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Electromagnetic Effects in Low Energy
Pion-Nucleon Scattering

by G. Rasche

Institut fiir Theoretische Physik der Universitit,
Schonberggasse 9, CH-8001 Ziirich, Switzerland

and W. S. Woolcock

Research School of Physical Sciences,
The Australian National University, Canberra, Australia

(19. XII. 1975)

Abstract. Previous work on electromagnetic effects in low energy pion—nucleon scattering is
reviewed. In particular, the ‘charge independent’ analysis by Zimmermann of experiments in the
region of the first resonance is discussed in detail. A programme for studying electromagnetic
effects on the analysis of #*p scattering experiments at very low energies is outlined.

1. Introduction

This paper reviews the main studies of electromagnetic effects on low energy
pion—nucleon scattering; by low energy we mean a laboratory kinetic energy of the
pion of less than about 300 MeV. (All energies given in the paper will be laboratory
kinetic energies of the pion.) There is a lot of variation in the symbols used by various
authors, and we shall establish a consistent notation of our own as we go along,
conformingas far as possible to that of Oades and Rasche [1, 2] and Zimmermann [3, 4]
(who are not always mutually consistent as far as notation is concerned). It is possible
to distinguish three main sorts of electromagnetic effects, namely, Coulomb effects,
mass difference effects, and the influence of the radiative capture channel (yn) on = p
scattering.

In Section 2, which is rather long, we discuss work done within the framework of
a nonrelativistic potential model, and consider the relativistic modifications which have
been proposed. Coulomb and mass difference effects have been studied within this
framework. Section 3 reviews work on dispersion theoretical approaches to Coulomb
effects and on the analysis of low energy =~ p experiments when radiative capture is
taken into account. In Section 4 we discuss the analysis of the accurate experiments of
Bugg et al. [5-7] across the first resonance (with I = 3, J =3, P = +1, W, = 1232
MeV). In particular we look at the work of Zimmermann [4] who shows how, by the
inclusion of mass difference effects, it is possible to make a ‘charge independent’ phase
shift analysis of these experiments. It should be stressed that when electromagnetic
effects are taken into account charge independence cannot be stated precisely except
within the framework of some model. Zimmermann uses a nonrelativistic potential
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model, with relativistic modifications, in which the assumption of charge independence
is made for the nuclear potentials. Finally, in Section 5 we describe a programme for
systematically studying electromagnetic effects in very low energy pion—nucleon
scattering (below about 40 MeV). This programme will be developed in a series of
further papers.

2. Potential Theory Models of Coulomb and Mass-difference Effects

The study of electromagnetic effects in low energy pion-nucleon scattering began
in 1952, when Van Hove [8] discussed the processes #*p — w*p and =~ p — #°n in
terms of a simple nonrelativistic potential model in which the potential was taken for
plon-proton separation r greater than some value ry to be the Coulomb potential of a
radially symmetric charge distribution with finite extension less than ry and for r < ry
to be a purely nuclear potential. He used the radial Schrédinger equation for s- and
p-waves, and matched the interior wave function determined by the nuclear interaction
for r < ry to the Coulomb wave function for r > ry. In this way he wrote the differ-
ential cross-sections for the three processes in terms of the sum of the terms with
I = 0, 1 of the partial wave expansions of the usual amplitudes & and ¢

F(q,0) = FP(q,0) + i Pcos O)[( + DF(L, 1 + %59) + IF (1 - $;9)),

0

%(g, ©) = 9(g, ©) + > PHcos O)F(L I+ 3;9) — F(L1 -4 9)] (1)
=1
Throughout this paper (and the succeeding ones), g will denote the magnitude of the
momentum of either =* or p in the centre of momentum frame; it is related to the
usual Mandelstam variable s by the relativistic equation

q* = (4s)7 s — (M + p)lls — (M — p)’], )

where M, u are the masses of the proton and charged pion respectively. The angle @ is
the usual scattering angle in the same frame. The amplitude #® is the full non-
relativistic amplitude for point charges; it will be different for #*p and =~ p elastic
scattering and zero for = p— 7% (charge exchange scattering). The Coulomb
amplitude @ is zero for a nonrelativistic calculation; it is included with a view to
relativistic modifications later. From now on the processes n*p —#*p, #"p—7"p
and =~ p — 7% will be denoted by using the subscripts +, — — (or very often — only)
and 0 — respectively on amplitudes, scattering lengths, and so on.
The partial wave amplitudes Z, ([, J; ¢) (with J = [ + 1) may be written

2ig#F.(1,J; q) = exp[2ivP(l; )][exp{2i(3. (1, J; ) + ¢, (, J; )} — 1]. (3)

Here v?(/; q) are the point charge Coulomb phases, 8.(/,J; q) the purely nuclear
phase shifts and ¢, (/, J; q) the Coulomb corrections. In the analysis of experimental
data it is assumed that, while the full Coulomb amplitudes F®, ¥® are to be taken,
the partial wave expansions of the modified nuclear amplitudes may be truncated.
For multichannel systems two different mass difference effects may be distin-
guished, though as a matter of principle it is quite arbitrary to consider one but not the
other. First there are ‘dynamical’ effects which arise when the different reduced masses
and different channel momenta are taken into account in the Schrédinger equation
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from which a partial wave S- or K-matrix is calculated.') Then there are ‘kinematical’
effects which are taken into account in relating the S-matrix to the matrix & of partial
wave amplitudes and thence to measured cross-sections.?)

Van Hove ignores mass differences for his dynamical two channel (7~ p), (=)
calculation and assumes charge independence for the nuclear potentials. The 2 x 2
nuclear potential matrix is thus

U = ( 23U, + 31U, V2/3(Us — U1))
\W2BUs - U) U, +3U; )

where Us, U, are the potentials for I = 3, 1 respectively. Further, Us is identified with
the potential U, which gives rise to the phase shifts 8, . Van Hove gives the expressions

2ig exp(—2ivP)F_ + 1 = D 2(1 + €) exp{i(28; + A;)}

4)

+ (1 + e3) exp{i(265 + A3}, (5)

2iV/qq, exp(— iv®)%, . = D~ [exp(2i8;) — exp(2i8,)], (6)
where

D = 2(1 + ) exp(—iAy) + (1 + &) exp(—iAy). @)

The quantities #_, % _, VP, ¢, 8,, A, (e = 3, 1) are all functions of /, J and g. The

-

amplitude for the process 7%z — 7% (which carries the subscript 00) is given by
2igeFo0 + 1 = D72(1 + ) exp{i(28; — Ay} + (1 + &) exp{i(28; — Ag)}]. (8)

