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Ein Neues Extremalprinzip fiir Wechselwirkende,
Relativistische Teilchen')

von U. Tellenbach
Institut fiir Reaktortechnik ETHZ, EIR, 5303 Wiirenlingen, Schweiz

27. X. 1975)

Zusammenfassung. Das Extremalprinzip von Euler-Maupertuis, welches im nichtrelativisti-
schen Grenzfall dquivalent zu den kanonischen Gleichungen ist, wird auf die relativistische
Mechanik iibertragen.

I. Einfithrung

In einer bekannten Arbeit haben H. Van Dam und E. Wigner [1] eine relati-
vistische Mechanik wechselwirkender Teilchen konstruiert, welche als Verallge-
meinerung der Newton’schen Mechanik betrachtet werden kann. Sie hebt sich
gegeniiber anderen Theorien, welche zur Beschreibung relativistischer Teilchen
aufgestellt worden sind, dadurch hervor, dass sie in vieler Hinsicht analog zu den
klassischen Feldtheorien (Elektrodynamik) ist. (Fiir einen allgemeinen Ueberblick
iber die Literatur siehe [5, 6]). Die Bewegungsgleichungen der klassischen Mechanik
sind &quivalent zu verschiedenen Extremalprinzipien (Hamilton’sches Wirkungs-
prinzip, Extremalprinzip von Euler-Maupertuis) und so stellt sich naturgemass die
Frage, ob dhnliche Extremalprinzipien auch fiir die relativistische Mechanik formuliert
werden konnen. Wir zeigen im folgenden, dass dies der Fall ist. Unser Hauptinteresse
richtet sich dabei auf die Verallgemeinerung des Prinzips von Euler-Maupertuis, weil
dieses im klassischen Fall direkt zu den kanonischen Gleichungen fiihrt. Wir beginnen
mit einer kurzen Diskussion der Extremalprinzipien der klassischen Mechanik. Im
dritten Abschnitt erfolgt dann die Verallgemeinerung auf die relativistische Mechanik.
Zu diesem Zweck benotigen wir einige Resultate der Funktionalanalysis, welche im
Appendix erwdhnt werden.

II. Herleitung des Extremalprinzips von Euler-Maupertuis im klassischen Fall

Betrachte eine Lagrangefunktion L der Form

L o Do
L=T-V=>smik~5> ViJj 1)
i,x i,

1) Unterstiitzung dieser Arbeit durch den Schweizerischen Nationalfonds zur Forderung der
Wissenschaftlichen Forschung.
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wo i = 1,2,..., N die Teilchen numeriert, ¢« = x, y, z, und V(i, j) reprdsentiert die
Wechselwirkung zwischen den Teilchen i und j.
Die kanonischen Impulse sind definiert durch

oL

Dia = s = M;iXyy. (2)

Die Dynamik des N-Teilchen Systems ist enthalten im Hamilton’schen Variations-
prinzip:

ta
5 f Lt =0 3)
t

Wir ersetzen nun im Extremalprinzip (3) die Geschwindigkeiten durch die Impulse
(gemass Gleichung (2)), und fassen diese dann als unabhéngige Variablen auf. Dies
ist erlaubt, falls wir die Gleichungen (2) als Nebenbedingungen auffassen, welche mit
Hilfe von Lagrange’schen Multiplikatoren A, = A, (¢) direkt in das Variationsprinzip
eingefiihrt werden konnen. Es folgt somit, dass (3) dquivalent ist zu

S{f (Z Pie _ %Z Vg + 2 A(x - {;—)) dz} ~ 0. @

1

Variation nach p,, ergibt

Pie _ Aa) _
spu( 2 - 22) — 0 ©
d.h. es ist

DPix = Aia (6)

und (4) nimmt die folgende Gestalt an:

a{ j (z FiaPia — H) dt} ~0 ()

H=3 i2“+%gV(i,j) - 8)

= 2m;

wo

die Hamiltonfunktion ist. Gleichung (7) wird iiblicherweise als das ‘ Extremalprinzip
von Euler-Maupertuis’ bezeichnet. Aus (7) ergeben sich sofort die kanonischen
Gleichungen

oH
Xig = — 9
: pia ( )
. oH
pilz - _8xia' (9a)

