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Absolute Continuity for a 1-Dimensional Model of the
Stark-Hamiltonian

by P. A. Rejto?) and Kalyan Sinha®)
Département de Physique Théorique, 32, Bd. d’Yvoy, CH-1211 Genéve-4, Suisse

(11. XI. 1975)

Abstract. Absolute continuity of a generalized Stark-like Hamiltonian in presence of short-
range potential is proved.

1. Introduction

In this paper, we study an idealized model of the Stark effect. Firstly, we consider
a one-dimensional version and secondly, we replace the singular coulomb potential by
a shortrange, viz. L,-potential. On the other hand, we replace pure Stark potential,
i.e. the potential due to an uniform field by more general Stark-like potential, which is
described in detail in Section 2.

The following questions arise naturally. Is the spectrum of the Hamiltonian
absolutely continuous ? Does the probability of finding a particle in finite space region
at time ¢ decay to zero as time increases to infinity ? [1] Also, does the particle spend
finite time in a finite space region ? Here we answer in the affirmative the first question.
The second one is dealt with elsewhere [2] and the third will be answered in a future
communication,

Physically, it is well-known [3] that the Stark potential adjoins a barrier of finite
height and large width to the short-range potential. Therefore, a quantum mechanical
particle can tunnel through the barrier. Another way of describing the same pheno-
menon is to say that the system will undergo ionization when the Stark field is switched
on. Hence the motion of the particle is expected to be infinite or equivalently the spec-
trum of the Hamiltonian is expected to be continuous.

In order to prove absolute continuity, we use a method described in [4] and
applied in [5] to another situation. In Section 3, we state the properties which imply
the absolute continuity of a self-adjoint operator. In particular, we introduce the
abstract notion of an approximating family of operators that approximate a given
operator. In Section 4, we construct a candidate for the approximating family for
Stark-like potentials, using the JWKB-approximation method [3]. For this, we sub-
divide the real line into three parts. To every given interval # in energy we associate
an interval I™ in space, called turning interval, in the interior of which lie all the
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Minn. 55455, USA.

2)  Supported by Fonds National Suisse.



390 P. A. Rejto and K. Sinha H.P. A.

turning points. We start with a JWKB-approximate solution, in the region to the left
of I™ and continue it through the turning interval to the right of I™. This along with
another one starting from the right of /™ gives us a pair of approximate solutions of
Schrodinger equation.

In Sections 5 and 6, we verify that indeed the construction in Section 4 provides
us with an approximating family. In Sections 7 and 8, we verify additional Conditions
A,(F) and Ay(F) to arrive at the conclusion in Section 9.

2. Formulation of the Result

We give the formulation of a condition, similar to the one due to Walter [6].
This condition differs from those of Walters, Titchmarsh [7] and Neumark [8] on two
counts. Firstly, the basic interval is (—oc0, o) instead of (0, c0) and secondly we have
added a shortrange part. Also, since py(+0) # po(—c0), the method of splitting p,
into two parts, one shortrange and the other with no turning points, as given in [9]
does not work.

Condition B. The potential p is a twice continuously differentiable real function
defined on (—oco, o) such that

Jm p(f) = p(+ ) = Foo 2.1
and
+ oo dé:
. 2.2
J... o= @2
Furthermore, there is a positive number £ large enough such that the potential
p (E)) _1p°(9)
"(e)e) = (p(E) 4 p(¢) 23)

satisfies the estimate

[, ro® g < Xy

A potential satisfying this condition is called Stark-like potential. We call a
potential short-range if

P € Ly(R) N Ly 10.(R). (2.5)

We also state a set of simplifying conditions on the potential under which some
of the conclusions follow relatively easily.

Condition S. A potential p is Stark-like if it satisfies (2.1), (2.2) and if for some
positive ¢

f :: (I:vf(pé))(l%)n""‘f <, n=12 (2.6)

A potential p is short-range if
peLy(R) N LyR). (2.7)
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Next we assume that the potential p admits a decomposition
P =p1+ P (2.8)

where p, is Stark-like and p, is short-range, satisfying either Condition B or Condition
S.

Then we set
_ [feLy(R)/f and f” are locally absolutely
D) = {continuous in Rand —f" + pfe L2(R)} 29)
and define the operator L(p) mapping D(L(p)) into L,(R) by
L(p)f(€) = —f"(€) + p(O)f(E). (2.10)

Theorem 2.1. Suppose that the potential function p satisfies assumption (2.8) with
Condition B and define operator L(p) by relations (2.9) and (2.10). Suppose further
that this operator is essentially self-adjoint on D(L(p)) N C(R). Then this operator
is absolutely continuous, that is to say,

L(p) = (L(P)a.c. (2.11)

Theorem 2.2. Suppose that the potential function satisfies assumption (2.8) with
Condition S and define L(p) as before. Then this operator is absolutely continuous.

We prove these two theorems from an abstract theorem, stated in Section 3,
proved elsewhere [9]. Under the set of simplifying assumptions, self-adjointness of
L(p) is proved in Section 8. For the general case, if short-range part is zero, then our
essential self-adjointness assumption is implied by assumption (2.2) [10].

It is easy to see that one-dimensional Stark potential, given as py(§) = —eE¢
satisfies Condition S, which in fact implies also Condition B.

3. An Abstract Criterion for Absolute Continuity

Let 4 be a given self-adjoint operator acting on a given abstract Hilbert space 7.
We start with a lemma which gives a simple sufficient condition for a part of 4 to be
absolutely continuous. To formulate it we need some notations. To a given interval of
reals, ., and angle o, we assign two open regions of the complex plane by setting

R (F)={p|Repe %0 < + argp < o} 3.1
where #° denotes the interior of the interval £ As usual, we denote by #(5#) the space

of everywhere defined bounded operators on 5. For a possibly unbounded operator
T and for w in p(T), the resolvent set of T, we set

R(p, T) = (I — T)™ € B(F). 3.2)

Lemma 3.1. Suppose that to 4 and to the given compact interval .# there is a
dense subset S such that for each pair of vectors (f, g) in S x S

sup |(R(u, A)f, &) — (R(&r, A)f, g)| < . (3.3)
LEZR 4 (F)

Then A(#), the part of 4 over % is absolutely continuous.

