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Multiple Excitations in an Impure Infinite-Chain
Heisenberg Ferromagnet

by Edgar A. Rhodes

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 »)

and Paul Erdös

Department of Physics, The Florida State University, Tallahassee, Florida 323062)

(20. X. 1975)

Abstract. The exact single spin deviation eigenstates (measured from full alignment along an
applied field) of the infinite chain Heisenberg ferromagnet containing a substituted magnetically
coupled impurity are found and studied in detail, allowing arbitrary host and impurity spins,
Lande factors, exchange constants and uniaxial anistropy constants. Depending on the sign and
magnitude of impurity-host exchange and the impurity parameters, a number of localized spin
deviations are found above and below the spin wave band, and resonant states are found within
the band. Using an expansion in terms of these eigenstates, an approximation scheme is formulated
for localized double spin deviations. For certain ranges of parameter values, the ground state is

found to contain one spin deviation. For antiferromagnetic impurity-host exchange, the ground
state can contain two spin deviations, and the conditions for a metamagnetic transition to the
two spin deviation ground state are found.

I. Introduction

The magnon excitations of a magnetic insulator, and even the ground state, can
be considerably modified by the introduction of different magnetic or non-magnetic
atoms into the lattice. Both the experimental and the theoretical aspects of this
problem have been discussed in review articles [1-4].

If the impurity-host exchange is quite different from the host-host exchange, as
is usually the case, perturbation theory gives no convergent results. However, if the
impurity-host interaction is of short range, as is usually also the case, the single spin
deviation eigenstates may be found, for a low concentration of impurities, by a Green
function technique of Lifshitz [5] in which the non-translationally invariant part of the
Hamiltonian is partitioned off to yield an eigenvalue problem in terms of the pure host
Green function for single spin deviations.

Wolfram and Callaway [6] applied the technique to the single spin deviation
spectrum of a Heisenberg ferromagnet containing a single substituted impurity with
ferromagnetic impurity-host exchange, and found resonances near the bottom of the
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spin wave band for impurity-host exchange small compared to the host-host exchange.
They also found spin deviations localized about the impurity above the band for
impurity-host exchange large in comparison with the host-host exchange. Ishii,
Kanamori and Nakamura [7], and Izyumov and Medvedev [8] used this technique
for an antiferromagnetically coupled impurity and found localized states below the
spin wave band. However, their results are only approximate, since they used linear
spin wave theory and chose, as the state of no excitations, the 'Néel state' (impurity
spin down, host spins up), which is not an eigenstate of the Hamiltonian. Wang and
Callen [9] pointed this out and obtained the lowest lying exact single spin deviation
eigenstate for a spin i antiferromagnetic impurity by choosing the fully aligned state
as the state of no excitations, while Parkinson [10] noted that the results of Wolfram
and Callaway gave the exact single spin deviation eigenstates for an antiferromagnetic
impurity as well.

In a previous paper [11], the authors used the Lifshitz technique to find a general
solution for the single spin deviation eigenstates of the infinite chain Heisenberg
ferromagnet containing a substituted impurity with arbitrary impurity-host exchange
and arbitrary host and impurity spins and Lande factors ; in an external magnetic field.
By choosing the fully aligned state as the state of no excitations, the exact solution
was obtained. However, only the eigenstates below the spin wave band, for antiferromagnetic

impurity, were investigated. These eigenstates were also studied by Oguchi
and Ono [12-13], for spins i and zero field. In the present paper, uniaxial anisotropy
is added to the Hamiltonian and all single spin deviation eigenstates are investigated
in detail, including those above, below, and within the spin wave band. The low-lying
double spin deviation states are also studied. The motivation for this extension of the
previous work is the following.

The infinite chain impurity problem is interesting from several standpoints. The
effects of impurities are most striking in a one dimensional array, because the impurities
cannot be avoided by propagating excitations. The solution can be found in simple
analytic form in some cases and is quite amenable to numerical computation. Finally,
it has been discovered that some materials behave like infinite chain ferromagnets
to a good approximation [14-16].

In an impure ferromagnet, when an impurity of spin greater than i is coupled
strongly and antiferromagnetically to the host, the ground state may contain multiple
spin deviations. The question of what is the ground state energy of such a system,
or even the simpler question, of what is the total spin deviation of the ground state,
has so far not been answered. In the present paper we obtain answers for this problem,
valid under certain conditions to be formulated in the text. In particular, we shall
study the transition from the one- to the two-spin deviation ground state which occurs
in an external magnetic field.

