m)a](za + A)(z2 + co"2)

2 i_ r,r
— m I \(Z2 ' -¦'Z'sC-r- 1 .-."2^2 T (n-2 _±_ ,..'2\2?n-2 _i_ ,.,"2y

1 1 f• 1

dz-

nmA- mj0 \(z2 + co'2)(z2 + «>"2)2 (z2 + co'2)2(z2 + eo"2)

(A.36)
the matrix element is given by

m
<Aff> K_"m)2<ira2fe) + ÌY2o(Xn)y

IIP, 1 mhn f dZz2 + (lA-m)2m\<iY^ + *7^>nmA

r dz^/(Y'Q(xz))2 + ï
nmA- m Jo m% \v 2

l— j" dz g < Y'AxAf + % Y2(xA >. (A.37)
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The remaining integration was done numerically and the values of the various matrix
elements are given in (6.2).
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