It was observed elsewhere [11] that this lemma is an elementary consequence of the
resolvent loop-integral formula.
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For a class of Schrodinger operators it is possible to factorize the resolvent in a
manner which allows one to establish the rather general assumptions of Lemma 3.1.
To describe such factorizations we make a digression on forms. Accordingly let %
be an abstract Banach space and F a functional on ¢ x % which is linear in the first
argument and conjugate linear in the second argument, in short a sesquilinear form.
In analogy to the notion of the norm of an operator we define the norm of the form
[F] by

_ IF Y, 9)
I =, S8, , T ToTelo G4

and denote by F(%) the space of forms for which this norm is finite. Next let 4 be a
bounded operator on %. We define the product [F]4 to be the form determined by

[F14(f, 8) = [FI(4/; ). (3.5)
Then clearly
IF1A] < [LF1] (4] (3.6)

So far the Banach space % was independent of our Hilbert space #, Now we impose
our first requirement, namely that both ¥ and 5 can be embedded in a metric space
# in such a manner

4 N A is dense in o and in %. (3.7)

Clearly an operator T in S defines a form on D(T) N % x D(T) N ¥; namely the
form

[Tle(f, &) = [T#(f, 8) = (TF, 8). (3.8)
If

D(T) N ¥ is dense in ¥, (3.9

and the closure of this form is in F(%) we denote it by the same symbol Tg. In this case

we say that the operator T determines a form in F(¥). Note that in view of assumption

(3.7) assumption (3.9) holds for each T in #(5¢). If in addition to assumption (3.9)
TN %) <9, (3.10)

and the closure of this operator is in #(¥%) we denote it by Ty. In this case we say that
the operator 7" determines an operator in #(%).
These definitions allow us to state our key definition.

Definition 3.1. (#). The family of operators 4,(x) is an approximating family to
the given operator 4 over the given interval .# if there are open regions #Z, (.#) of the
form (3.1) such that for each p in Z,(¥),

p€ p(do(w), 1e. R(u, Ag(p)) € B(H). (3.11)

Furthermore there is a space ¥ satisfying assumption (3.7) such that with reference to
it the two conditions that follow hold:

Condition G,(#). For each p in #,(#) the approximate resolvent operator,
R(w, Ay(p)) determines a sesquilinear form in F(%) for which

sup | [R(k, Asw)]s] < co. (3.12)
LER 4 (F)
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Condition Gy(#). For each p in #,(#) the operator determines an operator in
B(%), i.e.

TR = (4 = Ao()R(p, Ao(n))g € #(%). - G13)

These operators depend norm-continuously on p and admit continuous extensions on
to the closures Z,(%).

An example of Pavlov and Petras [12] concerning Holder gentle perturbations
implies that the existence of a family of approximating operators alone is not a suffi-
cient condition for absolute continuity. Therefore, in analogy with such perturbations
[11], [13], we introduce two additional conditions.

Condition A,(#). For each w in # each of the two limit operators (I — T, (w))g
admit inverses in %(%).

Condition A,(#). For each p in the open region #,(#) the original resolvent
R (pn; A) determines a sesquilinear form in F(%). This sesquilinear form is such that

[R(k, Dl = [R(n, o)l — T(1)z*. (3.14)

It 1s not difficult to show that these two additional conditions together with the
existence of a family of approximating operators are sufficient for absolute con-
tinuity, In fact, the following theorem was proved in the report [9].

Theorem 3.1. Let A be a given self-adjoint operator and let .# be a given compact
interval. Suppose that 4 admits a family of approximating operators over .% in the
sense of Definition 3.1. Suppose further that Conditions 4, (-#) hold. Then A(F) is
absolutely continuous.

4. Construction of JWKB Approximate Potentials

Application of JWKB approximation method in quantum mechanics goes back
to the early days [14]. In most of its applications it is used to construct an approximate
eigenfunction (proper or improper). These approximate eigenfunctions, in turn, have
been used to compute transmission and reflection coefficients, currents [3] and
various other quantities of interest [15]. JWKB approximation method is basically a
semi-classical approximation in which the leading term in the asymptotic expansion
of the solution of the Schrodinger equation, in the limit of Planck’s constant A
tending to zero, is kept. Details of this can be found in Ref. [16].

It is well-known that JWKB approximation is valid in regions away from the
turning point for every given value of energy », where a turning point is defined as the
solution of the equation p,(¢) = w. Since we shall be interested in an interval of energy
J instead of a given value of energy o, we shall need an interval I™, called turning
interval, such that

distance (% p,(R — I™)) 0. 4.1)

That such an interval can be constructed follows easily from the continuity of p,
and property (2.1). We also designate the boundary points of /™ as a and b respectively
and they are chosen such that

pa(é) —w >0 forall{ < aq,weSf (4.2)
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and
pa(f) —w <0 forall ¢ > b, we £ 4.3)

Thus I™ is the compact interval [a, b] and JWKB approximation is valid only in
R — I™ In the interval I™, we have a lot of freedom to choose the approximate
solution. As the simplest possibility, we choose here the linear approximation in the
turning interval I™. In the following we denote by I' and I" the semi-infinite regions
(— o0, a) and (b, o) respectively so that

R=I'vuilmrul.