The quantity ¢, in (6) and (8) is the magnitude of the momentum of either #° or # in
the centre of momentum system; thus

do = (45)7's — (M + po)®lls — (M — o)), ®

where M, u, are the masses of the neutron and neutral pion respectively.
In (5), (6) and (8) the phase shifts 8, arise from the nuclear potentials U,(« = 3, 1)
and charge independence asserts that

S = 8 (10)

for each (I, J; g). The Coulomb corrections ¢, A,, €, are given by Van Hove for
[ = 0,J = } to first order in the Coulomb parameter n,(q), where

1:(q) = £ B/2g, (11)
B = 2am, (12)

with m = Mu/(M + p) the reduced mass of the = *p systems and « the fine structure
constant. (We take #, ¢ as basic units throughout.) His results are

Ay = 1(9)ly + InQqry) — Ci(2gry) cos(28,) + si(2gry) sin(28,)],

& = —1-(9)[Ci(2qry) sin(25,) + si(2gry) cos(23,)],
¢, = —Ag (13)

1)  See equation (36) for the s-wave Schrédinger equation for the coupled (=~ p), (#°n) system.
2)  Note the remarks following equation (14).
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Here v is Euler’s constant and
Ci(x) = —f t~tcos(t)dt, si(x) =— f t 1 sin(t) dt.

The subscript o will always be an index for total isospin, with ¢ = 3, 1 referring to
I = 3, % respectively.

Van Hove’s model assumes that time-reversal invariance holds and that only the
channels (7~ p), (#°n) are open; this implies that the matrix U in (4) is symmetric and
real. The right sides of (5), (6) and (8) are thus the elements S_ _, S;_, Sppof a2 x 2
symmetric unitary matrix S for each (/, J; ¢). The unitarity of the matrix follows from
the identity

(I + e)(1 + e3) sin[(85 — 8,) + (A3 — A;)] = sin(d3 — 8). (14)

It will also be noted that, while mass differences are not taken into account in the
calculation of S, they are taken into account in relating the matrix &# of partial wave
amplitudes to S, by

21-Quzs(p)‘1grs(p)‘1Qll2 + 1, =S, (15)
with

_(? 0 @ _ (CXP("”‘?’) 0). 16

Q (0 ‘IO) > 0 1 1o

The momentum matrix Q has to appear in (15) in order to obtain the correct threshold
behaviour of the reaction cross-sections. Note that the usual spin-averaged differential
cross-section for the process i — f'is

(doyi/dQ)(q,0) = q,9: *(|F(q, O)|* + |%nlg, ©)]?). (17)

The equations (15)—(17) are quite general; Van Hove’s model simply gives particular
expressions for the elements of S.

Finally, we remark that equations (5), (6) and (8) may be cast into a form involving
two eigenphases (8, + ¢,) and a mixing parameter Cs,; to first order in 5_,

qF_ = expQiv?)[3T, + 3T5 + 2v/2/3C:(T5 — T,
(990)"*%5 - = exp(v®)}(T5 — T1)(v/2 + Ca),

doFo0 = ¥T1 + 515 — 24/2[3C5y(T5 — T1), (18)
where

T, = sin(8, + ¢,) exp[i(8, + <), (19a)

ca = ¥A5, ¢ = 34, (19b)

_ 20, — A,
C31 = ‘\/2[%(253 -+ EI) + 3 tan(83 — 81)]

(19¢)
Note particularly that (18) and (19a) are true generally; the particular expressions for
¢, and Cj,; given in (19b, ¢) and (13) are derived from the special model of Van Hove
with its simplifying assumptions. We shall consistently refer to the quantities ¢, (for
= * p elastic scattering) and c,, Cs, (for the coupled =~ p, #=°n channels) as the electro-
magnetic corrections. This term will not include any reference to the additive electro-
magnetic amplitudes in (1) or to the Coulomb phases which appear in the partial wave
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amplitudes (3), (5) and (6). The electromagnetic corrections ¢, and Cs, can be expressed
(to first order) as the sum of a Coulomb correction and a mass difference correction.
As we shall see, it is convenient to choose the strictly nuclear masses so that no mass
difference correction is needed in the = *p case; thus ¢, may also be correctly referred
to as a Coulomb correction.

Van Hove was interested in the application of his results to pion scattering
experiments in the energy range 30-45 MeV, where it is already necessary to use some
sort of relativistic modification. He naturally interprets g as the relativistic momentum
and suggests further, on the basis of a heuristic argument from the Klein—-Gordon
equation, that the Coulomb parameter n defined in (11) should be divided by (1 — 82)'2,
B being the relative velocity of charged pion and proton in the centre of momentum
frame. This means that 7 is to be multiplied by

Rm(M + w)] (W2 — M? — u?) (Van Hove), (20)

where W is the total energy in the centre of momentum frame. Van Hove does not
specify where this modification is to be applied; to be consistent it should be applied
to the additive Coulomb amplitude # in (1), to the point charge Coulomb phases
which appear in (3), (5) and (6) and to the first order expressions (13) for the electro-
magnetic corrections.

Solmitz [9] in 1954 considered the appropriate relativistic generalization of the
additive Coulomb point charge amplitude #® in (1). He simply calculated the one-
photon exchange contribution to #*p elastic scattering, including the Pauli term for
the anomalous magnetic moment of the proton in the electromagnetic interaction
Hamiltonian, but not including pion or proton form factors. He thus calculates
expressions for what we shall call # %, and %%, (Which is not zero), but only to

terms of order (¢/E)?, where E = v/ M2 + g2 For future reference, we shall denote by
F () the full nonrelativistic Coulomb point charge amplitude, namely

F g, 0) = —n(g)lg(1 — cos ©)]*
x exp[—in(g) In (1 — cos @) + 24®(0; q)]. 21

The first order nonrelativistic amplitude (namely (21) without the phase factor) will
be denoted by F &} porn- We have suppressed the subscripts +.

