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On the Thermodynamics of Fog

by H. R. Tschudi®)
Institut fiir Theoret. Physik, ETH-Honggerberg, 8049 Ziirich, Switzerland

(28. X. 1975)

Abstract. Fog is considered as a thermodynamic system composed of an atmosphere (vapour
and air) and droplets of water which move through the atmosphere. Expressions for the Helmholtz
and Gibbs free energy of fog are derived which contain only the thermodynamic potentials of the
atmosphere and of a droplet in contact with the atmosphere. It is shown that fog and not the pure
phase represents the thermodynamic equilibrium, although the concentration of droplets may often
be very small.

We discuss fog without condensation nuclei and fog around soluble nuclei. In the first case
practically no droplets occur which contain more than a few dozen molecules. For the second case
we show that fog exists only very close to the saturation point. At saturation every soluble nucleus
of s molecules (or ions) forms a droplet containing c-s*2? water molecules. Using the calculated
value ¢ = 4 for water at 300°K, we obtain good agreement with experiment,

I. Introduction

How does fog, a system of water-droplets in air and vapour, behave in equi-
librium ? Does fog actually exist in equilibrium ? The task of developing the thermo-
dynamics of such heterogeneous systems is interesting and it contributes to a better
understanding of nucleation phenomena and condensation.?)

In 1870 Lord Kelvin [1] showed that the vapour pressure of a droplet is always
higher than of a plane surface. At best a droplet can be metastable in a super-saturated
vapour. Nearly 70 years later, Frenkel pointed out that nevertheless an ensemble of
droplets may be thermodynamically stable. [2] We shall assume, in contradistinction
from the rough thermodynamic treatment, that even in the range of thermodynamic
stability of the phase A, the latter is not strictly homogeneous, but contains embryos
of a second phase B (in the form of liquid drops, gas bubbles, small crystals, etc.) . . ..
Our problem consists in the determination of the statistical distribution of the B
embryos in the phase A ....” [3].

Frenkel solved the problem in the following way: He considered an embryo
containing j water molecules as itself a molecule of some substance 4; and fog as an
ideal mixture of the substances 4,. He made the statement:

G(T,p, Ny, Nyy..) = > Ni@(T, p) + kT In x;) (L)
J

for the Gibbs’ free energy of fog.

1)  Present address: H. R. Tschudi, Institut de Physique Théorique, Dorigny, CH-1015 Lausanne,
Switzerland.
?)  These questions will be the subject of a succeeding paper.
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Where:

N;: Particle number of the substance 4;
@;: Chemical potential per particle of the ‘pure’ substance j

N.
xj::'ﬁj N=ZNJ'.

In the fog there are chemical reactions of the following type
Aj+ 1 "'—T Al + Aj.

We look for the equilibrium subject to the condition that the total number N,, of
water molecules

Ny = 2 JN;

7

is held fixed. The equilibrium concentrations are determined by
f; + kT'ln x; = j(ay + kT1n x,)

or equivalently

x; = x} exp (ﬂ%,—c%ﬂ) (1.2)
(We have excluded the trivial solutions x; = 0 for all j.)

Substituting x; from (I.2) into the normalization condition >; x; = 1 yields the
equation

fe) = 3 st oxp( P22 ) — 1

which determines x, as its only positive solution.
Using N = N,(Z;Jj x;)~1, we obtain the particle numbers

— L/ Joa — B4\
N; = N"’(dxl) xi exp( T
Substituting (1.2) into (I.1) yields the value of the Gibbs free energy G of fog as

G = Nw(ta’l + kT In xl)

which is less than N,,, the Gibbs free energy of a pure gas 4,. The thermodynamical
equilibrium is, therefore, not represented by the pure one-molecular phase 4;, but
particles of the substances A4; containing several molecules must also exist.
Doubtless, this is the most important statement in this context and we owe it to
Frenkel, as mentioned before. But his statement (I.1) must be criticized. In general,
one has ideal mixtures only if one can neglect the interactions between the molecules
of different constituents. We are, however, interested in embryos which may be
considered as small droplets characterized by their volume and surface tension. Thus
we must consider at least the interaction between the atmosphere and the droplet:
The atmosphere is excluded from the interior of the droplet and the surface tension
depends on both the liquid and the gaseous phase. The ‘pure gas of droplets of one
kind’ A4, (i.e. without the atmosphere A; present) does not exist and it is not clear
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what we have to substitute for the i, Frenkel considers g; — jg; as the amount of

free energy to form the droplet from the vapour and he uses Gibbs’ expression for f;,
which is

B = jpu(T, p) + oA.

The quantity p,,, is the chemical potential per water molecule in the liquid phase, ¢ the
surface tension, A the surface area. This last step was reconsidered by several authors
who felt that a droplet has certain translational and rotational degrees of freedom
appearing nowhere in Gibbs’ formula. Ref. [4] gives a survey of these papers.