ITII. Relativistische Mechanik

Entsprechend der allgemeinen Theorie relativistischer Teilchen von H. Van Dam
und E. Wigner [1] definieren wir eine Eigenzeit r; fiir jedes Teilchen, und beschreiben
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die Bahnen parametrisch, mit Hilfe dieser Eigenzeiten:
xi{x = xia(Ti) (a = Oa 13 27 3) (10)

wo die Komponente o« = 0, d.h. x;,, die Zeit darstellt. Der Parameter r; soll wie
uiblich die Minkovski Distanz entlang der Bahn des Teilchens messen:

) = 13 () = 27) i)
wobel die Summation iiber griechische Indizes nicht explizit angegeben wird, und wo

Iy=—-L =—l,=-l3=1. (12)
Es 1st zweckmaissig, an dieser Stelle einige Abkiirzungen einzufiihren:

Pue = {—le(Xia(73) — XpolTi))?}? (13a)

ie = laXio(71)XialTi) (13b)

o = leXia(T)(Xia(T1) — XialTic)) (13¢)

ki = lgXia(Ti) (XpalTi) — Xia(71))- (13d)

Wir zeigen nun, dass die Dynamik relativistischer Teilchen durch das folgende
Extremalprinzip beschrieben wird:

8{ - zﬁ: '-% f dri(—1,x%(7)) — % Z f dr f dm, E,(pﬁ)lﬁfcw(n)xw(f,)} =0. (14

Beachte, dass in (14) die x;,(7;) (« = 0, 1, 2, 3) als unabhéngige Grossen zu behandeln
sind. Es ist jedoch nicht nétig, die Gleichungen (11) mit Hilfe von Lagrange’schen
Multiplikatoren explizit in das Variationsprinzip einzufiihren, da die aus (14) fol-
genden Bewegungsgleichungen (wie wir gleich sehen werden) die Nebenbedingungen
(11) automatisch respektieren. Die Funktionen Fj,(p2) charakterisieren diec Wechsel-
wirkung der Teilchen. Sie sind invariant beziiglich einer Permutation der Indizes i und
k und es ist F; = 0. Wihlen wir speziell

Fi(pf) = eend(pi) (15)

so beschreibt (14) geladene Teilchen (e; ist die Ladung des i-ten Teilchens). Das
Variationsprinzip (14) ist dann Aquivalent zum (parameterinvarianten) Wirkungs-
prinzip von Feynman und Fokker [2, 3].

Durch explizite Ausfithrung der Variation in (14) ergibt sich:

Z mif d’rilaxia(fi)sxia("i) - Z f d"'"i f d"'tFu(Pizz)lﬁxz.e("'z)
i i1

X 0Xyp(7y) — Z f dr, f dr % Fulpd) éu( = 21)(Xia(1) — X1o(71))0X10(75) = 0.
(16)

Partielle Integration ergibt:
N d i
> [ drdwa(ed{ ~mtato) = 3. [ a2 e Futol

X oyXi(m) + Ez: J. dr;2 E;% Fu(pR)éu(xio(m:) — xm(ﬂ))}- €
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Definieren wir

d
bulpu) = 2 o2 Fu(pi) (18)

so folgt schliesslich

mXi (1) = Z f dridit€a(Xie(7) — X1(7)) — Uilxloc(Tl)}‘ (19)

1#i

Die Gleichungen (19) sind identisch mit den Bewegungsgleichungen fiir relativistische
Teilchen, welche von H. Van Dam und E. Wigner hergeleitet wurden. Es ist bemer-
kenswert, dass sie die Bedingungen (11) erfiillen (siche [1], Formel (12)).