In 1960, Hamilton and Woolcock [10] pointed out that Van Hove had made only
part of the Coulomb correction, which they called the outer part, and noted that this
outer correction, which was used by Barnes et al. [11, 12] in the analysis of their
experiments at 30 and 41.5 MeV, varied appreciably as the radius ry of the nuclear
interaction varied from 0.5 x~* to 1.0 »~!. Hamilton and Woolcock pointed out that
Van Hove had neglected the inner part of the Coulomb correction. The Coulomb
potential does not vanish for r < ry; indeed it increases from its value at r = ry to a
finite value at r = 0, since the charged pion and proton have charge distributions.
Van Hove neglected this ‘inner’ Coulomb potential altogether. Using a weak scattering
approximation, Hamilton and Woolcock made a very rough estimate of the inner
Coulomb correction to the s-wave scattering length a, and to the real part of the
s-wave scattering length for 7~ p — =~ p. They found in each case that this correction,
when applied to the s-wave phase shifts obtained from the experiments of Barnes et al.,
roughly cancelled the outer Coulomb correction of Van Hove. They also remarked
that the variation with ry of the inner correction should approximately cancel the
variation with ry of the outer correction, but did not consider this point carefully.
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Schnitzer [13] made a more careful calculation of the inner Coulomb corrections
to the s- and p-wave phases in 7 * p elastic scattering. He also gave explicit first order
expressions for the outer corrections to the p-wave phases, similar to those given in (13)
for the s-wave. He took the Coulomb potential ¥, to be the potential between a point
charge and a uniform charge distribution of radius r,, namely

V+(r)=a/r, r?f'c,
Vi(r) = Hefr)3 —r?fr?),  r<r. (22)

Schnitzer then gives closed formulae for the inner correction for both s- and p-waves,
using the expression (cf. equation (29))

c("l_nner)(l, J; q) s "HZJ ¥ drV+ (I’)hg;(l, J; r): (23)
0

where A, (I, J; r) is the radial wavefunction for the partial wave (/, J), corresponding
to the nuclear potential only, normalized so that

1/2
ho(I,J;r) ~ (g) l sin(qr — lg + 6,.(J; q)). (24)
For the p-waves Schnitzer took the nuclear potential to be a square well of radius 7,,
whose depth was adjusted at each energy to give the strictly nuclear phase shift 8.
For the s-wave he used a hard sphere of radius —8/q(<r.). However, Schnitzer does
not discuss the variation of ¢, with energy for the partial waves in question, nor does
he consider the dependence on r, in detail. He also calculated the Coulomb corrections
A, to the I = 4 phases, using V_(= — V) instead of V' in (23) and energy dependent
square well nuclear potentials. But he does not give a proper treatment of the two-
channel problem and does not consider the corrections e,.

Rasche [14] made a careful study of the inner and outer Coulomb corrections to
the s-wave scattering length a. , using (22) for V', and allowing 7, to be different from
ry. With ry varied from 0.75 p=*to 1.5~ and r, from 0.5 ' to 1.5 1, he found
a rather small variation in the total correction to a, .

We look next at the way in which electromagnetic effects have been taken into
account in most of the phase shift analyses of pion-nucleon scattering data which have
been done since 1965. Roper, Wright and Feld [15] give the full one-photon exchange
amplitudes & L’gor and ¥, for 7* p elastic scattering, again including the contribu-
tion of the Pauli term for the anomalous magnetic moment of the proton. In contrast
to the work of Solmitz [9], no further approximations were made in these amplitudes.
They suggest that the additive Coulomb point charge amplitudes #®, » which
appear in (1) should be

FP = (F¥Bora — F F,Born) EXP2VP(0; q)] + F i,
G = g%,)Born exp[2iv(’”(0; Q)]s (25)

where it is understood that, in the ‘nonrelativistic’ amplitudes in (25), g is the relativistic
momentum and 7(q) as given in (11) is to be multiplied by the factor

CmW)~Y (W2 — M? — u?) (Roper, Wright and Feld). (26)

The relativistic modification given in (26) is also applied by Roper, Wright and Feld
to the calculation of the differences

v(l; q) — v®(0;9)
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which appear in the partial wave expansions when an overall phase factor
exp[2iv?(0; q)] is removed. The prescription (25) in fact enables this factor to be
removed from the full amplitudes &, ¢ of (1). Actually a more reasonable prescription
would be to take the full relativistic point-charge amplitudes as

FO = FPyorm expl—in(g) In 4(1 — cos ©) + 20v7(0; )] @

and similarly for ¥®, with %(¢) modified as in (26). The motivation for (27) is that the
effect of taking the whole Born series in the nonrelativistic calculation instead of just
the first term is to multiply the first Born approximation by a phase factor. Roper,
Wright and Feld do not give a proper argument for the modification (26); a possible
argument would be that, when the modification (26) is applied to (1 — cos @)F #. porns
the result agrees with (1 — cos @)F ¢y ., for small @, if the anomalous magnetic
moment terms are not taken into account.

Roper, Wright and Feld neglected the electromagnetic corrections altogether.
From the phase shift analysis of = *p elastic scattering experiments they obtained the
modified nuclear phase shifts 8. (/,J; ¢) + ¢.(/,J; ) as functions of g. But then they
neglected the ¢, altogether and identified the modified nuclear phases with the purely
nuclear I = $ phases 85(/, J; ¢). These phases were then used in the analysis of 7~ p
experiments. Here too the electromagnetic corrections ¢, and C;; which appear in (18)
and (19a) were taken as zero, and the = p elastic and charge exchange scattering
experiments analysed in order to obtain the purely nuclear phases 8,(/,J;¢q) as
functions of g. It is not clear from [15] whether the kinematical mass difference effects
were included in the analysis of charge exchange scattering experiments. Subsequent
large scale phase shift analyses of pion—nucleon scattering experiments also neglected
electromagnetic corrections and until the accurate experiments of Bugg et al. [5-7] it
was possible to achieve a satisfactory fit to the experiments. The new experimental
results, with greatly improved accuracy, showed immediately that it was impossible to
use the resonant phase §5(1, 3; ¢), obtained from analysis of the #*p experiments
without electromagnetic correction, in the analysis of =~ p experiments. We return to
this in Section 4.

We consider next the paper of Oades and Rasche [16], who studied the scattering
of two spin-0 particles with extended charge distributions. They used the Schrédinger
equation for the relative motion, the potential being the sum of a short range nuclear
potential U(r) (U(r) = 0, r > ry) and a Coulomb potential V(r) which was assumed
to be due to the interaction of two uniform spherical charge distributions of finite
radius. Thus V(r) was taken to be the point charge Coulomb potential V®(r) for
r = r., where r, is the sum of the two radii; for r < r,, V(r) is more complicated than
(22), but still readily calculable and finite for r — 0. Using this model Oades and
Rasche were able to obtain expressions for the outer Coulomb corrections to the phase
shifts to all orders in the parameter %, but for the inner Coulomb corrections they were
able to obtain only a first order result. In this case, ‘outer’ refers to the region r > r,,
‘inner’ to the region 0 < r < ry, where r, = max{ry, r.}. Further, from an argument
similar to that of Van Hove involving the Klein—-Gordon equation, Oades and Rasche
suggest that n(g) be multiplied by

(1 n q2)1,2 _ W2 — M? — pu2 [1 n AM* 20?2 — (M + p)?} ]”2

m2 2mW (M + p)2(W? — M2 — 2y
(Oades and Rasche) (28)
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in the calculation of the Coulomb phases and the Coulomb corrections. In fact (26)
and (28) are almost identical; the extra factor in (28) has a maximum value of 1.027.