With the aid of the above construction, we define the JWKB approximate potential
q(p) by

p2(é) + r(ps — 1)), E¢Im (4.4)

a6 = {" i

where p € Z . (#). This is motivated by the JWKB approximation method to obtain
approximate solutions of the equation

S(E) + (p — pa(OF(E) = 0. 4.5)
Let 4/z denote the branch of the square-root function defined by the property
Re v/z > 0, for z ¢ (— o0, 0]. (4.6)

With the aid of this function we define

" _ —— 1 pi(d m
w*(p)(§) = i\/Pz(f) L Zm’ E¢I 4.7)
and write
¢
(exp ( f w* ()(o) da) , tel
K (u)(é) = { o) + B(u)é, Fal™
§ 4

@ exs([ W@ de) + @ exs([ w0 do), eer

(4.8)

(5+(1) exp( ) "W (u)(o) do) + 87(s) exp( ) - (W)(o) da), ter

kK'(u)(€) = { ' (p) + B (), Eel™
&
\exp( fb W (1)) do), cer.
4.9)

The constants appearing in (4.8) and (4.9) are chosen such as to make k'(w), k'(u)’
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and £"(u), k"(r)’ continuous everywhere. This leads to

) = 1 — awv ()@, () = w (W@ )
e _ W@ — w@B) — (b — A (W (@w (W) 165,
v W (W — w1 > .10

() = PB@ = W ()b) = (b — Aw* (@w* (1))
ik w- (@) — w* (w)®)

/

“) = 1= bw- @B, Fl) = w (0) |
iy = 27O = W)@ + B — Aw (@ (O) )
= W)@ ~ (@) } (410

5-(u) = W@ = w(B) = b = AW (WN@w=(2)(b),
2 w (@)@ — w- (W@

An elementary algebra together with the above choice of constants imply that
both functions k'(n), k"(n) satisfy the differential equation

k()" (§) + (1 — q()(ENk()(E) = 0. (4.11)

We shall make essential use of this fact in subsequent sections. There we shall
show that the family of approximating operators defined by A,(n) = L(g(un)) satisfies
the assumptions of the abstract Theorem 3.1.

/

5. A Lemma on Approximating Potentials

Let p(x) be a given family of potentials and let .# be a given interval. Recall that
definition (2.10) assigns to each of them the operator L(p(u)). In this section we
formulate conditions which ensure that this family of operators approximates the
operator L(p) over the interval .~

Condition I(.#). The family of potentials p(u) is such that the operator L(p(r))
satisfies assumption (3.11). Furthermore for each point w of # each of the two limit
functions exists,

lim p(w + i)€) = p.@(®), (5.1)
and this convergence is uniform in w in .# and £ in any compact subset of R.

Condition II(#). There is a strictly positive function s and there are regions Z, (.#)
of the form (3.1) such that for each u in these regions resolvent kernel of the operator
L(p(r)) satisfies the estimate

| R, LoD )| < O(Ds(€)s (), (3.2)

where the constant 0(1) is uniformly bounded for px in %, (#). With reference to this
function, these potentials satisfy the estimate

fw sup  [p(&) — p(u)(©)-s%(&) dt < co. (53)

— © LEZR & (F)
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Furthermore for each point w of # each of the two limit kernels exists,
lim R(w + i€, L(p(w + i€))(¢, 1) = Ru(w, L(p(w)))({, 1) (5.4)

€E=»+0

and this convergence is uniform in w in £ and (¢, n) in any compact subset of R x R.

In the following lemma we use these conditions to formulate conditions ensuring
that L(p(r)) approximates L(p). Recall that in Definition 3.1 this approximation
property was stated with reference to a given space . In the following we define such
a space by defining a norm on the space of measurable functions.

Lemma 5.1. Suppose that to the given potential p there is a family of potentials
p(p) satisfying Conditions I(#) and II(.#). For each real function x such that

® 121

f 5%(8) exp(—x(f) f Y $%0) da) dt < o, (5.5)
define

12
) = sup |p® = O + exp(—x(@) [ %) do) (56)
HER 4 (F) 0

and

i1 = | (3) (5)
Suppose further, that with reference to such a norm the operator

(L(p) — L(p(u))R(k, L(p(1))) (5.8)

satisfies assumptions (3.9) and (3.10). Then over the interval ., with reference to this
norm, the family of operators L(p(x)) approximates L(p).

Proof. 1t suffices to verify Conditions G,(#) and G4(#) under the hypotheses
listed above.

Condition G,(#). (3.11) tells us that R(u, L(p(n))) € #(#°). From the definition
(5.6) of % it follows that

H# NG ={f|feH# and M(n*?)f e #).

Therefore,

(R(p, L(p(W)))f, &) = (M(@#"®)R(p, L(p(n))M(n*)M(1/n)*2f, M(1/n)*?g)
onH# N%G x #NY,

If it is also true that M(n'?)R(u, L(p(r)))M(n''?) € #(5#), then applying Schwarz
inequality, we obtain

|(R(us L(p()))f, 8)| < [ M ()R, Lp(M0*?) || f 2]l o>
which in its turn implies that

sup | [R(e, L(pw)]e| < sup [M(n"*)R(k, L(p(w))M#*)| .
uek 4 (F) LER 4 (F)
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Hence G,(#) is implied by
=e | M(n ) R(p, L(p(u)))M(@#7?) | s < c0. (5.9)

UeR
To prove this estimate, set
X(p) = M(n"*)R(p, L(p(u))M(n*"?). (5.10)

Then the closure of this operator, which we denote by the same symbol, is an
integral operator and its kernel is given by

X(p)(&m) = n**(O)R(u, L(p())(E, nn''*(z). (5.11)
Inserting (5.2) in (5.11) we obtain
| XG)(E, )| < 0(1)n*3(€)s(£) - n*2(m)s(m). (5.12)

It is worthwhile to note that though the operator X(u) is not, in general, even
normal, its kernel however is majorized by the kernel of a symmetric operator (in
fact, rank one as we shall see below). Now,

Jf \X(I-L)(f, ) 2d§ dy < O(I)(fww n(E)s%(®) df)z,

By virtue of definition (5.6) and relations (5.3), (5.5); the integral on the right is easily
seen to be finite. Since the constant 0(1) is uniformly bounded in u for p in £ . (#) and
since the Hilbert-Schmidt norm of an operator majorizes its operator norm, we have
established (5.9) or equivalently verified G,(.%).

From the definition (5.7) of ¢ it is clear that M (1/n)''? defines an isometry mapping
% onto S and similarly M(n'/?) defines an isometry mapping 5# onto %. Denoting
these isometries by the same symbol,

M(%) Py M = 9, (5.13)
and M(1/n)*? and M(n'/?) are unitary transformations, being inverses to each other.