Wir beginnen nun mit der Uebertragung der Resultate von Abschnitt II auf die
relativistische Mechanik. Einige Schwierigkeiten bereitet die Definition der kanonischen
Impulse. Bestiinde keine Wechselwirkung zwischen den Teilchen, so wire die folgende
Definition plausibel:

PidTi) = mXi (7). (20)

Fiir wechselwirkende Teilchen ist (20) jedoch nicht befriedigend, da sich auf diese
Weise keine sinngemisse Verallgemeinerung des Extremalprinzips von Euler—Mauper-
tuis ergibt. Nehmen wir fiir einen Augenblick an, dass F;,(p3) = e;¢,8(p?) ist (geladene
Teilchen), so zeigt eine Betrachtung der Dimensionen, dass die folgende Definition der
kanonischen Impulse naheliegend ist:

Pilr) = mot(m) = > | dnFu(pR)sialr). 1)

L#1

Wir sehen, dass gemiss (13a) der Impuls des i-ten Teilchens abhiangig ist vom Verlauf
der Bahnen der iibrigen Teilchen.
Fiihren wir die Bezeichnungen

- 1
Pi(7i) = ",‘n‘ipta(”'i) (22)
Ky(ry, ) = —Fy(pf) (23)
ein, so ergibt (21)
. . 1 .
pia(Ti) = Xio(m) + z — j Ki:("’is Tl)xza(”'l) dr. (24)
i=3 T

Wir erkennen, dass der Uebergang von den Impulsen zu den Geschwindigkeiten
durch eine verallgemeinerte Fredholm’sche Integralgleichung geschieht. Aus (A13)
ergibt sich leicht die Umkehrung von (24):

fulr) = Bulr) + 3, - [ Kutre ot 25)

Wir ersetzen nun wiederum im Variationsprinzip (14) die Geschwindigkeiten durch
die kanonischen Impulse, und fassen die Gleichungen (25) als Nebenbedingungen auf,
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welche mit Hilfe von Lagrange’schen Multiplikatoren beriicksichtigt werden. Somit
ergibt sich aus (14)

a{; % [ drd (ﬁm(‘ﬁ) + o > [ e o) d""z) + 3, [ dndodut)

() = Bulr) = o > Kalri 70Pilr) dn)} =0 (26)

und weiter

{Z f dn( LePa(TPial(m) + lahia()Xa(rs) — 1 "ia(ﬁ)ﬁia("‘i))

" 2 Z f ar f driki(7i, T)lpDig(7)Prs(T) — — Z f dr; f dr,

111

X o NP, n)} =i @7)

Variation nach p;,(;) ergibt:

L8P u(r)mBia(r) = Nalr) + 3. [ Kl 70Pilr) i

- Z% f kulre, T)Na(r) dr) = 0. (28)
Aus (28) folgt: '
Aig(73) = ‘miﬁia("'i)- : (29)

Einsetzen von (29) in (27) fithrt unmittelbar auf die angestrebte Verallgemeinerung des
Extremalprinzips von Euler—Maupertuis:

3{2 f drllutlrpalr) — Lplr)/2m)

fdfif dTl

Zum Schluss verifizieren wir noch, dass aus dem Variationsprinzip (30) wiederum die
grundlegenden Bewegungsgleichungen (19) folgen. Wir bemerken zunichst, dass
gemass den Rechenregeln der Variationsrechnung OF(. .., X;,(7;),...) definiert ist
durch

K n)lﬁpm(frl)pmm} (30)

OF(. .., Xig(ms),...) = i Fo 5 50Xl 7.€)s s )‘ 31
dE €e=0
wo F eine gewisse Funktion der Koordinaten der Teilchen ist, und x;,(;, €) stellt eine

Schar von virtuellen Bahnen dar, so dass sich fiir e = 0 die physikalische Bahn ergibt.
Im weiteren verwenden wir die Abkiirzung

Zi f drilogi(T)fia(m) = (f; 8). (32)
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Durch Variation nach p;,(;) folgt aus (30)

xia:(Tl) = ﬁia(”i) + nlfl, Z f dﬁku("'z‘» "'t)ﬁm(fz) (33)

und obige Gleichung ist identisch mit (25). Etwas schwieriger gestaltet sich die Varia-
tion nach den Koordinaten. Zunéchst erhalten wir aus (30) durch partielle Integration:

=3 [ i) = 53 [ o [ dri o (L k ptdpu) = 0.