H. Single Spin Deviation Solution in Terms of the Pure Chain Green Function

The Hamiltonian of the linear chain Heisenberg ferromagnet of TV" spins with an
impurity spin at lattice site 0 and periodic boundary conditions (Sw S0) is given by

H -J2 Sr§y+1 - /0So(Si + S*-i) - PgH J S,
j=i i=i

-pgoHS% - K Y (S?)2 - K0(S$2 (2.1)
i i



Vol. 49, 1976 Impure Infinite-Chain Heisenberg Ferromagnet 327

where the host ions have spin S, the impurity ion has spin So, the host-host and
impurity-host exchange constants are / and J0, the host and impurity Lande factors
are g and g0, the external magnetic field is H, and host and impurity anisotropy
constants are K and K0. All parameters are arbitrary, except that /, g, and g0 must be
positive.

Since H commutes with the operator of the z-component of the total spin §z

2fJo1 §*, the eigenstates of Ê are eigenstates of §z, one of which is the fully aligned
state, with spin eigenvalue Sz (N — 1)S + S0. Our task is to find the eigenstates
of H for which S* (N - l)S + S0 - 1. States with this value of S* axe called
single spin deviation states. The states |j> having a unit spin deviation from the fully
aligned state at lattice site/ form an orthonormal basis of the subspace of spin states
with a single spin deviation. The proper linear combinations of these states,

I«) "j C»»\J>> (2-2)
1 0

must be found which are the eigenstates \n) of H. Thus, we must solve the N
homogenous equations

2 (Hu - E8^cni 0, landn 0,...,N-l, (2.3)
1=0

for cnj and eigenenergy En for each value of n, where Hu is the matrix element of H
between the states |/> and |_/> and 8l} is the Kronecker symbol.

Because the impurity interacts only with its neighbors, the N equations may be
reduced to three [5, 6]. First, we partition Hu into

H„ H% + Vu, (2.4)

where H°f axe the matrix elements of the translationally invariant Hamiltonian of the
pure chain (impurity replaced by host ion). Explicitly,

H% [E0 + 2JS + pgH + (2S - l)K]8n - JS(8j>l+1 + 8U_X) (2.5)

and

V„ [2S(J0 -J) + p(g0 - g)H + (2S0 - 1)K0 - (2S - l)iqSy(Ao

+ CAÄ — JS)(8jX8lx + 8jjr_18lJi_1) + (JS — J0VS0S)[8j0(8ii + 8KN_f)

+ 8,0(8,1 + 8UN_X)], (2.6)

where all contribution to the energy E0 of the fully aligned state of Ê has been placed
in H°j, so that VXj is non-zero only for indices TV — 1,0, 1.

The resolvent G° (E — H0)'1 of the pure chain is now introduced. Since the
single spin deviation eigenstates of the pure chain are the spin waves N ~ll2 2f=V em\jy,
the matrix elements of GQ axe easily found to be

GUE) N-1
x 2 emm-»[E -E0- 2JS(1 - cos k) - pgH - (2S - 1)K]~\ (2.7)

k

Here, the wave number k is given by k 2-nm/N, where the integer m varies in steps
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of one between -(N — l)/2 and (N — l)/2 if N is odd, and between -TV/2 and
TV/2 — 1 if TV is even. By definition of the resolvent, we have

*2 G°ml(E)(E8lj - H%) 8ml. (2.8)
i 0

We multiply equation (2.3) by the Green function Czji, sum over /, and use equations
(2.4) and (2.8) to obtain

cnm 2 GUE) V„cnj, nandm 0,...,N-l. (2.9)
li

Since equation (2.9) expresses all wave function coefficients in terms of those for the
impurity and its neighbors, the eigenenergies En are found by solving the 3x3
determinantal equation

det(8,m - 2 GUEWu) 0, j N - 1, 0, 1 ; m N - 1, 0, 1. (2.10)
i

A schematic root diagram illustrating the solution of equation (2.10) may be found
in Refs. [11] and [17].