We set

T(p) = (L(p) — L(p())R (ks L(p(1))). (5.14)

Then T(r) satisfies, by assumption, domain conditions (3.9). We claim that if the
closure of the operator M(1/n)*'2T(u)M(n''?) is in B(H), then T(y) satisfies (3.10) and
defines an operator T(u)s in ¢ and is in #(%). This is seen as follows:

For all fe D(T(r)) N %, which is dense in ¥

I lo = | 4 (5) “Toonemn (5)

n

1\ /2
<|[m(3) “reme| it
# #
Therefore, T(1) maps D(T(1)) N % into ¥ verifying (3.10) and also establishing
1\ 12
ITwls < | (3) “ome)
#

Hence in order to verify the first half of G,(#) it suffices to establish

< . (3.13)

sup_ |30 () “rgamer )

UER 1 (SF)
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Denoting by

Y(s) = M (}1)”21-(,,,)1‘4(”1/2), (5.16)

we see that Y(u) is an integral operator given by its kernel

Y&, 7) (;%) 2(0(8) — pO)RGs, pW)(E, 7). (5.17)

Definition (5.6) clearly implies that

f-l_(% |(p(&) — p(w)(€))| < n(é)'3,

hence

| Y()(€, )] < [X(w)(E, )| (5.18)

and therefore the previous estimate on X(u) enables us to reach the required conclu-
sion.

As for the second half of G4(#), we need to observe first that the kernel Y()(€, n)
is a continuous function of p in Z,(.#) and that

| Y(w)(€, m)| < 0(D)nt2(E)s(€£)-n*'(n)s (n) (5.19)

which is Ly(R x R) as observed before. By Lebesque dominated convergence, Y(u)
depend continuously in Hilbert-Schmidt and therefore, also in operator-norm on u
for p in #.(#) and the same conclusion follows for T(u)g.

Properties (5.1), (5.4) and definition (5.16) implies

lim lim | Y(u)(¢, 1) — Y(ua)(€, m)| = O (5.20)

B1— 0 Ug—0

and this limit is uniform in o in # and (¢, ») in any compact subset of R x R.
This along with the fact that Y(u)(&, n) is uniformly majorized by a function in
L,(R x R) as in (5.19) helps us conclude that

lim lim | ¥(s)) — Y(us)| = O, (5.21)

ﬂl—ra) uz—lﬂ)

uniformly in w in £ This implies that 7(x)s admits norm-continuous extensions onto
the closures of Z,(#).

6. The Family of Operators L(g(n))

In this section we want to verify all the hypotheses of Lemma 5.1 so that the
conclusion of Lemma 5.1 enables us to conclude that L(g(r)) constitutes an approxi-
mating family of the given operator L(p).

In this direction, we want to show that the basic part of Weyl construction can be
carried out to obtain the resolvent kernel of L(g(n)), though the operator L(g(u)) is
not even symmetric. In fact we have already seen in Section 4 that functions k()
and k"(p) satisfy the equation (4.11). Also by construction,

K(u) e Ly(—o0, —1) and k(w) e Ly(l, o). (6.1)

That their Wronskian is non-zero is shown in
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Lemma 6.1. To every given compact interval %, there exists a region %, () such
that for every complex p in the closures of Z,(#), the Wronskian

Wk (p), k() # 0. (6.2)

Proof. An inspection of solutions k'(z) and k"(x) convinces us that it is easiest
to compute the Wronskian in the turning interval I™. Doing that, the Wronskian
turns out to be

W(k!(w), k') = w*(@)@) — w=(w)®) — (b — a)w* (W)(@w~ (u)(). (6.3)
We have seen in (4.2) and (4.3) that

po(@) —w >0 and py(b) — w < 0.
Therefore, recalling definition (4.7)

Imw*(w)(@ =0 and Im w~ (w)(d) # 0,

from which it follows that

1 1
I @ * ™ v we) 0
Then
W(ki(w), k'(w)) | _ NP
Im{w T(w)a)w™ (w)(b)} = Im (W “(w)d) wT (w)(a)) 70

by virtue of (6.4) and hence the Wronskian is non-zero for all w € £

On the other hand the Wronskian is a continuous function of u, where w =
Re p e # and therefore by continuity, we can find the angle « in definition (3.1)
small enough so that W remain non-vanishing for all u € Z_,(#), where Z.(F) is
constructed with the angle « so determined. In the sequel, by #.(.#) we shall mean the
region #,(.#) determined in Lemma 6.1, so that (6.2) is valid for all u € Z,(5).

Having established (6.2), following the Weyl construction we define a kernel
K(p)(€, n) by

K(u)(£, ) = 1 {k (WO (1)),

l £ < n (6.5)
Wk (), K7(1)) \ K () (@)(€), € =7

where p € Z,(F).
First we claim that the corresponding operator, that is the operator defined by

K@) = f Ku)(& nf() dy,  feLy(R)

1s bounded. According to a result of Schur-Holmgren—Carleman [17], this is implied
by the following

Lemma 6.2. Setting

i pel®
Heln) = {Ipz(n) —pl7M geln
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one has

1 1
(s1P 73z | 1KGE It dn) - (sup o5 [ 1KGE D0 ) < oo
(6.6)
Proof. We introduce a non-negative function z(u) by
A ¢y S,
Re | Vpa(o) — p do, (el
v(p)(§) =& —a, f&Jm (6.7)
kRe;a‘:\/pz(a)—,ur.da'—l-b——a, Eel.
From the definition of k(1) and #(w), it follows that
K@) < Cl)tp)(€) exp(o(p)(£)), (6.8)
where
C(w) = max{|ps(a) — u|™™, || + |85, (y*| + |y~ DIpa(b) — u**}- (6.9)
Similarly,
[ (w)(n)| < D(u)t(e)() exp(—v(p)(n)) (6.10)
where
D(p) = max{|py(a) — p["*(|8*] + [87]), (|| + |B']6)e”~%, | pa(b) — u| e~}

(6.11)

Inserting estimates (6.8), (6.10) in definition (6.5) and remembering that W(k'(u),
k"(1)) # 0 and that v(x) is a non-decreasing function we obtain that to each non-real
complex number p in Z,(#) there is a constant 0(1) such that for every (&, n) in
R x R,

|K()(€ m)| = 0)e(u)(E)1(w)(n) exp(— [v(u)(§) — v(w)(n)])- (6.12)

Therefore,

t—(.u;?) | K()(€, M) () = O(D)t()*(n) exp(— [o(u)(E) — v()(m)]).