(34

Es ist zweckmissig, an dieser Stelle die im Appendix eingefiihrte abstrakte Schreib-
weise zu verwenden. Es ergibt sich

g f dr; f dr (“‘dé kil) lePus(m)Pus(m1) = (P_’ (c% k)ﬁ) : (35)

Aus (A8) folgt mit Hilfe der Kettenregel

d%k _ Sk(K)dieK -+ k)(% K)(l + k). (36)

Einsetzen von (36) in (35) ergibt
(p, (die k)p) 0+ BY + k)(g; K)(l + R + K)x)
=— (x (di€ K) x) : (37
Aus (34) und (37) folgt

—Z f drily pio(7i)0%x:4(:) + Zf dr; f drilpXip(Ts)
i 1,1

X S ~2) 5 FulpD(= 1) xlr) = 5alr)Brialr) = O (38)
d.h.
puld = 3 [ drebu(pwuitr) = xilr). (39)

Aus (39) und (24) ergeben sich nun tatsichlich wiederum die Bewegungsgleichungen

mital) = pulr) + 3 [ a3 Pyt

l#14

f dridu(pu){En(Xia(7:) — Xia()) — ouXia(71)} (199

I[#i

Appendix

Sei B ein Banachraum und L eine Banachalgebra. Wir nehmen an, dass auf
L x B eine bilineare Funktion (K, x) — K- x definiert ist mit Werten in B, so dass

K- (Ky-x) = (K1Kp)-x (Al)
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fiir jedes K, K; € L, x € B, wo K, K, die Multiplikation in L bezeichnet. Wir nehmen
ferner an, dass eine Kontraktion (K) existiert, welche eine reelle Funktion auf L ist,
so dass

(KiK,) = (K2K,). (A2)
Wir betrachten dann die Gleichung
f=x+ K x (A3)

wo K e L, fe B gegeben sind und x € B unbekannt ist. Wir bezeichnen (A3) als eine
verallgemeinerte Fredholm’sche Integralgleichung, weil jede (gewohnliche) Fred-
holm’sche Integralgleichung

fm) = x(n) + f Ken, O)x(8) de (A4)

auch in der Form (A3) formuliert werden kann. Es ist nun eine bemerkenswerte
Tatsache, dass die Fredholm’sche Auflésungstheorie auf die Gleichung (A3) verall-
gemeinert werden kann (siehe [4]). Sei d(K) die (verallgemeinerte) Fredholm’sche
Determinante und k(K) der auflosende Kern. Falls d(K) # 0, so wird die Gleichung
(A3) verifiziert durch

x=f+kf=0+k-f (AS)
und es gelten die Auflsungsidentititen

K+ k(K) + k(K)K = 0 (A6)

K + k(K) + Kk(K) = 0. (A7)
Ferner ist die Fréchet-Ableitung der Funktion K — k(K) definiert und es gilt

Sk(K) = —(1 + k)SK(1 + k) (A8)

wo 8k(K) die Fréchet-Ableitung von k im Punkte K mit dem Zuwachs 8K bezeichnet.
Fiir den Beweis dieser Sétze siche [4], Kapitel V.

Wir werden die im vorangehenden kurz resiimierte Theorie anwenden auf
(verallgemeinerte) Systeme von Integralgleichungen der Form

1 .
fulr) = yulr) + 3 = | Kl e dre @ =0,1,2,3; i=1..., N,
k
(A9)

(Der Faktor 1/m; wird deshalb vorangestellt, weil K;,(;, 7,) symmetrisch beziiglich
der Indizes i, k sein soll.)
Wir definieren

| K| = max max|K(;, )| (Norm) (A10)
i,k 14,7k

1
(K1Kyp)y = Z ’—"_k I Ky, (7 Ti) Ko pa(7is 71) T, (Al1)
K

®) =3 [ Kt o e (A12)
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Die Bedingungen (Al) und (A2) kénnen leicht verifiziert werden, und gemass der
allgemeinen Theorie werden die Gleichungen (A9) verifiziert durch

Vie(T) = fiolm1) + Ek:%i f kie(7is i) freaTic) A (A13)
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