Oades and Rasche (in appendix C) also consider the way in which some authors
modify the additive Coulomb amplitude and the Coulomb phases in order to take
account of extended charge distributions. It might seem that it is not correct to use an
additive amplitude and Coulomb phases corresponding to a point charge potential
when the actual Coulomb potential is modified to take account of the extended charge
distributions of the interacting particles. However, the point charge Coulomb potential
actually serves as a reference potential, whose choice is a matter of convenience.

Suppose that ¥ is some reference potential and let # and ¢ be the additive Coulomb
amplitudes and #(/; g) the Coulomb phases corresponding to V. Suppose the experi-
ments are analysed (in the case of 7 *p elastic scattering for definiteness) using (1), (3)

but with additive amplitudes ﬂ‘;, gﬂ and Coulomb phases 7, (/; g). The analysis will
yield phase shifts

8.(LJ;q) + el T 9),

but the corrections ¢, (, J; ¢) will depend on both ¥ (r), the actual Coulomb potential
assumed in the model, and ¥V (r), the reference potential. If the corrections are
calculated properly, they must be such that the sum

7.(5q) + e, T3 9)

does not depend on the reference potential ¥, . The strictly nuclear phases 8,(/,J; q)
obtained from the analysis after the corrections have been made will also not depend
on V.. The important thing is that the additive amplitudes, the Coulomb phases and
the corrections must all use the same reference potential. The correct first order (in )
formula for the Coulomb corrections is given by Zimmermann [3], who also gives two
examples of reference potentials (other than the point charge Coulomb) together with
the corresponding additive amplitudes and Coulomb phases. His result is

c.055q) = -2 T VORI F) — P (r)mar3iar), (29)

where h, ([, J; r) appears in (23) and (24). Note that, for / = 0 and the point charge
Coulomb potential as reference potential, it is easy to go from (29) to the generalization
of Van Hove’s result (13) to include the inner Coulomb correction, namely

¢, (0,1;q) = —2j drV, (P20, 45 1)

+ n.+(@)ly + In(2gro) — Ci(2qro) cos(25..(0, %; 9))
+ 5i(2qr,) sin(25.,.(0, 25 9))]. (30)

To summarize, it is correct to use additive Coulomb amplitudes and Coulomb phases
corresponding to a pure point charge potential in the analysis of experiments; use of a
reference potential modified to take account of extended charge distributions will not
alter the strictly nuclear phases obtained after the Coulomb corrections are made,
provided all the calculations are carried out correctly.

The first complete treatment of the coupled (=~ p), (=°n) system is given in papers
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by Oades and Rasche [1] and Auvil [17].%) Oades and Rasche outline first the theory
of Coulomb corrections to #*p elastic scattering, and then develop the coupled
channel formalism, neglecting the n—p and =*-=° mass differences in their treatment
of the electromagnetic corrections. The 2 x 2 potential matrix was taken to be the
sum of the matrix U of (4), which assumes charge independence, and the Coulomb
potential matrix V given by

V_(r) 0) .

V(r)=( 0 0

The nuclear potentials U;, U; were assumed to be of finite range ry, and V_ was
assumed to deviate from the point charge Coulomb potential ¥® only for r < r.
Their treatment led to results for #_, %,_ and &%, very similar in form to Van Hove’s
results (equations (5)—(8)), but complicated by the presence of four quantities labelled
x (with suitable subscripts) which are related to the inner part of the Coulomb potential.
They showed that their results went over to those of Van Hove when the inner
Coulomb potential was set equal to zero, and that their S-matrix elements formed a
symmetric unitary matrix. They also wrote the first order (in 5 _) expressions for the
four x’s and indicated how similar expressions could be written for ¢, and A,. Finally
they gave the corrections ¢, and Cj, of (19b, ¢) in terms of ¢,, A, and the four y’s. They
do not give formulae for practical calculations; to derive such formulae for the case
I = 0, we start from the results in (A1.6) and (A1.7) of [16] (which are also found in
(18), (22a) and (22b) of Geissler [18]), namely

Fo(n; p) = sin p + [si(2p) sin p + Ci(2p) cos p — (In 2p + y) cos p] + O(7?),
Go(n; p) = cos p + y[—si(2p) cos p + Ci(2p)sin p + (In2p + y)sin p] + O(n?).
(31)
Differentiating with respect to p,
Fo(n; p) = cos p + 7[si(2p) cos p — Ci(2p) sin p + (In 2p + y) sin p] + O(»?),

Go(n; p) = — sin p + g[si(2p) sin p + Ci(2p)cos p + (In2p + y) cos p] + O(n?).
(32)

Using (31) and (32) and many formulae in reference [1], the first order results of
Oades and Rasche in the s-wave case are

To
cs = ¥ _[si(2po) sin 283 — Ci(2p,) cos 285 + In 2p, + y] — %f drV _(r)hi(r),
(]

To
¢1 = 3n_[5i(2po) sin 28, — Ci(2py) c0s 28, + In 2p, + ¥] — 4 f @V _(r (),
0

Co sin(8s — 8:) = (v/2/3)_[si(2po) sin(3; + 8;) — Ci(2po) cos(8; + 81)
+ cos(83 — 8;)(In 2p, + y)]

— 2/2)3 j AV _ (D), (33)

%) A preliminary report of the work of Oades and Rasche appeared in Springer Tracts in Modern
Physics, Vol. 55, ed. G. Hohler (Springer-Verlag, Berlin, 1970), p. 61.
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where r, = max{r., ry}, po = qro, and it is assumed that the strictly nuclear radial
wave functions /4, are normalized as in (24) and that the reference potential is the point
charge Coulomb potential. The results in (33) generalize the results of Van Hove in
(13) and (19).