Other quantities of physical interest include the average value of Sf when the
chain is in the eigenstate \ri),

(n\§l\ri) S,- \cni\2, (2.11)

and the transverse correlation function for sites / and j,
(n\Sf$1\n) VSJSJ Re(c*cny), a xoxy,f*l. (2.12)

From equation (2.11), we see that |c„y|2 is the spin deviation at site/ in state \ri).
It is convenient to introduce the dimensionless parameters

£ -Jo/J, y SolS, h pHßJS, k K/2JS,
4, KoßJS, -n=(go- g)h + (2yS - W - (2S - 1)*, ß 1 + y{,
e (E- E0)/2JS, e' e - gh - (2S - 1)k, Gm^(e') 2JSGUE).

(2.13)

The periodic boundary condition dictates that GN^m(e') Gm(e') and every Green
function may be expressed in terms of G0(e') by using equations (2.5) and (2.8).
Equation (2.10) factors into

/sCOAOO 0, (2.14)

where

fs(e') a(e') - [X(e') - (1 - e')a(e')]G0(e') (2.15)

and

fAW) 1 - J8(l - O - i&V - 2)GQ(e). (2.16)

In equation (2.15),

A(e') [1 + (*' - V)/£]/Vy, o(e') [1 + ß(e' - ,)/£]/vV (2-17)
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First we consider the energy eigenvalues given by

fs(e') 0, (2.18)

which will be denoted e'Si. From equations (2.9) and (2.18), we find that cSjiN-x cSj>x,
that

Csj.i Ke'sj)cSj.o, (2A9)

and finally that

csl,m [A(4) - (1 - 4>(4)]Gm(6ycsy>o, m * 0 or N, (2.20)

where csji0 is determined by the unitarity condition

JV-l
2 c„,mc„,m 1. (2.21)

m 0

with n Sj.
From equation (2.20), it is seen that cSiiN-m csjtm, so that the wave function is

symmetric about the impurity site.
Now consider the eigenvalues given by

W) 0, (2.22)

denoted e'AJ. From equations (2.9) and (2.22), we find that cA!j0 0, cMtlt-x — cAhl,
and that

Cai.m iß[Gm+1(*'Aj) - Gm.x(€'Aj)]cAltX, 1 < m < N - 1, (2.23)

where cAlA is determined by equation (2.21). It is seen that cM.N-m —cM-m, so that
the wave function is antisymmetric about the impurity site. The antisymmetric
solutions are independent of the impurity single ion parameter -q since cAU0 0, as can
be seen from equations (2.16) and (2.23). This means that neither the Lande factor
nor the anisotropy constant of the impurity influence the behavior of the antisymmetric
solutions.

DI. States Below the Spin Wave Band

For certain ranges of parameter values, eigenstates will exist with energies below
the spin wave band (e' < 0). In this region, the Green function has no poles and is
found by integration of equation (2.7) to have the form

Gm(e') -a(e'y/Ve'(e' - 2), (3.1)

in the limit TV -> oo, where

m for m < TV/2
«(/) 1 - e' - Ve'(e' - 2), in i " " (3.2)

(N — m for m > N/2.

Since e < 0, we have 0 < a < 1, lim(e'-^0_)a 1_ and lim(e'->— oo)a 0+.
Thus, equations (2.20), (2.23), and (3.1) show that the spin deviations decrease
exponentially with distance from the impurity and that the decay is greater when e' is
farther below the spin wave band.
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First, we examine the antisymmetric solutions. Substituting equation (3.1) into
equation (2.22), we find the eigenenergy,

«ii -iß- V)2/2ß, ß > 1. (3.3)

There is no antisymmetric state below the band for a ferromagnetic impurity (/3 < 1).
From equations (2.23), (3.1), and (3.3), the antisymmetric wave function coefficient
CAi.m at site m is found. These coefficients become equal in magnitude and of order
TV"1'2 as the energy approaches the bottom of the spin wave band (j8-> 1+). As
eii -> — oo, i.e. ß -*¦ oo, the coefficients approach zero, except that cAXtX -*¦ 1.

Now we examine the symmetric solutions. Substituting equation (3.1) into equation

(2.18), an equation is obtained for the eigenenergies e'Si. Using equations (2.20),
(3.1), and (2.18), we find the corresponding wave function coefficient cSUm at site m.
The behavior of the energy e'Sj and of the corresponding wave functions is discussed
in detail in Refs. [11] and [17], and we give only a summary here. The definitions of
¦q and e in Ref. [11] are generalized in equation (2.13) to include uniaxial anisotropy.
A symmetric state SI appears below the band if £ > 0 or if -q < 0. If both £ > 0 and
-q < 0, another symmetric state S2 appears below the band in addition to SI. State
SI always has the lowest energy and the energies are ordered as follows: esl < eAX <
es2. For -q 0 a simple analytic solution is obtained,

4i -«4 + y{(2 + y) + yVffî + «2 + y)2]}/4(l + yi).
For y£ — — 1, the solution is

4i ={v + av-i- Vir, - î)2 - 2,]}/(l + 20, V < o.