Another way to express our objections: It is not clear in what respect droplets
may be considered as molecules. They are also macroscopic systems and appropriately
Frenkel describes their inner properties by the same parameters as describe the whole
system—a confusing situation! It is more natural, however, not to identify droplets
with the same number of particles from the beginning, considering them as molecules
of a substance, but to take every droplet itself as a thermodynamic system which
exchanges water-molecules with the atmosphere. The droplets may move in the volume
of the atmosphere. One has now to derive an expression for the Helmholtz free energy
of this heterogeneous system.

We do this in two steps. First, we establish a set of classical Hamiltonian functions
describing fog. Essentially, then, we will have achieved a certain decomposition of the
state integral (Postulate 1) and must consequently determine the Liouville measure of
the corresponding phase space (Postulate 2). Thereby the Helmholtz free energy of the
fog 1s reduced to a known and simple function of the free energy of the atmosphere
and the free energy of a droplet in contact with the atmosphere and whose centre of
mass is held fixed. The equilibrium conditions can now be calculated and the thermo-
dynamic potentials determined (Chapter I1). Next we derive an explicit expression for
the Gibbs free energy of a droplet based on Gibbs’ thermodynamics of surfaces
(Chapter ILI). In this framework we discuss fog without nuclei (I11.2), fog around
soluble (I11.3) and insoluble nuclei (I111.4).

II. The Thermodynamic Potentials of Fog

II.1. The model

We consider fog as a heterogeneous system which consists of droplets of a sub-
stance A (water) floating in the atmosphere, a mixture of the pure gas phase of 4 and
an inert substance B (air). The shape, the volume and the number of droplets con-
taining the same amount of water are inner variables of the whole system. First, we
determine the Helmholtz free energy for an arbitrary but fixed value of these variables,
whose actual values are calculated from the condition of equilibrium. We assume that
no external fields are present and that the mean distance between the droplets is large
compared with the range of the molecular interaction. We may, therefore, neglect the
interaction between the droplets. The droplets interact only with the atmosphere in a
manner which is translationally invariant.

In order to characterize our model precisely, we introduce the following defini-
tions:

Vo: the volume of the atmosphere
Ny: the number of particles of the substance A in the atmosphere
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Njz: The number of particles of the substance B in the atmosphere
A;: the number of droplets containing j molecules of 4
v;,: a symbol parametrising the shape and the volume of the rth droplet with j
molecules.
V.. the volume of the jrth droplet
Ny= Ny + 2, j A;: the total number of particles of the substance A
V Vo + 2. Vi the total volume of the system
= (&P, 22, ..., 2P
= (AP, A2, p

contain the coordinates and the momenta of all molecules of the droplet jr.

Z.: the coordinates of the centre of mass of the jr droplet jr.

= (@Y — Z;, 22 — 2, ..., 2 — Z,): the coordinates of all molecules of

the droplet jr relative to its centre of mass
- . 1 2 N
Xo = ($81)9 xf)2), w4 s ngo)’ $(B )’ w(B )’ 5 ¥ al $§3 B))
. 1 2 Ng) - 1 2) N
0 — (ﬁf))a/zg)s = 5%5) 0):/%%)3%1(8 g o 5%&? B))

contain the coordinates and the momenta of all molecules in the atmosphere.

( irs ‘%;ra grs - . ]r, r)

Z, is taken Ny + N times.
Our model of fog contains two assumptions:
(a) The Hamiltonian of fog has the following form

H=H,+ > Hy+ > (W) + W})
ir ir

where Hy(p,, x,) contains the kinetic energy and the interaction of the particles in the
atmosphere between themselves, and H,(p;., &;,) contains the kinetic energy and the
interaction of the particles in the droplet jr between themselves.

The phenomenological potentials W, W}, describe globally the interaction
between the atmosphere and the droplet jr. W), W shall depend on the distance of
the molecules from the centre of mass of jr, the shape and the volume of the droplet jr
and on the intensive thermodynamic variables characterizing the atmosphere:

: Ny N,
Wjor = Wo(xo _ Xjr;.]) Ujrs T, ..I_./_E, ...I../..;E)

. Ny N
Wj];' = Wl(gjr;]; an T: VO Vi)

Since the interaction between the droplets is neglected, we achieve the following
factorized form of the partition integral

f dp dx e BH = f (1—[ d2*X jr) dp, dx, o~ BUHG+ 3o Wi
jr

i
X H {J dp;, dx,, 83 (,Zl g(?))e—ﬂ(Hﬁ+W},)}.
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(b) We assume that

f de dxo e~ BHo+ 3, We) = No! NB! ha(N°+NB)ZO(T5 VO} NO’ NB)

Ny Ng
X I; w(e’ ves: T! VO’ VB)

Z, is the partition function of the pure atmosphere, i.e. the integral above shall not
depend on the positions of the droplets.