The first part of the work of Auvil [17] is similar to that of Oades and Rasche just
described, though his method of using a large cut-off radius which is allowed to go to
infinity at the end of the calculation is not necessary and is avoided by Oades and
Rasche. Auvil gives first order formulae which generalize (33) to any partial wave; his
formulae can be readily generalized further to apply to any reference potential, giving

el T q) = —3 f: dr [V _(FY3(, 7 7) — V_(rymar¥ia(ar)],

(. 739) = =4 [ dr[V_)LT: 1) = V- (omaricar)),
Ca(l, J5 q) sin[ds(], J5 q) — 6:(, J; g)]
— —24/23 J " AV (Vs T bl T )
R cos{d(l, /5 q) — 8:(, J; @}V _()mar¥p(gr)].  (34)

Auvil also has some discussion (which need not concern us here) of the Coulomb
corrections in the case when the nuclear potential matrix U is an arbitrary symmetric
2 x 2 matrix function of r. In an appendix he discusses the question of relativistic
modifications and proposes the change in % given in (26), arguing from a comparison
between the Schrédinger and Klein—Gordon equations and also from a comparison
of the nonrelativistic and relativistic point charge Born amplitudes. We remark here
that Zimmermann [4] proposes yet another modification of », namely multiplication by

CmW)" Y MNM? + ¢®(W? — M? — 42  (Zimmermann). (35)

We conclude the discussion of relativistic modifications with the remark that the
prescription given in (26), as suggested by Roper, Wright and Feld and by Auvll, is
the one to be preferred. The prescription of Oades and Rasche in (28) is almost the
same, while that of Zimmermann in (33), which would differ greatly from (26) at high
energies, will differ very little from it across the first resonance (about 4%/ at 300 MeV).
Even the Van Hove prescription (20) differs from (26) by only 149 at the first resonance
position. Thus in the energy region in which such rough relativistic corrections can
make sense at all, the various prescriptions are in satisfactory agreement. As we
remarked earlier, it is essential for the modified » to be used in the phase factor in (27),
in the calculation of [v®(/;q) — v**)(0; ¢)] and in the formulae for the Coulomb
corrections.

In the appendix of his paper, Auvil looks at the effect of the mass differences on
the calculation of the electromagnetic corrections for the two channel case. However,
his treatment is incomplete and his conclusion, that the mass difference effects will be
unimportant in the energy region covered by the experiments of Bugg et al., is incorrect,
as we shall see. The first complete treatment of the effect of mass differences on the
coupled (7~ p), (#°n) channels was given by Oades and Rasche [2]. They used a two
channel Schrodinger equation, which reads simply

(1,d%/dr® + Q* — 2MU(r) — 2MV(r)R(r) = 0 (36)
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for the radial equation for the s-wave. The matrix Q was defined in (16),

M=(m 0), (37)

0 myg

m and m, being the reduced masses of the (7~ p) and (=) channels respectively. The
potential matrices U, V are exactly as in the case with no mass differences.

Oades and Rasche work through the theory of the electromagnetic corrections ¢,
and Cg;. One ambiguity which is inherent in any treatment of mass differences needs
to be pointed out. In calculating the strictly nuclear phase shifts 8, from the potentials
U, via the Schrodinger equation it is necessary to insert a ‘strictly nuclear’ reduced
mass /. But in the absence of any reliable theory of mass differences within isospin
multiplets, one cannot know what 77 is. Oades and Rasche (and later Zimmermann [4])
take m = m in order to avoid making mass difference corrections in the =*p case.
This is a convenient, but arbitrary, thing to do. All attempts to extract ‘charge
independent’ phases from the results of pion—nucleon scattering experiments, whether
by a potential theory model or by a dispersion theory approach, are subject to this
uncertainty as to the choice of the ‘strictly nuclear’ masses.

Oades and Rasche give a first order perturbation treatment of the electromagnetic
corrections, first order in the case of the mass differences meaning that only terms
proportional to Am and Ag? are kept, where

Am =m — my, Ag? = q2 — q° (38)

However, they do not give explicit formulae for ¢, and Cs, ; there is a lot of algebra in
going from the formulae in their paper to usable results. Such results are given by
Zimmermann [4], using a more general and elegant multichannel formalism.*) Zimmer-
mann also makes the generalization that the reference potential ¥ _ is not the point
charge Coulomb potential. To write his results, we need a little notation. Let

ho(r) = (m/q)"?sin(gr + 8,), r > ry,
and
hio(r) = F(r)cos 8, + G(r)sind,, r = ro,

where i = —, 0 is the channel index. The functions £_(r), G_(r) are the regular and
irregular Coulomb wave functions respectively for / = 0, for the reference potential
V_, with the asymptotic behaviour

F -(r)r:w (m/q)"2 sin[gr — n_(q) In(2gr) + $_],
C?-(r)r:; (m/q)"'? cos[gr — n_(g) In(2gr) + $_],
and

F'o(") = (mo/go)*'? sin g ,r, éo(") = (mo/q,)''? cos qr.

With the usual definition of the Wronskian of two differentiable functions, namely

W.lf gl = f(x)g'(x) — f'(x)g(x),

%) A similar formalism was first suggested by G. C. Oades and G. Rasche, Phys. Rev. D4 2153
(1971).
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Zimmermann gives the following first order results for / = 0:

¢s = —Xasz + (13m)W, [hs, h_s] + (2/3m)W,[hs, hos),
¢ =—Xu + Q3m)W, A, h_y] + (1/3m)yW, [h,, Roal,
Cay sin(83 — 8;) = Xay + (V2/3m)W, [hs, h_1] — (\/2/3m)Woolhs, horl,  (39)

where
Xos = 23m f " A3 mV_(r) — 2AmUs(r) — Ag?],
0

Xll

1/3m f  GRAmY _(r) — 2AmUL(r) — Ag?],
Xag = \/2/3mr0 drhs(r)h(r)[—2mV _(r) — 2AmU,(r) — Aq2]. (40)

Similar results may be written down for partial waves with / > 1. It is easy to show,
with the help of (31) and (32), that the expressions of (39) reduce to those of (33) when
Am =0,Aq% =0, V_ = V™. The results in (39) and (40) can also be deduced by
combining numerous equations in the paper of Oades and Rasche [2].

As we remarked earlier, even when inner Coulomb and mass difference corrections
are taken into account, the amplitudes #_, #,_ and %, for each partial wave (/;J)
continue to be given by (18) and (19a), which involve the strictly nuclear phases 6, and
the corrections ¢, and Cg; ; the full amplitudes &, ¢ are given by (1) and the differential
cross-sections by (17). If a reference potential ¥ _ different from V® is used to calculate
the corrections, the additive amplitudes #* and ¥® and the Coulomb phases »® will
be replaced by amplitudes and phases corresponding to V_.