By virtue of a Lemma formulated elsewhere [18], one verifies that ¢2(x)(n) = 0(1)o(k)'(n)
and one obtains

1
o5 | 1KE Do) di

= 0(1) f exp(—[o(u)(§) — v()M)v(R)' () dn

= 0(D[2 — exp(—|v(u)() — v(u)(€)]) — exp(—|v()(€) — v(x)(—0)])]
and this leads to

sup ;55 [ KG)E DIt dn) < <o
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Interchanging the variables ¢ and 7 in the above chain of estimates, we arrive at

1
sgp(m [ kG mirxe de) < m

and together these two estimates imply (6.6).
Now we state and prove the main theorem of this section which verifies the first
part of definition (3.1).

Theorem 6.1. Let u be a non-real complex number in £,(#) and let g(u) be the
potential defined by equation (4.4) and L(g(r)) be the operator given by equation
(2.10). Then u is in the resolvent set of L(q(u)), i.e.

€ p(L(g(w))- (6.13)

Proof. We have already seen in Lemma 6.2 that the integral operator K(u) is
bounded and defined everywhere. Therefore, to arrive at the conclusion of the
theorem, it suffices to show that the integral operator K(u) is the inverse of the operator

(1l — L(g(w))), i.e.
(I — L(g(p))K() = I  on Ly(R) (6.14)
and

K(p)(pI — L(g(w))) = I on D(L{g(w))- (6.15)
From definition (6.5) it follows that for all f€ L,(R),

g ©
K@S©) = 35 (K60 [ ks dn + K6 [ Kot di).
- I3

(6.16)

Since k'(p) and k'(p) are continuous and square-integrable at —oo and +co respec-
tively, it is clear that functions k'(u)-f and k"(w)-f belong to L;(—o0, &) and L,(£, )
respectively. Therefore the two integrals in (6.16) define locally absolutely continuous
functions of ¢ [10]. Also k*(x) and k"(w) are continuously differentiable as is evident
from (4.10),, and hence locally absolutely continuous, establishing the result that
K(u)f(€) is locally absolutely continuous. Differentiating (6.16) with respect to £, we
obtain

4 @
K@r'® = 35 |6 © [ ks dr + K@ [ ks al.
- b4
(6.17)

Similarly, observing that k"(x) and k'(n) are piecewise twice continuously
differentiable by virtue of the differential equation (4.11) that they satisfy and the
fact that g(u) is piecewise continuous, we conclude that K(u)f'(§) is also locally
absolutely continuous.

Now we are in a position to compute

— KGS"(8) + (XK@
3
- 37| (K6 © + xR} | Koo

+ {—k'(w)'(¢) + Q(#)(f)kl(ﬂ)(f)}fw K ()(m)f(n) dn — Wf(é]
4
= pK()f(€) — f(€) € Ly(R)
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and conclude that K(uw)fe€ D(L(g(n))) for all fe Ly(R) and then (6.14) follows from
the above equation.

In order to obtain the second relation (6.15) it suffices to show that ul — L(gq(r))
is one-to-one. Let fe D(L(q(w))) and (uI — L(q(n)))f = 0. Then from the definition
of D(L(g())), it follows that f(£) satisfies the differential equation (4.11).

Since it is a second order differential equation and we already know that k'(u)
and k"(n) are two linearly independent solutions, there exists two constants I'" and I'
such that

S =Tk @ + k().

We have seen in (6.1) that k() € Ly(—oo, —1) and k"(u) € Ly(1, c0). It has been
shown elsewhere [18] that by virtue of condition (2.2) k'(x) and £"(x) are not square-
integrable at +o0o and —co respectively. Therefore, though fe Ly(R), both k(1) and
k™(x) do not belong to L,(R), leading us to conclude that I'* = I'" = 0, i.e.

f=0,
or equivalently we have shown that (u/ — L(g(x))) is one-to-one. This completes the
proof of the theorem 6.1.

Relation (5.1) for g(r) follows from definition (4.4) of g¢(x)(€) and the fact that it
is a piecewise continuous function of ¢ and w. This observation and the conclusion of
Theorem 6.1 verifies Condition I(#).

In (6.12) observing the fact that v(u) is a non-decreasing function, we obtain

C(p) D()
2
|K(,u.)(f, 77)] = W (K (), k(1)) H(p)(E)1 (1)), (6.18)
where constants C(x) and D(u) are given in (6.10), (6.12).

Recalling from Section 4 that the construction of the turning interval I™ ensures
that all the constants «, 8, ¥, 0 etc. appearing in the expression (6.9) and (6.11) are
continuous functions of x and are uniformly bounded for u real in #°. Therefore it
follows that C(u) and D(x) are uniformly bounded for p in Z . ().

Now setting,

s(€) = sup 1(p)(&) (6.19)
HER 1 (F)

we get the desired relation (5.2).

From the proof of Lemma 6.1 and definition 6.5 it is clear that the Wronskian
W(k'(w), k"(1)) is a continuous function of p while k'(x) and k"(n) are continuous
functions of x and their arguments. Insertion of this observation in (6.5) yields (5.4)
and uniform convergence.

As a consequence of conditions (2.1) and the construction of the turning interval
I™, we observe that there exists a constant x such that

s2(§) < x inf  [I/py(€) — plM,  E¢I™ (6.20)

HeR , (F)
Since the supremum of a product majorizes the infimum of the first factor times the
supremum of the second, we have that

u (2~ 4@ 6oy

uegeuﬁml(p B Q’(M))(f)] < uegtugf) |P2(E) - P"llz

inf |—1
ezt . (#)| P2(€) — p

whenever & ¢ I™.
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Since p, is a shortrange potential, we observe that

[ @@ de <o, [ n@s@d < o 622)
- b

Similarly, definition (4.4) and property (2.4) along with the fact that in neighbour-
hoods of +o, |pa(€)/(po(€) — w)| is close to 1 show that

[ om0 = 46O ™y < 0

(6.23)
and

[ up 10 = 46D e <

R . (F)

On the other hand in the turning interval [a, 6], s(£§) = 1 and since p, and g(u) are
continuous functions,

| sup 1pu@) - au@ls*© dt < o (6.24)
b UER , (F)

This combining with (6.22) and (6.23) yields (5.3), completing the verification of
Condition II(.#).