We combine the assumptions (a) and (b) in the following postulate which defines
our model.

Postulate 1

fdp dx e BHiog = hBNA+3NBNG!NB!]_-I (J'!);‘f
i

~ y No NB)}
X Z TsVsN:N Vol T,U',-, N T 72
of 0s Vo E)]_;l{ 0 ( jrsJ Vo Vo

where Z is the partition function of a droplet in the atmosphere whose centre of mass
is held fixed (Z has the dimension (Volume)~1).

I1.2. Statistics

The phase space corresponding to the factorization in postulate 1 is a rather
complicated submanifold of E3¥4+3¥z % R3¥4+3¥z (E3¥4+3N2 denotes the space of the
coordinates of all particles in the system which form an 3N, + 3N dimensional
Euclidean space; R3¥4*3¥s denotes the space of the momenta of all particles, which is
a 3N, + 3N; dimensional real vector space; X denotes the cartesian product.) This
phase space is characterized by the condition that all particles of the substance B and
the particles with number 1, 2, 3, ..., N, of the substance 4 have to be in the volume
V, of the atmosphere, number Ny, + 1, N, + 2 in the volume ¥, ; of the first ‘droplet’
containing 2 molecules etc. ¥, and V), are disjoint and they build together the system’s
volume V. Apart from these constraints the droplet may move freely in V. We need
some information about the statistical weight of a point in this phase space.

Let us first consider a system of N identical particles which all can move without
restrictions in the same volume.

The notions ‘state’ and ‘ observable’, familiar usually in quantum mechanics only,
have a good meaning also in classical mechanics. A state ¢ is represented by a proba-
bility measure u,, over the phase space I', an observable A is represented by a measurable
real function @, over I'. The expectation value of A4 in the state ¢ is given by

(Ay = f ® ((@)dino(q) = f O (@po(q) da

where

q = (ﬁ1$1,ﬁ2$2, s JoN zy)
denotes a point in the phase space I' = E3¥ X R®*" and dg = dp®" dx%". p, is the
probability density corresponding to the measure y,. p, is positive and normalized:

po =0 f po(g) dq = 1.
r
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‘Identical particles’ means physically that no observable exists, which distin-
guishes one particle from another. All observables must, therefore, be represented by
symmetric functions, i.e.

(Uz®)(@q1 - qx) = Pu(@nary* * * Gaemy) = Palqy- - - )

for all permutations . q; = #;2; denotes the momentum and the coordinates of the
particle j.

Or one may say that the only identifying mark of a particle is the point in space it
actually occupies. 4, (the momentum of the ith particle) is, therefore, no observable
but the momentum density of the system given

Vpka) = 2. 8% — )

is an observable (which means: The momentum of the particle being at the place =).

What are the pure states of the system ? The classical pure states are characterized
by the requirement that all observables have sharp values. We assume for simplicity
that all functions

®:. ' >R with @, ®2 measurable,

correspond to observables. One easily sees that the probability densities with the
property that

2
(®y? = ( [ o dq) = [0 dg = <o)
r r
for all the @’s considered must have the form
p(q) = 2 «x8%%(g — Uago)

n
o, = 0 Zocn=1.

The expectation value of an observable does not depend on the choice of the «,:
every set o, gives the same pure state for fixed g,. The phase space is, therefore, not
the space of the pure states; we have to identify first the points U,q,. Nevertheless,
it 1s possible to parametrize the classical pure states by the points of the phase space,
but we must then choose 1/N! dg as a volume element; every point g, carries only
the 1/N!-th part of a pure state.

If we now confine the phase space by constraints (for instance by dividing the
system into spacially disjoint parts) and if we integrate only over the restricted space,
we have to distribute a pure state among less than N! points. The space of the pure
state is the same in both cases, we only have changed the parametrization.

Thus, we are led to the following statistical postulate:

Postulate 2: Let I' < E3Y % R® be the phase space of a system of N identical particles
(E®¥: space of the coordinates R space of the momenta),
q; = zif; the coordinates and momenta of particle j

q = (qI: LY 'an)
dqg = d®*¥x d*"p.
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Then the partition function is given by

zT, N1 = | }P—N%i—(q—)exp(—%(%—)).

Z+(q) being the number of permutations = of N elements with the property, that
g € I' implies

Uzq = (Gray Gnceys - - -5 Gaan) €T

Let us check some consequences:

(i) We denote by I'; = E® X R® the phase space of the point mass number j. If

I‘1=F2="'=F1\r,

we obtain for the phase space
N
i=1
of the N-particle system that

Z(q)=N! VgeTl.

(1) The N-particle system shall now be divided in z subsystems I(/€{1, 2, ..., z})
containing n; particles, each occupying a different volume. The n, particles of the
subsystem 1 carry always the indices 1, 2,...,n; those of system 2 the indices
ny + 1,...,n, + ny and so on. Then

gp(q) = H n,! qu F.
i=1

If the interaction between particles in different systems can be neglected, the Helmholtz
free energy is the sum of the free energies of the subsystems.