There is an important reservation to be made concerning the work of Oades and
Rasche [2] and Zimmermann [4] on the two channel (7~ p), (#°n) problem with mass
differences, besides the arbitrariness in the choice of the nuclear masses. This is that
the equation (36) (and similar equations for / > 0) is a model equation which is not
Galilei invariant and whose theoretical basis is not clear. One would hope, however,
that because of the smallness of Am the lack of Galilei invariance will not have too
serious an effect on the calculation of the corrections. Further, it is not clear whether
there should be some relativistic generalization of the difference Am of the reduced
masses (which appears in (40)). Because of these reservations one cannot take the
‘charge independent’ phases of Zimmermann too seriously. On the other hand, as we
shall emphasize at the end of Section 4, the primary aim of Zimmermann was to show
that it is possible to make a charge independent analysis of the experimental data on
w*p scattering across the first resonance.

3. Other Work on Electromagnetic Effects

The unsatisfactory features of the potential theory models are all too obvious, and
we have pointed out some of them already. In addition, there is the arbitrariness of the
shapes of the nuclear potentials U, and of the Coulomb potentials ¥, (including the
choice of the range parameters ry and r,), the possible effect of which will be discussed
in Section 4. Thus attempts have been made to put the theory of electromagnetic
effects on a more satisfactory basis by using a dispersion theoretical approach.
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The first work of this kind is that of Sauter [19, 20]. In the first paper he considers
= p elastic scattering and looks at the s-wave in the energy region up to 100 MeV. He
first calculates the correction ¢, from the potential theory model, using Van Hove’s
formula (13) for the outer part of the correction and Schnitzer’s formula for the inner
part (using a hard sphere nuclear potential). Sauter computes the inner, outer and
total corrections for a variety of values of r.. He then considers the dispersion theory
method of calculating the Coulomb correction due to Dashen and Frautschi [21]. The
first point to note is that dispersion theory can be used only if a small finite mass is
ascribed to the photon. In Sauter’s presentation the additive Coulomb amplitude is the
Born approximation of the scattering amplitude of a screened Coulomb potential of
very long range, which is further modified to take account of the form factors at the
two vertices. The partial wave expansion of this Born amplitude contains phases
which, as the range —oco, diverge logarithmically. Sauter does not consider what
Coulomb phases are to be used in the expressions for the partial wave amplitudes.
He defines an s-wave amplitude

(2iq) ~*[exp{2i(8, + ¢4)} — exp(2id,)] (41)

which does not diverge as the photon mass approaches zero, and identifies ¢, with the
Coulomb correction of the potential model. According to Dashen and Frautschi the
amplitude (41) satisfies a dispersion relation; to evaluate this dispersion relation one
requires knowledge of the discontinuity of the amplitude across its left-hand cut.
Further, the Dashen-Frautschi dispersion relation involves the representation of the
strictly nuclear partial wave amplitude as the usual ratio N/ D of two analytic functions.
There are many difficulties connected with this decomposition which we do not wish
to discuss here; such questions are discussed in [22] and references to further work on
the N/D method are given in [23].

The special problem in Sauter’s work is that he uses an effective range formula
for the s-wave amplitude which is decomposed into a constant D-function and an
N-function with two complex poles which are certainly not singularities of the exact
amplitude. Further, the Dashen—Frautschi dispersion relation then gives a correction
¢, which i1s complex; Sauter simply takes its real part. His final results for ¢, agree
well with those calculated from the potential theory model, but his treatment is open
to objections as serious as those which can be brought against the potential theory
method. The problems concerning the additive Coulomb amplitude and Coulomb
phases remain, and the strong interaction dynamics are not treated in a more satis-
factory way. Moreover, although a dispersion relation is used, Sauter’s work is
nonrelativistic.

In his second paper [20] Sauter discusses the complex (7~ p), (#°n) problem without
mass differences. He first makes calculations of the corrections ¢, and Cj, for the
s-wave amplitudes, using (33) with Schnitzer’s prescriptions for the nuclear wave
functions A, in the inner region. He then develops the Dashen—Frautschi dispersion
theory method for obtaining the same corrections. Compared with his earlier work,
Sauter modifies the 7 = 3 and I = 3 D-functions to have the correct phase on the
physical cut, which makes the corrections real but gives the N-functions a very
complicated singularity structure. Again Sauter finds good agreement between the two
methods of calculating the corrections.

To remedy the obvious defects in Sauter’s work, Hamilton and his collaborators
[24-25] have made a more careful dispersion theoretical study of electromagnetic
corrections. Again they use a small photon mass A and carefully separate out the terms
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involving In A. This is a delicate procedure which they develop first [24] in the frame-
work of a nonrelativistic S-matrix model derived from a potential model and then
extend to a relativistic situation [25]. The nonrelativistic treatment is first carried
through in the case of Coulomb repulsion for any /. The result of this analysis is that
each Coulomb correction obeys a dispersion relation which can be rigorously justified,
with the limit A | 0 properly taken. Hamilton et al. then discuss model calculations of
s- and p-wave corrections, comparing exact results obtained for a Yukawa potential
with the results obtained by solving the dispersion relation. This relation contains a
term which is directly calculable from the hadronic phase shift, a second term which
involves an integral over the physical cut (for which an iteration procedure can be used)
and a third term which involves an integral over the left-hand cut. It is in the evaluation
of this third term that significant uncertainties can arise in some cases. Thus for the
case of a strong attractive Yukawa potential, sufficient to produce a p-wave resonance,
Hamilton et al. are unable to estimate this term accurately because the power series
expansion in the coupling constant fails. This is not a large part of the total correction
in the case they consider, but there is no guarantee that this is so in a relativistic
calculation.

Hamilton et al. then consider the one-channel case when there is Coulomb
attraction, in which case the dispersion relation for the Coulomb correction includes a
contribution from the Coulomb bound states. They check the agreement between
calculations of the s-wave correction for a weak attractive Yukawa potential using the
Schrédinger equation and the dispersion relation separately. Finally they consider the
two channel (7~ p), (#°1) problem without mass differences and set up dispersion
relations for ¢, and Cj;.