£ > 0, (3.4)

(3.5)

A schematic graph of e^ and e'AX as functions of | is shown in Figure 1 for -q 0.
For f > 0, -q 0, h 0, and S0 i, the ground state of the Hamiltonian is

te
^

sp WQ

xC>*4

y*(2

2(2*y)
Figure 1

Schematic diagram of the symmetric and antisymmetric single spin deviation eigenenergies Vsl and
«4i below the spin wave band as a function of f, for the case ij 0. Dashed lines are asymptotes.
Slopes of the SI and Al curves at £ 0 are —1 and 0, respectively. The parameters £, y and V
are defined in equation (2.13) in terms of the parameters of the Hamiltonian, equation (2.1).
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expected to contain one spin deviation. This state should approach the Néel state in
character as | -> 0+, because the exchange of the impurity with its neighbors is
antiferromagnetic and there is neither external field nor anisotropy present. Indeed, the
preceding equations yield for f -> 0+ : e'sl -^ 0_, csl>0 -> 1, and cSUm -+0(m=£ 0).

Also, for £ -> oo, 7) 0, h 0, and S0 i the ground state should approach
the lowest state of the system consisting of an isolated cluster of three spins (the
impurity and its two neighbors) with the remaining spins fully aligned. The equations
yield for £ ->oo: e'sx -> -oo, csl>0 -> (1 + iy)'1'2, cSi,i -> -Wy Csi.o, and csl,m -> 0
(m > 1), which is the required result.

For | > 0 and ij 0, csl>0 is opposite in sign to cSi,m, m ^ 0, so we see from
equation (2.12) that the impurity is negatively correlated to all host spins in state SI.
As pointed out by Wang and Callen [5], Ishii, Kanamori, and Nakamura [7] do not
obtain this characteristic because they choose the 'Néel state' as the state of no
excitations, giving an incorrect positive correlation which leads to an energy that is
too high.

If the single spin deviation eigenstate SI is the ground state for f > 0, -q 0,
h 0, and S0 i, then if an external magnetic field is applied, a metamagnetic transition

to the fully aligned state will occur when e 0 for some critical field hc. The
fully aligned state will be the ground state for h > hc. Noting the definition of e' in
equation (2.13), we see that the critical field may be found by substituting e' — ghc —

(2S — 1)k into equation (3.5). If k <f> 0, a simple analytic solution is obtained for
the critical field given by

K m + yt(2 + ygo/g)

+ yVffîgo/g + |(2 + ygo/g)2]}/4g0(l + yfì, î > 0. (3.6)

A detailed discussion of this metamagnetic transition, extended to SQ > i and
multiple spin deviations in the non-interacting spin wave approximation, appeared in
Ref. [11]. The effect of the inclusion of uniaxial anistropy (positive k and <j>) and spin
wave interactions on the metamagnetic transition is discussed in Ref. [17]. It is found
that the ground state is always the fully aligned state for £ < 0 and positive k and c/>,

and that the ground state contains at least one spin deviation if gh + (2S — 1)k <
— «ii regardless of the value of -q.

Another case in which the ground state should contain one spin deviation is for
S0 1, gh + (2S — 1)k > 0, and infinite impurity easy plane anisotropy (<f) -> — oo),
h remaining finite. In this limit -q -> — oo, so that the spin deviation in state SI becomes
concentrated on the impurity, while e'sx -> —oo [11]. Since the host spins are then fully
aligned, state SI minimizes the host energy when gh + (2S — 1)k > 0, and since the
impurity spin lies in the x — y plane for S0 1, the impurity anisotropy energy is
also minimized. The interaction energy between the impurity and host in this limit is
given simply by (51 \Ê'\Sl), where H' -Jr$,o-$i + Sjr-x). All higher order perturbation

terms are zero because neither Ê nor Ê' mixes states containing different
numbers of spin deviations, so that only single spin deviation states contribute and
the energy denominators in the perturbation expansion become infinite. And since
(S1\H'\S1) 0 in this limit, the impurity becomes uncoupled from the host. One
would expect the state SI to be the ground state also for very large but finite impurity
easy plane anisotropy and small external field when S0 1, as long as the host
anisotropy is of the easy axis type and large enough so that the host spin deviation is
small.
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IV. States Above the Spin Wave Band