Now we are left with the task of verifying assumptions (3.9) and (3.10). First we
note that under the simplifying assumption Condition S, 7(u) is a bounded (in fact
Hilbert-Schmidt) operator in 2# and therefore (3.9) follows.

To prove (3.9) under Condition B, we choose a function x so that in addition to
relation (5.5)

lim x(¢) = 0. (6.25)

1€1=+

That such an x can be found is seen as follows. Since

'[ " s exp(— j " %) da) o s il a6

- 0

we can find positive numbers &, (n = 1, 2, 3,...) so that

w :
dés*(£) exp(—% f 5%(5) do) - ~21—n<1). (6.26)
&n 0
Clearly £, tends to +o00 as n increases. Now, define
1
x(§€) = 5 (6.27)

for £,_, < € < &, with &, = 0 and x(—¢) = x(§).
Then it is easy to see that x(£) thus constructed satisfy both (5.5) and (6.25).
Next for every non-real u € Z,(#) it suffices to exhibit a set S(x) such that

S(u) is a dense subset of ¥ (6.28)

and

S) = DT(p)). (6.29)
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To this end, define

NG = {7

where C(R) denotes the space of continuous functions with bounded support. Then
set

feC®, [~ R sto) dn = 0} (6:30)

S(k) = M(n*)N(p). (6.31)

Noting from (5.6) that n*'2 e L, ,(R) and from (5.13) that M(n''?)s# = &, we
conclude that

SwcH#NYG. (6.32)

By virtue of (5.13) the denseness of N(r) in 5 implies the denseness of S(x) in .
For this, define

NG = {fe @)

[” kexam=eson dn = ol. (633)

From the properties of the function x it is not difficult to see that k'(u)n'/2 ¢ 5.
Therefore the linear functional in (6.33) is unbounded on the domain C(R) and from
[22], we conclude that its null-space N'(u) is dense in 2, Next, on this set N'(r), define
the functional ¢ by

$(f) = f K@) (n)f(n) dn,  fe N'(w). (6.34)

L%

Then clearly N(u) is the nullspace of this functional ¢. Another application of the
same argument as above yields that N(u) is dense in N'(w). Since the topology involved
is always the same, that is the topology of Ly(R), N(u) is also dense in . To prove
(6.29), we recall formula (6.5). This shows that

R(p, L@(@)S(p) = C(R).

It is also clear from Condition B and definition (4.4) that
P - q(y') ELz,loc(R)-

These two together imply (6.29).

7. Proof of Condition 4,(.#)

It is clear from the last section that ¥(u) is compact in 5 and so is T(u)y in %.
It is also true then that the two limit operators T, (w)g are also compact. Therefore,
(I — T.(w))g is invertible if it is one-to-one [19]. This one-to-one property follows
from

Lemma 7.1. Let w in # be an exceptional point and 4 in ¢ be the corresponding
exceptional vector, or equivalently

U—-—T,(w)gh=0 or (I - T_(w)gh =0. (7.1,
Then
h=0. (7.2)
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In order to prove Lemma 7.1 we use the following abstract result, the proof of
which is given elsewhere [9]. Before giving the statement, we give the

Condition Gy(#). The family of approximating operators can be extended to the
closures Z,(.#) so that

(A4 = Ao(W)* = (4 — Ao(p)), (7.3)
in particular
(4 — Ao(Re))* = (4 — Ao(Re p)).

The family of operators

F(p) = (4 — Ao(Re p))R(p, 4o(1)) (7.4)
satisfies assumptions (3.9) and (3.10). Furthermore, for w in %
lim | F(2) = T(0)]g = 0. (7.5)

Proposition 7.1. Let the approximating family 44(x) satisfy Condition Gz(-#) and
let the form [R(u, 4o(1))]e admit continuous extension onto closures Z, (#). Suppose
that the point w in # and the vector / in ¢ are such that

(I— To(w)gh =0 or (I — T_(w))gh = 0.

Then the jump of the form [R(u, Ao(r )]# at this exceptional point and at this excep-
tional vector is zero. That is to say,

[Ry(w, Ado(w))]g(h, B) — [R_(w, Ao(w))]g(h, h) = 0. (7.6)

Verification of G(#). It is easy to see from the definition (4.4) that g(z) = q(x)
and also this function can be continuously extended to the closures #,(.#). In par-
ticular g(w) is real for w in £ Next we have to verify that

lim |F(x)g — T()s| = 0 (7.7)
where

F(p) = (L(p) — L(q(Re w)))R(x, L(g(w))).

Similarly as in Section 5, we note that

F(u)g — T()z is unitarily equivalent to M (’—Iz) 1Iz(F () — T(w)M(n'3). (7.8)

Setting

Z() = M(%) (F) — TE)ME), (1.9)

we note that this is an integral operator with kernel

Z(W)(E, 7) = (%) @w® — gRe W©)RE, LEW))E 7). (7.10)

As seen in Section 6, R(ux, L(g(w)))(é, ) converges as u — o uniformly in w in £
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and (¢, ) in compact of R x R and so does g(u)(€), uniformly in w in # and ¢ in
compact of R. Therefore

iljl; | Z(u)(¢,m)| =0,

uniformly in w in £ and ¢, » in any compact subset of R x R. Also, since

Z(p)(& m) = Y(Re p)(€,m) — Y(u)(&, n)
it follows from (5.18) that
1Z()(E, )| < 2| X (W)€, )

and therefore calculations similar to those in Section 5 yield

which imply (7.5).
Proof of Lemma 7.1. Firstly, we note that 4 € ¢ implies

[ a5 o)l dn < o | (7.11)

and therefore

[e o]

f_w s(n)|h(n)| dn =J s()nt2(n)-n=Y2(n) | h(n)| dy

- 0

([ stemen an) (|55 o én) ™ < o

where we have used Schwarz inequality and (5.4).
Therefore, for each fixed ¢ € R, the family of functions R(u, L(q(u)))(€, n)h(xn)
admits an integrable majorant, namely s(n)|A(n)|. Hence the following limits do exist,

g:@(®) = lim R + i, L(g(w + iO)h(®)

N

At the same time it follows from (6.5) that

T (w 4
£ = Jriesteay | F@mi) d

K(@)(§) e
" W), k(@) L Ky (@)(m)h(n) dn. (7.12)

Here we have also used that
k' (w) = k' (w) = k()

and that this function is real. This follows from the fact that according to definition
(4.8) at the point a for each u the functions k'(x) and k'(u)’ are real and from the fact
that both &', (w) satisfy the same differential equation with real coefficients; viz. (4.10),
w replacing u.