(1ii) The N particles build a rigid body (N > 3). The phase space is a 12 dimen-
sional surface in E®¥ X R3", Only permutations generating rigid rotations and trans-
lations of the body contribute to £+ [5] (and one has also to replace A*Y by A°®).

We now determine £ for the fog. If the droplets could not move, then

Z = Np! No!' [ [ ™. (IL1)
i

What does their mobility change ? First, the integral

f dpJ‘r dxir exp(_ﬁ(H;ir + W}r))

augments by a factor V,/V;, at least. This is already taken into consideration in
postulate 1. Secondly, the phase space grows. The droplets may exchange their
positions. But as we keep the partition of the molecules into the droplets fixed and
neglect the collisions, only the exchange of droplets with the same number of particles
will add new permutations, totally [T A;! for each permutation of (II.1). This last
step shows that macroscopic systems of same composition can be identified as
molecules of a substance from the point of view of statistics.
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We therefore write definitively:
Zroe(q) = Ns! No!]__I (AN (D
i

and the partition function of fog becomes

Ny N
Z = ZO(:ra VO: NO: NB)H ( ]__I Z{ b irs.]9 ']7_0 Vi)}' (112)
i

The partition function of a mixture of ideal gases with particle numbers A; masses m;
occupying the volume ¥, is given by

VY (2amkT\ @2
LIsr (7 '

If in equilibrium the v;, are the same for the same j we may consider the droplets
of fog as an ideal mixture of ideal gases whose molecular mass depends on the
‘quasivacuum’ of the atmosphere [6].

I1.3. The Helmholtz and Gibbs free energy
Applying Stirlings approximation
InA! = A(In A —1) 4+ 0(In A)

we obtain from (II.2) the following expression for the Helmholtz free energy of fog

/ Ny N
F = —lenZ = FO(T, Vo, No, NB) + J.ZTFJ(VO; ]T, Uj,,;vz’ 7?)
+ kT > A(ln A; — 1) (11.3)
J
r__ = & NB
F; = —kTIn (VOZ (T, Vir; 7 Vo))

The equilibrium is given by minimizing F for the inner variables V,, v,, Ny, A;, and
observing that

N, + Z JjA; = N4 = const (I1.4a)
7

Vo + Z Vi = V = const (I1.4b")
jr

Ny = const (I1.4¢c)

T = const (I1.4d)

These restrictions concern only the volume ¥}, of the droplet jr, not its shape. The
latter may, therefore, be adapted individually and the actual shape is given by the
minimum of F},, the number of particles of the droplet jr, its volume V,, T, No/V, and
Nz/V, held fixed.

We denote this minimum by

N, NB)

P (IL5)

Fj(Vo§ L Vs
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and replace Fj in (I1.3) by (II.5). We make the assumption throughout the text that
no isomerism occurs i.e., that the equilibrium conditions determine the value of the
inner variables uniquely, which is the usual situation.

We now keep the A, fixed and vary only the V;,, considering ¥, as a function of the
V. The total differential of the Helmholtz free energy F is then given by

oS [_8F o) | ok,
dF = JZ{ oV, oy, aVJ,} ¥
The condition of equilibrium yields
_9F; | OF, _ oF,
v, | oV, @&V,

which is the same condition for all r. We, therefore, set V,, = V; Vr and replace
(I1.4b") by

Vo + > Vid; = V, = const (11.4b)
j

and (I1.3) by

Ny N,
F FO(T VOsNO,NB)+ZA{FJ(V05T VJ:-I/—O V:
It remains to find the minimum of (I1.5) varying V,, V,, Ny, A; observing the restric-
tions (I1.4). This is most easily achieved by the method of Lagrange multipliers which
leads to

) + kT(In ), — 1)} (1L.5)

np = aivi - SJI;‘; + Z h %’; (IL.6c)
g exp(ﬂ‘A_k"Tﬁf) G, = F; = Vi g (IL.6d)

From (II.5) and (11.3) we deduce that F; has the form
F, = —kTln Vo + F(T, V;; po, ps)- (IL7)

The dependency on p,, pp takes into account that the surface energy of a droplet may
depend on the density of the atmosphere. The pressure p is, therefore, the sum of the
atmospheric pressure

_ 9%k
Do = aVO

and an osmotic pressure, i.e. the partial pressures of ideal gases in the volume ¥, and
with particle numbers

1 oF oF,
)‘l(‘ +kT( P 3, “B‘a?;))'
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Let us now insert the equilibrium values (11.6) of the A, into (I1.5). We suppose F,
to be homogeneous of degree one in the parameters Ny, Np, V.