It is difficult to do justice to the long paper of Tromborg and Hamilton [25] in a
brief review. A general survey of the problems involved in calculating electromagnetic
corrections to hadron scattering within a dispersion theory framework, including a
discussion of the main results of [25], is given in the review of Hamilton [26].%)
Tromborg and Hamilton begin by studying the elastic scattering of two spin-0
particles, using S-matrix methods, with a finite photon mass A. Their treatment takes
account of the emission of photons by charged particles (including the infinity of soft
photons) and the radiative corrections coming from the virtual emission and re-
absorption of photons. By looking closely at the cross-sections which experimenters
actually measure (in which the total energy loss due to photon emission is below some
finite energy resolution AE), they are able to derive a finite (as A | 0) amplitude in
terms of which the experimental differential cross-section is expressed. This amplitude
has the same analytic structure as the pure hadronic amplitude, apart from radiative
cuts (associated with processes like =~ p — yn) and Coulomb bound state poles. It has
the usual crossing properties and the same asymptotic behaviour as the hadronic
amplitude. Tromborg and Hamilton extend their treatment to the situation where
inelastic processes compete with elastic scattering, and show how it should be possible
to calculate the electromagnetic correction to the inelasticity parameter 7, at least up to
energies where electromagnetic effects in the inelastic channels themselves become

5)  Further study of the electromagnetic corrections to =*p scattering within a dispersion
theoretical framework is given in Nordita preprint 75/14 by B. Tromborg, S. Waldenstrem
and I. @verbg, who work with a finite (as A | 0) scattering amplitude which is slightly
different from that of [25]. They estimate the corrections to the = * p s- and p-wave inelasticities
due to bremsstrahlung and find them to be negligible at low energies.
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important. They then write, for each /, a relativistic dispersion relation for the Coulomb
correction to the (real) phase shift, which has the same general characteristics as the
nonrelativistic dispersion relation. The approximation procedures for the evaluation
of the correction are similar to those for the nonrelativistic case and the major un-
certainty is again in the calculation of the left-hand cut contribution.

Next, Tromborg and Hamilton consider the modifications introduced by the
inclusion of form factors for the hadrons. They find that the partial wave amplitude
whose deviation from the pure hadronic amplitude gives the Coulomb correction has
to be carefully chosen to ensure convergence of the dispersion relation. Finally, the
relatively straightforward extension to «*p elastic scattering is considered. The left-
hand cut contribution to the Coulomb correction for the resonant partial wave in = *p
elastic scattering is considered in a preliminary way in [25], with further discussion in
[26]. It appears from this discussion that the contributions to the #- and u-channel
exchanges which have been evaluated so far are about the same size as the rest of the
Coulomb correction which can be reliably calculated. Further, since nothing is known
about the very short range effects, it seems that for relativistic problems the dispersion
theory method contains incalculable uncertainties. ‘

The formulation of the dispersion theoretical approach to the two channel
(7~ p), (7°n) case has not yet appeared. If mass differences are taken into account (and
it is likely that they are crucially important) this will be a formidable undertaking.
We therefore regard the study of =*p and =~ p scattering processes using the potential
theory model, for all its obvious deficiencies, as a worthwhile undertaking in indicating
very roughly the sort of Coulomb corrections to expect, in showing the importance of
mass difference effects and in suggesting that the breaking of SU(2) symmetry in
pion-nucleon scattering processes may well be due entirely to electromagnetic effects.

In this section also we mention briefly work on the effect of the radiative capture
process 7~ p — yn on the analysis of low energy =~ p experiments. This was considered
in some detail by Rasche and Woolcock [27], who set up the general framework for
analysis of such experiments. They showed that, even if one uses one’s approximate
knowledge of the multipole amplitudes for yn — 7~ p, it is still necessary in analysing
experiments on =~ p elastic and charge exchange scattering to use three parameters for
each partial wave. Even if some sort of ‘charge independent’ model is used to reduce
the number of parameters required for each partial wave, it is still necessary to take
account of the yn channel in analysing =~ p experiments. Problems related to the
presence of this channel will be considered in a later paper. We also mention here the
work of Waldenstrem [28], who considers the parametrization of a 3 x 3 unitary,
symmetric matrix and gives explicitly the unitarity bounds on the free parameters; his
work applies in particular to the s-wave S-matrix for the channels (7~ p), (#°n), (yn).

4. Analysis of 7*p Experiments Across the First Resonance

We consider now the analysis of the experiments of Bugg et al. [5-7]. It was
already clear from the total cross-section data [5] that a detailed consideration of
electromagnetic corrections was necessary. When the cross-sections o, had the
contributions of the small partial waves removed, and electromagnetic corrections
were neglected, it was found that the resonant phases obtained from o, and from o_
were significantly different. We shall label these ‘phases’ as 85, ; they are extracted
from o in the crude way just discussed. On comparing the positions and widths of the
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‘resonances’ represented by these phases, it was found that

Wi n~p) — Wi(ntp) = 1.4 + 0.4 MeV,
[(m~p) — T(@*p) = 10.3 + 1.3 MeV. (42)

For definiteness, the position is where the phase is 90°, and the width is the difference
in the total energies (in the centre-of-momentum system) where the phase is 45° and
135°. Equation (42) means roughly that the phases agreed at about 175 MeV; above
that the =~ p phase was the smaller, below that the larger.

In the phase shift analysis of the full set of experiments, Carter, Bugg and Carter
[29] made electromagnetic corrections which are discussed in a paper by Bugg [30].
Bugg used the formulae (34) of Auvil [17], choosing a complicated nuclear potential
whose first Born approximation reproduces the main Born terms deduced from partial
wave dispersion relations. For the resonant wave Bugg’s correction ¢, (1, 3;q) is
negative at low energies, reaches a minimum of about —1.1° at around 155 MeV, goes
through zero at about 260 MeV and is positive thereafter. This decreases the =*p
resonance position a little and increases its width. Since mass differences are not taken
into account in Bugg’s corrections,

e = —3%c,

and the effect of this correction on the analysis of 7~ p experiments is to increase the
position of the 7~ p resonance a little and to decrease its width. The influence of Cs,
also needs to be taken into account; if 8;_ is the phase obtained from the analysis of
w~ p experiments without any electromagnetic corrections, then, well away from the
resonance position,

83 ~ 83_ —_— C3 = ’\/2 C31 tan 83, (43)

Now Cj, without mass differences is about +0.2° and varies little with energy. This
also has the effect of reducing the width of the =~ p resonance. The result of these
corrections in Bugg’s analysis is that

Win~p) — Wiw*p) = 2.6 MeV,
['(z~p) — ['(=*p) = 6.4 MeV. (44)

The discrepancy in the resonance positions is made worse, while that in the widths is
reduced, but only by a third. The calculation by Tromborg and Hamilton [25] of ¢,
for the resonant wave, discussed in Section 3, with the left hand cut contribution
neglected, is very close to that of Bugg, so the discrepancy remains.