It is worthwhile to note that the above relations are valid whether o is an excep-
tional point or not.
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The hypothesis (7.1), allows us to apply proposition 7.1 to the exceptional
point w and the exceptional vector 4. This yields

(R (0, Lg@le(h, h) — [R-(w, Lg@)le(h, h) = 0
or equivalently
[ 7@ - s-@ena=o )

According to (7.12)

T & 4
£:@O) - £-@O = |ty © ] K d

' @0 k"(w) +
+ K@@ | |y @hd. 019

Next we compute

[ k'(w) ]*-'(a) (W(ﬁ)k'(ﬂ)'(a) . W(p«)k’(ﬁ)'(a))
W@, F@)l @ W2

% (w) ] @ s e (W(ﬁ)k'(#)(a) - W(;L)k’(ﬁ)(a))
Wk (w), (@) W)

where we have used p = w + ie and W(u) for the Wronskian W(k'(u), k"(r)). Evalu-
ating W(u) at the point ¢ = a and substituting, we get that

[k () W(@)]Z (@) _ k(o) (@)(W(k' (w), k" (@))/| W(w)[?) _ k() (a)
[K(@)/W(@)]i(a@) k() @WK (w), k(@) |[W(w)]?)  k(w)a)

where we have used the property that k{(w) and k' (w)’ are real functions. Therefore
the function [k"(w)/ W(w)]* (£) satisfies the same condition at £ = a, as does the func-
tion k'(w)(£) and of course, satisfies the same differential equation. Thus there exists a
complex constant #(w) such that

(7.15)

K@) 1* o) — ke
e ® = treo, (1.16)
In fact it is clear from (7.15) that

W (), k(@)
6 = =W

which is non-zero by virtue of the fact &7, (w)(£) and k" (w)(£) has different asymptotic
properties at & — + o0,
Inserting (7.16) in (7.14) and computing the L.H.S. of (7.13), we conclude that

g (7.17)

[ ke dr = o (7.18)

Going back to relation (7.14), we obtain

_ [T K ()DL (w)(n) — K (w)(m)k’y (w)(£)
g+(w)(é) = L AEONAR) h(x) dn. (7.19)
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From definition (6.7), estimates (6.8) and (6.10), it is seen that
lim o(u)(é) =b — aq,

u—wxi0

for all £ in a neighbourhood of + 0, i.e. for ¢ > &, &, being a large positive number.
Therefore for n > ¢ > &,

k(@)€K («)(n)
W(k!(w), k' (@)

Inserting this estimate in (7.19) and utilizing (7.11), we obtain

g+ (w)(§)
Hw)(§)

Under hypothesis (7.1)., and definition of g, it follows that

h=T,(w)gh = (p — g(w))g(w). (7.22)
This along with (7.19) yields

g (@)(8) = f M(wNEIES (o)) — RAoHols @) ¢, _ o iitete (o) di

< 0(DH(@)(©)t(@)(n). (7.20)

sup
§>&o

< oo. (7.21)

W(k'(w), ks ()
and using (7.20), we arrive at

g+(w)(§) A% . g4 (@)n)
S <00 [ 10 - sl S50

t(w)()

where ¢ > &,.

The function |(p — g(w))(n)|t(w)?(n) is known to be integrable from relations (6.22),
(6.23), (6.24) and therefore, remembering (7.21), we conclude that | g, (w)(§)/t(w)(§)| =
0 for large enough ¢.

Since t(w)(€) is finite everywhere, we see that

g+(@)(§) =0 (7.23)

for large enough ¢£.
From (7.19) it follows that g, (w) admits a locally absolutely continuous first
derivative. Hence equation (4.11) together with (7.19) tells us that g, (w) satisfies:

g+(@)'(§) + (o — g(w)(€))g.+ (@)(€) = h(§).
Insertion of (7.22) in the above equation yields

g+(«)'(6) + (@ — p(§)g+(w)(§) =0 (7.24)

(7.23) and (7.24) together lead us to conclude that g, (w)(¢€) = 0, which by virtue of
(7.21) implies 2 = 0. This completes the proof of lemma 7.1 and of Condition A4,(.#).

8. The Proof of Condition A4,(#)

In this section we verify the Condition 4,(.#) under Conditions S and B respec-
tively.

Lemma 8.1. Under the simplifying Condition S,
[R(u, L(p))]lg = [R(k, Lgw)]sI — T(w))e.
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Proof. We have seen in Section 6 that (2.6) and (2.7) imply that for all non-real
complex p in Z,(F4),

T(p) = (L(p) — L(g@))R(u, L(g(w))) (8.1)

1s compact in #Z(3F).
Therefore (I — T(u)) is invertible if it is one-to-one. We also known from [20]
that D(L(p)) = D(L(g(r)) for a fixed p in Z,(¥) so that we can write

(ul = L(p)) = (I — T()(d — L(g(w)))  on D(L(p)). (8.2)

Since L(p) is a symmetric operator, (uI — I(p)) is one-to-one and we know from
Theorem 6.1 that (u/ — L(q(w))) is onto. This fact combined with (8.2) yields

(I — T(w)"* € B(F). (8.3)

In the proof of Lemma 5.1 we have seen that T(u)s is unitarily equivalent to the
closure of M(1/n)'2T(w)M(n''?) in 5, We have also seen that this operator is compact.
Therefore (I — T(r))« is invertible if it is one-to-one in . For this it suffices to show
that (I — M(1/n)*?T(u)M(n*'?)) is one-to-one in S To that end, we first claim that
the closure of T(u)M(n''?) is a bounded operator. This follows by writing its kernel,

(T()M @Y€, 1) = (2 — gWNEOR(, LGm))(E, nn*'>(1) (8.4)

and using relation

|(TEME)E )| < 0D|(p — g(@W)(E)s(€)-n*2(n)s (7).