Then
F=an5N*an, ¥ * 57, VO‘*‘Z’\(J#A a7 Vi~ kT
F, oF; oF;
= palNy + ppNp — pV — Z)\(Noa j+NBaNJ +Vozy ! +kT)
B

= psNy + ppNg — pV

by reason of (I1.7). F is, therefore, homogeneous of degree one in V, N, Ng. The
quantities p, u4, up are intensive and it is easy to show that A;, No, ¥, are extensive due
to the special form (I1.7) of F;.

The Gibbs free energy is given by

G = F+PV= GO(N05NBap05T) = VO(p _pO)

+ > MG (Vo; p, T; po, ps) + kT(In &, — 1)} (IL8)

J

with
No =N, — > j), (I1.9a)
)

_ 8Fj r
Po=p+ 2 N5y (I.9b")

oG
Vo= =— 11.9¢
° ™ 2p ( )
G; = —kT'In Vo + Gy(p, T’ po, pa)- (I1.9d)

An easy calculation yields further

oG '
V, = —2 I1.10a
= B e ( )
oF, oG,
el =, ] I1.10b
Opo V,Tog dpo pTop ( )
OF, _ 96, (IL.10c)
apB Vijo apB PTDO
We may, therefore, replace (I11.9b") by
oG
= s | I1.9b
PE 2N b, (L%}

and have so eliminated the droplet volumes V;; they can be calculated by (I1I.10a).
We now have to calculate the equilibrium distribution of the A;. We first consider
N3z, p, No, A, po and ¥V, as independent variables and hold T fixed. This leads to an
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expression for the total differential dG of the Gibbs free energy given by

_ (2G, oG,

0
(af,z + Z A 86’) dN, + ; (G, + kT'ln \) d),

oG, oG,
£ (apo VO) de I (p Do + Z Al aVo

Equations (I1.9b,c) show that G does not depend at all on p, and ¥, and we get
equations (II.6b,c,d) back now with p, T, N,, Ny as independent variables. The
homogeneity of G, and the structure (I1.9d) of G; imply the homogeneity of G in
N4, Ny and the extensivity of the A; as before.

Inserting (I1.6d) into (I1.8) and neglecting all terms containing 8G,/dp,, 9G,/éps
we get

) av.

p,T,Ng,Ng

186G
G = Go(No,NB,P,T)_“_O'(P Do)?
oG v,

+ > =2 + =2 (po — )—kT A

SM(Ge| + 5 o =) = KT I,
=
_ _ LY,
G = Go(Ny, Ng, p, T) sz Aj(l + o(m .

This formula shows that (I1.6d) gives indeed the equilibrium values of the A;.
Fog is in a stable equilibrium if the matrix

G

Gmn = X0,

P-T-NA 'NB

is positive definite. The condition

092G, 02G oG\ 2
Nyt 2 A‘{(aNoiz - (aNZ) } >0 e

assures stability of fog (see Appendix A).

III. A Phenomenological Model of the Droplet

IIT.1. The model

The Gibbs free energy of a droplet in a metastable equilibrium with the atmos-
phere is given by

47-,- 1/3
Gliq(js NCs p09 T) g 3(?) UV213. (III.].)

(See for instance Ref. [6], §25.) o denotes the surface tension and N indicates that the
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droplet may contain a soluble substance C. We assume the following expression for
the G; of (I1.6d):

1/8

G, = —kT'n % + Gua(js Nos poy T) + 3(‘%’) Py (I11.2)
V'* is a phenomenological parameter the dimension of which has to be a volume. It
should be noted that G, in (I1.6d) is calculated with fixed center of mass. This is not
taken into account in (III.1). Considering the correction factor so caused as weakly
dependent on j we get a first contribution to V*.

A second contribution is due to the fact that the thermodynamic potentials have
to be considered as thermodynamical limits, i.e.:

F(j,V,T) = —kTj lim In Z(an nj, T) =j.f(_j_, T)

n— oo nj

which assures the homogeneity of F. Introducing surface energies allows for contribu-
tions proportional to j2/2; we incorporate the remainder in V*. This remainder may
give rise to large corrections: Rigid rotations of a water droplet by room temperature
cause, for instance, a factor of about 10° j5/2 to A, [7].

The question if (II1.1) contains rigid rotations, or, how they have to be taken into
account cannot be answered in this thermodynamical framework, because these
terms disappear in the thermodynamical limit. One has to calculate the state sum for
a model of a explicitly finite droplet.

The measurements of the rate of (homogeneous) nucleation in super-saturated
vapour indicate that V* ~ 10-1° ¢cm? [8].

The terms of order j'/® taken into V'* become important for very small clusters.
If the diameter of the droplet is comparable to the range of the intermolecular forces
it is inappropriate to consider the surface as an infinitesimally thin dividing surface.