For certain ranges of parameter values, eigenstates will exist with energies above
the single spin deviation spin wave band (e' > 2). In this region, the Green function
is found by integration of equation (2.7) to have the same form as for e' < 0, except
for a change in sign of the square root in equations (3.1) and (3.2). However, since
e > 2, we have — 1 < a < 0, lim(e'^2+)a —1+ and lim(e'-^oo)a 0_. Thus
the spin deviations decrease exponentially with distance from the impurity, just as for
e' < 0, and the decay is greater when e' is farther above the band. But, since a < 0,
spin deviations on neighboring sites are negatively correlated throughout the chain,
raising the energy of these states above the band. Equation (3.3) remains correct for
the antisymmetric state above the band, except one must have ß < — 1. We denote
the antisymmetric state above the band as A2.

One can easily find -q as a function of e' to study the symmetric eigenenergies for
e' > 2. Schematic graphs of -q vs. e' are shown in Figure 2 for fixed values of y and |

2i *<-*¦ t--o f C>0\+r/
S4 S3 S3

S3 //*"S3 S3

Z/' .*«

Figure 2
Schematic diagrams of 17 as a function of c' for the two symmetric single spin deviation
eigenenergies 53 and 54 above the spin wave band. The V axes begin at 2. The dashed line asymptote
in the figures is given by ij «' + f. At the point V 2, 17 2[1 + f/(2 + yf)]. The figures a,
b, c, d, and e are drawn for different values of f. The parameters £, y, 1?, e' are defined in equation
(2.13). e'A2 is the energy of the antisymmetric state.

and for pertinent parameter ranges. It is seen that for | > — 2/y, one symmetric state,
S3, exists above the band, but only if -q > 2[1 + £(2 + yf)-1]. For £ < -2/y, i.e.
ß < — 1, state S3 exists for all -q values, along with state A2, and another state, 54,
appears for -q > 2[1 + £(2 + YÎ)'1]- We see that -q has a simple pole at the energy
e'A2 of the antisymmetric state which separates es3 from e'si, so that e'S3 > e'A2 > e'Si.

A simple analytic solution exists for e'S3 for -q 0, £ < — 2/(1 + y), given by equation
(3.4) with a change in the sign of the square root. A schematic diagram of 43 and
e'A2 as function of £ is shown in Figure 3 for -q 0.

V. States Within the Spin Wave Band

With help of equation (2.7) it may be shown [18] that for energies within the
spin wave band (0 < e' < 2), G0 has the form

G0(9) cot(TV6/2)/sin 9, TV» 1, (5.1)
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22 y)

S3

ll.-L A2»^

/^i.^
wave

Figure 3

Schematic diagram of the symmetric and antisymmetric single spin deviation eigenenergies e'S3

and €A2 above the spin wave band as a function of tj, for the case i? 0. Dashed lines are asymptotes.
Slopes are zero of the 53 and A2 curves at £ - 2/(1 + y) and £ — 2/y, respectively. The parameters

£, y and V are defined in equation (2.13).

where

9 Arccos(l - e'), 0 ^ 9 ^ -it. (5.2)

G0 has TV/2 poles. By use of equations (2.5), (2.7), and (2.8), Gm can be shown to have
the form

Gm(9) G0(9) cos rh~9 + sin in9/sin 9, m > 0, (5.3)

indicating the oscillatory character of the band eigenstates throughout the chain. These
Green functions lead to standing spin waves in the lattice, rather than traveling waves,
and yield eigenstates having explicit site dependence, rather than wave number
dependence. One may also consider the scattering problem [18] by adding a small
imaginary part to the energy in equations (2.7), (2.15), and (2.16) and obtain traveling
wave solutions.

The form of G0 given in equation (5.1) is not suitable for calculation. In
determining the eigenstates, we eliminate G0 by use of equations (2.18) and (2.22). Since
the eigenenergies form a quasi-continuum and e becomes an independent variable,
the subscripts numbering the band eigenenergies will be suppressed. From equations
(2.20) and (5.3), we find the coefficient of the symmetric wave function at site m to be

Csm(9) cs0(9)[a cos m9 + (X — a cos 6) sin m9/sin 9], m ^ 0, (5.4)

where a a(9) and A X(9) as defined by equation (2.17) and cso is determined by
equation (2.21).