Then relations (2.6), (2.7) and (5.3) imply that this is a Hilbert-Schmidt operator.

Next we note that if the closure of the product of a closable operator and a
bounded operator is bounded then it is equal to the product of the closures. Therefore
by virtue of the observation that both operators M(1/n)*2T(u)M(n*'?) and T(n)M(n''?)
are bounded, we conclude that

m (5) “Toamor = (1) me). (8.5)
Then,

(I M (%) 1’21"(;,,)1\/1(;1112)) f=0 (8.6)
imply, by virtue of (8.5), that

fe D(M(n*?)) @®.7)
and ' ,

M@'?)f = (T(w)M(n*2))f. (8.8)

Applying again the previous considerations about the closure of the product of
operators, we arrive at

(T(WMn'?) = T(k)- M(n*').

Inserting this in (8.8) and using (8.3), we conclude that f = 0. And this completes the
proof of Lemma 8.1.
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Corollary. Under the simplifying assumptions (2.6) and (2.7), the operator L(p)
is self-adjoint.

Proof. Since by (8.3), (I — T(r)) is onto and by Theorem 6.1 (nI — L(g(r))) is
onto, the relation (8.2) implies that the operator (ul — L(p)) is onto. Since L(p) is a
symmetric operator, this implies that L(p) is self-adjoint.

For the general situation we need the following extension of Kato’s resolvent formula,
the proof of which is given elsewhere [21].

Proposition 8.1. Let the given operator A, be essentially self-adjoint on the given
set S < H and let the operators 4, and V' be such that

Ay =4, + V on S. 8.9
Suppose that V and its adjoint V'* can be factored as

¥ = (F'a)( ey, % = Ly LS — f JRm LI gLl on S. (8.10)
Suppose further that

p € p(Ao) N p(Ay) (8.11)
and that

V12R(u, Ao) € B(H) (8.12)

R(p, Ag)Vi2 e B(#) (8.13)
and that the following operator is compact,

VI2R(u, Ag)V12 € Lo(HF). (8.14)
Then

(I — VY2R(u, Ag)V¥2)~1 € B(o#) (8.15)
and

R(p, A;y) = R(p, Ag) + R(p, Ag)VY2(I — VY2R(p, Ag) VY2~V 2R(u, Ay).

(8.16)

We apply this abstract result to the case where A; = L(p), 4o = L(p(p)) is the
approximating family and ¥V = M(p — p(r)) and to the set S = D(L(p)) N C(R),
then it is one of the assumptions of Theorem 2.1 that this operator is essentially self-
adjoint on S. The next three hypotheses are verified if we set

Viz = M(p — p()'?, (V)2 = M(p — p()*"*
and choose p € Z,(#). The verification of the other assumptions constitutes the

Lemma 8.2. Set p(r) = q(r) of (4.4). Then for each u € Z (), the closures of the
following operators are bounded.

M(p — q(w))"*R(p, L(q(n))) € B(H) (8.17)

and

R(p, L@)M(p — q(u)*"* € B(H). (8.18)
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Furthermore, the closure of the following operator is compact, that is to say,

M(p — ()" R(p, Lgu))M(p — q(u))*'? € Fo(H). (8.19)
Proof. The kernel of the closure of the operator in (8.17) is given by
M(p — q(u)"*R(u, L@@))(€, 1) = (p — q)"*(O)K(p)(E, 7). (8.20)

According to estimate (6.12),
k()€ DI* = 0()E()(E)t(p)(n) exp(—2[v(p)(€) — v()(0)]).

As in Section 6, it is easy to see that

sup [ 2 exp(—210G(&) — oG < o

Similar considerations as in (6.23) gives us the fact that
(P — q(W)t*(p) € Ly(R).
Combining these three estimates, we get

|] 12 = a2 ke i de dn < o0

implying that the operator in (8.17) is Hilbert-Schmidt, in particular bounded.
Identical considerations lead to the conclusion (8.18).

Setting

B(u) = M(p — q(u)'"*R(k, Lg(w)M(p — q())'", (8.21)
we observe that B(p) is an integral operator and its kernel is given by

B(p)(€ m) = (p — q@)"2(EKW)(E n)(p — (1) *(). (8.22)

It is elementary to observe that since

(P — q()**(E)] < n*'3(é),

we have

| B D] < | X@)E ). (8.23)

and therefore by virtue of (5.12) we conclude that

[[ 186, iz ag dn < o,

i.e. the operator in (8.19) is Hilbert-Schmidt, in particular compact. This completes
the proof of Lemma 8.1.

It is useful to observe that while the Hilbert-Schmidt norm of B(u) is uniformly
bounded in p for p in #,(F), the same is not true of the other two operators in
Lemma 8.1. In fact, a closer examination of estimates in Section 6 tells us that the
Hilbert-Schmidt norm of M(p — q(r))*2R(u, L(q(1:))) behaves like |Im u|~2/2 as
Imp—0.

Now that we have verified all the hypothesis of the proposition 8.1, Condition
Ay(F) follows from the conclusion of the proposition as in [21].
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9. The Proof of Theorem 2.1

In this section, we collect all the results and return to the proof of Theorem 2.1
and 2.2. Suppose the potential p = p, + p,, where p, is short-range and p, is a Stark-
like potential, satisfying either Condition B or simplifying assumptions of Section 2.
Then with reference to every compact sub-interval # of R, we have constructed a
family of operators L(g(r)) approximating L(p) in Sections 4, 5 and 6, where p € 2, (#).
In Sections 7 and 8, we have verified additional Conditions A;(#) and A,(#) for this
approximating family L(g(u)). Therefore, by virtue of Theorem 3.1, we can conclude
that for every compact subinterval .# of R, L( p)(.#), the part of L(p) over.#, is absolutely
continuous. This together with the countable additivity of the spectral projections [10]
implies that

L(p) = L(P)a,.c. .
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