There is another reason why our model (1.1) may become less applicable as j
decreases. We consider the interior of the droplet as a homogeneous phase charac-
terized by its thermodynamic potentials, which makes sense only if the mean values
tower the thermodynamic fluctuations; the fluctuations determine the minimal size of
a piece of matter which can be reasonably described by thermodynamics. According
to a well-known formula of statistical physics

@)y _ kT,
T A

where x; is the isothermic compressibility. We have, therefore, the condition that

kT, v—Kj
v o

j>

which is always fulfilled by liquid droplets.

kTxrv~' = 1forideal gases: it makes no sense to speak of gas bubbles containing
less than say 100 molecules.

In the rest of the paper we discuss the statement (111.2) for the case of pure fog
and for fog around soluble nuclei.
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II1.2. Pure fog (No = 0)
We put No = 0 and V; = v,jin (I11.2) and get
Vo 4ar\ 1/3 . 0
Gy = —kTIn 3% + jus + 3( 3) o323 = —6%' (111.3)

The index 1 denotes the pure liquid phase of the substance 4. Equations (II1.3),
(11.6b), (II.6c) and (I1.10b) give the following partition function for the droplets of
pure fog

A = % exp(—aj — %j7) (I11.4a)
with
2/3
y = 3(43" ) e ae- (I1L4b)

1 G
a = Hw(#l(Po, T) — po(po, T)) — kTZ Al !

~ P a(oaT) - mmm+ﬁf$—%) (IIL40)

if we neglect terms containing d¢/dp, and do/dps. We observe further that

_l Opro 21 ! &
Vo Z 4 ( op 6p) <!
which means that « is appr0x1mately given by

« = 22 1(p, T) = olp, ). (IIL5)

For water droplets in air y ~ 8. (T' = 300°K, p = 106dyncm~2, ¢ ~ 70 dyn
cm ™). The value of ¥* mentioned above (F* ~ 10~ !® cm?®) shows that the concentra-
tion of the droplets which are reasonably described by our simple model (j > 50) is
practically zero.

II1.3. Fog around soluble nuclei

Our formula for the concentration A; of droplets containing j water molecules

Jpa — G
T (111.6)
has a general and discouraging property: A; is an exponential function of a difference
of two terms which both have the order of magnitude j. We must either restrict our-
selves to small j (which does not interest us here) or know G; very accurately, in order
to obtain a reasonable value for the A, given (II1.6); or we introduce a fit-parameter as
V*i.e.; we use (I11.6) only to calculate ratios A,/A,. We can, therefore, expect powerful
results only in a situation where the total number of droplets is given as a fixed
parameter: we consider fog around (soluble) dirt nuclei.

For simplicity, we assume that only one kind of soluble dirt is present; generali-
zations are evident. A species of droplets is now characterized by two indices: Aj
means the number of droplets containing j water molecules and s molecules or ions of

A; = exp
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the dirt. The total number n, of nuclei containing s dirt molecules (ions) is taken to
be a fixed external parameter of the system, and is given by

ne= > A A 2 0. (111.7)
i=0

The generalization of (I1.5) is
F = FyT, Vo, No, Ny) + > M{Fss(Vo3 T, Vis; poy ps) + KT(In Ay — 1)}, (IIL8)
is
with
Fis = —kTIn VO + Fjs(T, V.fa; Pos pB)

We look for the minimum of F, varying the inner parameters V,, Vj,, Ny, A, under
the restrictions

D Vids+ Vo=V (I11.9a)
Js

D i\ + No = Ny (I1L.9b)
Js

> A =1 (111.9¢)
iz0

T =const Ny = const (ITL.9¢c)

We write the result in the following manner:

1 ..
exp o (Jka — 1)
Ay = A , (I11.10a)
21 €Xp ﬁ(PHA — 8i5)

A= Ny=ny— Aoy = — —  (IIL10b)
7>0 I+ (2! exXp E(Gm + ppa — st))
— a tr'}F‘:fs
M= BN aNo Zs Mo gne = bo (I1L.10c)

&5 1s given by G, minus all terms in G, not depending on j.

(1/kT)(Gos + jra — Gy is a difference of macroscopic energies measured with
the microscopic unit &7 A? is, therefore, always practically equal to », or to zero. g;,
does not contain any constant V*. The restrictions (III.9c) convert the peculiar
structure (111.6) of A, we had complained at the beginning, into a help, leading to the
beautiful law (I11.10)!