All the coefficients are of order TV"1'2 and the wave functions are basically
nonlocal, just as for the spin waves in a pure chain. In the same manner, equation (2.23)
yields the coefficients of the antisymmetric wave function cAm(0)-

For the low-lying states, the wave function varies like a sine wave of long
wavelength, whereas for the high-lying states, the wave function varies like a wave of short
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wavelength with an amplitude envelope in the form of a sine wave of long
wavelength. The shape and wavelength of the wave functions are independent of the
parameters except at the impurity site, although the phase shifts are not. Behavior
of the antisymmetric wave functions is similar, except of course cAQ 0 and cAiW_m
— cA,m-

In Figure 4 the spin deviation at the impurity site for the symmetric states is

shown as a function of energy for representative values of £, for y 1 and -q 0.
The impurity site spin deviation is of course zero for the antisymmetric states and the
impurity neighbor spin deviation for the antisymmetric state does not exhibit the
narrow peaks as a function of energy seen in Figure 4 for the symmetric states. We
mention here a general feature of the band eigenfunctions : as a parameter approaches
a value for which a state leaves the band, the corresponding wave function coefficients
at the corresponding band edge approach the values assumed by the state just outside
the band, so there does not appear to be any discontinuous change in the wave
function.

Since the spin wave band is a quasi-continuum of states, an important quantity
of physical interest is the density of states, which can be written [19]

R(E) -ilimIm[Tr(£ + it - H)'1]
TT t-o

(5.5)

nc:

40

30-

20-

10

/ i -0.0975
2.0

0.5

' ' I
w i--\
A \A \\\ x 4 '-1,(20

\ \ \
\ \ \
¦\ \ \ e--2

^ccKJ
¦ A. N

M v \ V^ N.

-6o '--•~/~~~~^ \* I -1—^_N
< e <o

f. £= -0.2675

0.5 1.0

€'
2.0

f=-0.4375

< £=-0.75 0.9375/ e=-i.o\ J. ^
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Figure 4
Spin deviation c20 (multiplied by the number JV of spins in the chain) of the impurity as a function
of energy in the spin wave band for symmetric single spin deviation eigenstates, for i? 0, y 1,

and various values of £. For £ 0, spin deviation is 1 at V 0, 0 for c' > 0. A symmetric eigenstate

exists below the band if £ > 0 and above the band if £ < — 1. iVcfo for these cases is shown
in the insert. The parameters are defined in equation (2.13).
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for energy E in the quasi-continuum where Im denotes 'imaginary part' and Tr
denotes 'trace'. It is convenient to define the dimensionless density of states

p(e') 2JSR(E), 0 < e' ^ 2. (5.6)

By use of the same partitioning of the Hamiltonian as indicated in equation (2.4), p
can be written as [6]

p(0 PoW) + Aps(e') + ApA(e'), (5.7)

where p0 is the density of states for the pure chain and Aps and ApA axe the changes
due to the symmetric and antisymmetric impurity states. The latter may be found
from [6] to be

APl(e') -- lim Imf/fV + it) dfi(e' + it)/de'], I 5 or A, (5.8)
it t->0

where/] is given by equations (2.15) and (2.16). We note that while the factorization
in equation (2.14) remains valid for complex e', neither/s nor/4 is zero.

If H is replaced by the pure chain Hamiltonian H°, we obtain [17]

Po(e') N/We'(2 - O. (5-9)

We see that p0 is symmetric about the band center e 1 and approaches infinity at
the band edges e' 0 and e 2. There are no single spin deviation states outside
this band for the pure chain, and the integral of p0 over the band is TV, the total
number of single spin deviation states.