As mentioned earlier, Zimmermann[3, 4] has been able to obtain a ‘charge
independent’ potential theory model. He showed that, by a suitable choice of the
parameters r, and ry which is physically reasonable, it is possible to find a charge
independent resonant phase which, with Coulomb corrections applied, is able to
provide good fits to both the =*p and =~ p data. The important result is that the
inclusion of mass difference effects is essential in calculating the electromagnetic
corrections. It should be emphasized that Zimmermann analysed the full set of data
from both #*p and =~ p experiments simultaneously. Zimmermann shows in [3] that
the correction ¢, (1, 3; ¢g) varies considerably as r, and ry are varied, so that one cannot
fix these parameters by analysing the = * p data alone. Only the analysis of the combined
7w*p and 7~ p data determines r, and ry, and thus the electromagnetic corrections and
the charge independent phases.
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Zimmermann’s first paper [3] deals with = *p scattering. He points out an error
(which in practice is not very important) in the calculations of [29] and [30], namely
that Bugg [30] uses a certain reference potential to calculate the Coulomb corrections,
while Carter et al. [29] use additive Coulomb amplitudes and Coulomb phases
corresponding to a different reference potential. Zimmermann looks at the variation of
c.+(1, 3; q) when r, and ry are varied over physically reasonable ranges. He also shows
that the correction is insensitive to details of the shape of the nuclear potential. He finds
that the general shape of the curve for ¢, (1, 3; q) is the same, whatever the values of
r. and ry chosen, but that the minimum value can vary from about —0.6° to —1.4°,
and the position of the subsequent zero from about 190 MeV to 260 MeV. The position
of the minimum seems to remain fairly constant at around 150 MeV.

The second paper of Zimmermann [4] is a much more extensive study of low energy
pion—nucleon scattering. He gives a multi-channel formalism which would be readily
applicable to a problem with more than two channels. He also considers the case where
the Coulomb potentials V; (i indexes the channels) which are assumed to exist in the
various channels may differ from the reference potentials ¥V; from which the additive
Coulomb amplitudes and Coulomb phases used in the analysis of experiments are
derived. For his analysis of m*p experiments he uses additive Coulomb amplitudes
with the form factor modification of Carter et al. [29], and the corresponding Coulomb
phases. The Coulomb potential V', is that of (22) and V'_ = —-V,.

Zimmermann gives his results forr, = 1.42 p=1, ry = 1.10 ™ *; with this choice
he is able to get good fits to the data of Bugg et al. [5-7]. His work therefore indicates
that the observed SU(2) breaking in low energy pion—-nucleon scattering may well be
due solely to the direct electromagnetic effects treated in this paper. For the resonant
wave, the correction ¢, has a minimum of —0.6° at 140 MeV and goes through zero
at about 195 MeV. The resonance position for 7*p is thus unaltered, whilst its width
is increased. The shape and size of ¢, are drastically altered by the mass difference
effects. At 80 MeV, c; is just over 0.4°; it goes through zero at just above 150 MeV and
has a minimum of —0.4° at just about 210 MeV. It will be seen that this reduces W,
for the 7~ p resonance and substantially reduces its width, as required. The correction
Cjg; to the mixing angle is also greatly changed by the mass differences; it is —0.2° at
80 MeV, goes through zero at 145 MeV and increases to 0.1° at around 250 MeV.
This gives, using (43), a decrease in the resonance width. All the effects work in the
correct way to remove the differences given in (42).

We emphasize that the phrase ‘7~ p resonance’ is descriptive only, and is not to
be taken precisely. Statements like (42) and (44) are in fact based on an analysis of the
a~ p data which is incorrect in principle. If =~ p experiments could be analysed quite
separately from =*p experiments, and two eigenphases and a mixing angle obtained
at each energy for each partial wave, then for / = 1, J = 2 one eigenphase would go
through 90° and we could in that sense speak of a ‘m~p resonance’. But such an
analysis cannot be done. The analysis of Carter et al. [29] is wrong in principle; they
make their Coulomb corrections with a ‘charge independent’ model but then introduce
two different / = 1, J = 3 phases in the analysis of #=*p experiments. For this reason
also we do not know what value to put on Pilkuhn’s attempt [31] to obtain the width
difference in [42] by means of a penetration factor model which is a relativistic
generalization of the well known potential theory model. His model is supposed to take
into account Coulomb and mass difference effects, but it fails completely to reproduce
the width difference of (42). The situation as we see it is this. Since it is not possible
(and will not be possible for the foreseeable future) to analyse =~ p experiments
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independently of #*p experiments, either one makes a successful analysis of = p
experiments using some sort of ‘charge independent’ model or one can make no
meaningful analysis at all. Zimmermann has made such a charge independent analysis;
it is easy to point out its unsatisfactory features, but the onus is on others to produce
a more satisfactory alternative analysis.

5. The Study of Electromagnetic Effects
on Very Low Energy Pion-Nucleon Scattering

In this section we outline the programme which we shall develop in further papers.
With a view to the analysis of experiments at very low energies (below about 40 MeV)
which will be carried out at pion factories with much higher statistics than previously,
we shall consider first the parametrization of such experiments, neglecting the effect of
the (yn) channel. We shall, for both the 7 = § and I = 2 s-wave amplitudes, use the
model of an energy dependent short range potential of radius r,. We shall give a
justification for the use of an effective range expansion for fitting these amplitudes at
very low energies, and then derive the low energy behaviour of the s-wave amplitudes
for #*p elastic scattering and for =~ p — #%1. We shall write the theory of the two-
channel problem in a matrix form which generalizes readily to more than two channels.
Both Coulomb and mass difference effects will be included, and the resulting correc-
tions to the scattering lengths and curvatures (by curvature we mean the coefficient of
g? in an expansion in powers of g%) will be calculated as functions of r,. The s-wave
amplitudes for the three processes mentioned above will be parametrized in a form
which will be useful for the analysis of experiments below about 40 MeV.

We plan further to consider the effect of the radiative capture channel (yn) on low
energy = p scattering. One then has to consider a three-channel problem and look at
the low energy behaviour of the various processes which can occur. We shall look
closely at the theory of the Panofsky ratio (the ratio of the cross-sections for =~ p charge
exchange scattering and radiative capture), both in flight at very low energies and for
capture from a 1s state, and consider the uncertainties in calculating it indirectly from
pion photoproduction and 7~ p charge exchange scattering data. Finally, we will deal
with the proper statement of the final state theorem and the analysis of pion photo-
production experiments.
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