What is G;,? We expect that typically j > s> 1 i.e., that we are in the osmotic
limit. In this case we have that (see Appendix B and (II1.2))

Vo
G =-lenT/—*+skT(lns+kT 3 — 1)

+ gy + kTyj?3 — kTs(ln [ 0((%) ) ¥ O(j-lfﬂ)). (IIL.11a)
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The term s0(j~/3) takes into account that the volume of the droplet depends on s also.
If j > s > 1 we have, therefore,

1 . : 1 o :
o7 (85 — Jia) = 90, 8) = of + yj*° — sInj (IIL.11b)

o, y are as in (I11.4). For fixed s, ¢(j, s) hasin 0 < j < oo one minimum which is very
sharp for the values of «, v, s in which we are interested. We may, therefore, put

e~ @3)

with jo(«, ¥, ) as the only positive solution of

%3,’1 — a4 1t — gl =0, (IT1.13)
The quantity,
5 O%p -1 9lnj
2T = —-9, .
el =" i

is the relative width of the distribution e—°®,

(IIL.13) is a cubic equation in j which may be solved exactly. But the algebraic
representation of the one positive solution j,(«) changes as « grows; equation (II1.13)
has three real roots for « = 0 and one real and two conjugate complex roots for big
«’s. We, therefore, proceed in a different way. We write (I11.13) in the form

x =a+ x'

1/3\ g/2 1/3\ 3/2
J\ 2y 2y

and solve it by iteration:

Xo = xla.=0 =1
X, =a+ xi3, neN.
How fast does the iteration converge? We see that for n > 2

By = P20 = D30~ (14 Ayp) 1)

and Ay =a20,ie X, 2 X, 2 -2 %, = 1,and

A, A 1 \n-2
< < xr23Sno1 no1 o 1
0 <A< xi® == =3 s < A2(3(1 T a m)

Ar=(1+4+a)2B—-(1+a)
Therefore (n € N)

Hoaw = Xy = 1 —(1+ a)'B ) i
—_— < < 2/3y1-n ] 2/3\1 n,
X lgﬂ A S T gm - G0 +a*) ™ < 018G + a*)
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and thus x, is a good approximation for our purpose and we obtain
2/3 -1
Jo = S(cx + (%3-’) s‘”z) . (I11.15)

Formula (I11.14) indicates a relative width of the order s—1.
We now have to calculate the quantity A? in formula (II1.10b). The statement
(II1.11) for Gy,

G, = —kTln % + sy + kTs(ns — 1 + ob) + g5
and a statement of the type (II1.2) for G,

Gos = —KTIn % + sfiz + KTys°

]

together with the form (II1.12) of the droplet distribution yield

A? 1 .
’\_Os = Z cXp ﬁ(GOs + Jpa — st)
V*
~ cxp(:,zssz’3 + In ?—s* —s(Ins — 1 + ¢3) — ¢(jo, s))
~ exp(s{ln Q — 3ys~12Q%° — ¢3}).

To perform the last step we use equation (II1.15) and the conditions

s> 1, Q=J§9>>l.

We finally obtain

A? = n,,(l + 3\{’—0) T~ n,0(In @ — dys~1Q° — o) (I1L.16a)
with 3

O(x) = {(1) z Z g (I1L.16b)
and

0 = (a + (3y)¥2s~¥2)-1, (111.16¢)

It follows from equations (II1.16) that
InQ>ez;+4

is a sufficient condition that A? ~ n,. But the solubility of substance 2 in substance 1
implies only that

AG . —e
ie.

InQ>¢5—1+0(Q7°).
Therefore, we cannot expect that every soluble substance causes fog.
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We illustrate (I11.15) by an example. « given by formula (IIL.5) is approximately

R < el - (I11.17)
Ps
(We expand the chemical potentials around the saturation pressure py(T, No/Ng),
consider air as an ideal gas and neglect the specific volume of the liquid.) Let s be of
the order 10'°, (%y)*2 = 12.3 for water—air by 300°K. (IIL. 15) shows that j, falls very
rapidly if « becomes different from zero.

8/2
jo=(§—;) fa=0 Jo 22 104 =0
. _ S ; 2\%2 o o fio= 10« =107
Jo=~ if« > (?) s~ R = 10 o~ 102 o= 1072

Fog, therefore, exists only very near saturation and then

Jo = (g—sy-)m. | (IIL.18)

This formula is in agreement with experiment. Droplets in sea clouds have radii
between 2.5-107* cm and 2-10~2 cm, droplets with radius 1.1-10~2 cm are the most
frequent [9].

If we assume saturation and NaCl as nuclei, we get

r [cm] Jo s Myaci [81]
measured calculated with (IT1.18)

2.5 x 10-* 2.3 x 102 9.2 x 108 4.4 x 10-1#

1.1 x 10-8 1.6 x 10 1.6 x 101° 7.8 x 10-18

2.0 x 10-3 1.1 x 10® 5.8 x 10%° 2.8 x 1012

The observed masses of salt nuclei lie between 10~ gr and 5 x 10710 gr [10].

II1.4. A remark about fog around insoluble nuclei

In contradistinction to the situation discussed in II1.3 every nucleus has its
distinct form which corresponds to a metastable state rather than to equilibrium. But
to assure the right homogeneity behaviour of the system — i.e.: the additivity of the
Helmholtz free energy — we have nevertheless to introduce classes s of identical nuclei
which may be characterized by the same number of particles, the same form of the
surface, etc. The numbers 7, of the nuclei of the species s are fixed parameters of the
system. We proceed as in 1I1.3 and obtain the result

. exp(1/kT)(jpa — Gy |
Ao = 1 I11.19
# =S exp(URT) iz = i) Rk
But the classes s of identical nuclei and, therefore, the A, are rather artificial. It is not
possible to separate these classes by experiment. A quantity which is measurable 1s

_ exp(/kT)Giua — G,)
Y= 2 M= 2 s SR = G GTLA0
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Equation (I11.20) shows that the identification of nuclei depends only upon the func-
tions Gj,, which means that a phenomenological thermodynamic description of the
nuclei is enough to determine the total number A; of droplets containing j water
molecules.
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Appendix A: Stability

02G Simn

Gmn - m PTN Ny = DpD, — Can. + _A_m_
with
Ap >0
_ oG, { @G, 92G, \ -1z
Cn = 7N, ((6N0)2 2N (E)No)z)
m 6@,,,

Dm - Eﬂ: aNo - Cm

G 18 positive definite, if and only if

2, %V GV A%, 20 VxneR

and

Z xm(m Gmnvrn)xn =0= Xm = 0 Vm

or: the corresponding eigenvalue-problem
(4, 2)d — (¢, z)e = (E — D=
d=(dy,dy....,dy,...) dy=vA,D,
e =1(C1,C vy Cmye-.) Cn = VA, Cn

has only positive eigenvalues E.
« lies in the plane spanned by ¢ and & if E # 1. We choose, therefore, coordinates
so that

4=4d1,0,...,0,...)
=0, 0,0 ce50i5a:)
¢,d>0 u? + 12 = 1.
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We have then to diagonalize the 2 x 2 matrix
d? — c%u —cup
( —cuv —czvz)
The eigenvalues are
B, = 14E > L 4 ,/(dz > 62)2 + d%c?

min(E,, E_) = E_ > 0 is equivalent to

d2_6.2

> >0

1-cA1+d)+ (4,02>0 and 1+
c? < 1 (i.e. (IL.11)) is, therefore, sufficient for stability.

Appendix B: The Thermodynamics of Mixtures

B.1. Ideal mixtures

Let 4,, ..., Ay denote M different substances each characterized by its Helmholtz
free energy F,(N,, V,T).

Definition: The mixture of the substances A4, ..., 4, is called ideal, if the free energy
of the mixture is given by

M
FA,V,T) = 3 FuNu V,T)
m=1

./V- = (N]_, Nz, T NM)'
Dalton’s law is valid for ideal mixtures

oF oF,
P=—zp= 2 "W—%PmNm,V,T)

and
M
SAH,V,T) = 3 SulNm, ¥, T)
m=1
GNP, T) = D Gun(N, P, T).
Definition: We call the mixing part of the Gibbs’ free energy
AG(AH,p, T) = GNP, T) — D Gu(Np; p, T).

In the case of an ideal mixture, we have

Pm
AG = zf Vm(Nms P’, T) dp,
m vp
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and for an ideal mixture of ideal gases

AG(A, p, T) = kTZN In x,,
AS(JV;p,T) = _kZlenxm

pm(z, P, T) = fin(p, T) + kT In x,,

-1
Xm = Np, (Z N, n)
fin being the chemical potential of the pure mth substance.

B.2. Non ideal mixtures

One expects that the mixture becomes an ideal mixture of ideal gases in the limit
p — 0 and makes the statement

AG(H,p, T) = kT 3 Nu(In 3n + @u(=, p, T))
where

lim @,(z,p, T) = 0

p-0
and

lim ®(z,p, T) =0 by definition.

x3—+1
The homogeneity of G implies

D Xnd®, =0

T
or marking the substance number 1

q,,,=’3—‘c”-‘ mef{2,3,..., M}

1
M

40, = > — (3 an52) da= 3 flgsp T

®,(¢) = 0 and we get, therefore, for fixed p, T

0,(2) = L (/, ds) = —(2, @) + L (@, 4s)

/=(.f2’---9fm) (‘qu)) = 22 Qm(D’"

and £ is a (sufficiently smooth) path, connecting 2 with the origin of the 2-space.
The homogeneity of AG means that & is a gradient field. The integral depends
only from the boundary points of Z i.e.: @, is completely determined by the other @,,.
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If there exist positive real figures a, €, 8 so that
lgrad @n(p)| < alg*~c mef2,..., M}

for all

Il = (3 a) <3

one easily shows that (for |¢| < 8)
avV'M —

T
2P| < =7 lgl**e

|Pnly) = Pu(e)] < Slglle mef2,..., M.

D, (¢) = @L(p, T) is determined by the components A, and A, only. These
inequalities indicate a general law for the Gibbs’ free energy of dilute mixtures [11],
which in the case of a two component mixture reads as

— ~ N2 ﬂz(Ps T) 1 _ _]_V_E € )
G = Nyi(p, T) + kTNz(lnN—l + BT 4 o,y — 14 0 (52
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