From equations (2.15), (2.16), and G0 we may determine Aps and ApA. In terms
of the variable 9 introduced in equation (5.2), we have

Aps Po{|SA sin2 9+[(l + £ + ß- ^)(cos 9-1)
+ viß~ Vf]o}|N^/y£(X2 - 2Aa COS 9 + er2) (5.10)

and

^Pa Poß(cos 9 - ß)/N(ß2 - 2/3 cos 9 + 1), (5.11)

where A X(d) and a a(9) axe defined by equation (2.17) and p0 p0(#) N/tt sin
9. We see that Aps and ApA axe of order N"1 compared to p0, as might be expected,
since the band eigenenergies of the chain containing a single impurity differ from
those of the pure chain only by a quantity of order TV ~1 [11, 17], and since only a few
eigenstates can exist outside the band. Aps and ApA have the characteristic energy
dependence of p0, multiplied by a factor dependent on the impurity parameters, and
are zero for the pure chain.

Figure 5 displays Aps as a function of energy for the same parameter ranges as
used in Figure 4. The ordinates have been divided by p0 in order to exhibit the structure
due to the impurity. A general feature of the figures is an increase in the density of
states in the neighborhood of the corresponding band edge when a state is about to
leave the band, followed by a depletion in the density of states when the state is outside
the band. As the impurity-host interactions become appreciably different from the
host-host interactions, these increases become resonances (relatively large, narrow
peaks) which move through the band as the parameters change. The actual positions
of these resonances are shifted, from those shown in the figures, toward the nearest
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Figure 5

Plot of NApJpo as a function of e', for y 1, i? 0 and various values of £. Aps is the change in
density of states of the spin wave band due to the impurity for symmetric single spin deviation
eigenstates. The density of states of the pure chain is p0 lV/«rVV(2
spins in the chain, and the parameters are defined in equation (2.13).

e'). N is the number of

band edge by the strong increase in p0 away from the center, and their shapes are
somewhat distorted. The peak position and width of these resonances, if calculated
by the usual resonance formulas [6], would be inaccurate for energies not near the band
center, due to this strong variation of p0 with energy. Comparison of Figure 4 depicting
Aps with Figure 5 showing c|0 reveals a strong correlation between these two quantities.
In particular, resonances in the density of states are associated with peaks in the spin
deviation at the impurity site as a function of energy. Unlike Aps, ApA exhibits no
resonances, as might be expected, since cA0 0 and c\i has no narrow peaks as a
function of energy.

VI. Conclusions Regarding the One Spin Deviation Eigenstates

In the preceding sections, we have found and studied in detail the exact single
spin deviation eigenstates of the infinite chain Heisenberg ferromagnet containing a
substituted magnetically coupled impurity. Depending on the values of the impurity
parameters, a number of localized states were found above and below the spin wave
band, and resonant states were found within the band. For easy axis host anisotropy
and small external field, the ground state was found to contain one spin deviation in
two cases: (1) impurity spin i, antiferromagnetic impurity-host exchange, small
impurity and host anistropy; (2) impurity spin 1, very large easy plane impurity
anisotropy.

In a real physical system, a finite number TV0 of impurities will be found. If
the impurities are randomly substituted along our chain and the concentration is
small (c TVo/TV « 1), the probability that two impurities will be near each other is
small (order c2), and the interaction between impurities is small. In this case the
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eigenfunctions described here remain approximately valid for each impurity and host
ions in the vicinity of the impurity. Eigenenergies will be shifted only by a small
amount and will assume a small width, and the change in the density of states due to
the impurities will be of order c compared to the density of states of the pure chain
[20-22]. For a sufficiently large concentration of impurities, then the eigenstates outside

the spin wave band and the resonances inside the band can have a measurable
effect on properties of systems which behave approximately like linear chain
Heisenberg ferromagnets [14-16].

VU. The Double Spin Deviation Problem

Returning to the Hamiltonian Equation (2.1) and imposing the additional condition

that K and K0 be positive (easy axis anisotropy), we now search for eigenstates
which have total spin eigenvalue S* (N — 1)5 + 50 - 2. These are called double
spin deviation states.

It is not a priori clear how many spin deviations (magnons) the ground state and
the most important excitations of the system contain. Therefore it is essential to
include among the set of basic functions, in terms of which the unknown ground state
is to be expanded, states with more than one spin deviation.

In the single spin deviation problem for an impurity with nearest neighbor
exchange in a Heisenberg ferromagnet, <m| J? [n> is zero unless m and n axe the impurity
site or its nearest neighbors, where |m> is a spin deviation at lattice site m from the
fully aligned state. Therefore the single spin-deviation eigenvalue problem is only of
dimension (z + 1) x (z + 1), where z is the number of nearest neighbors.

The double spin deviation impurity problem has received little attention in the
literature and is a much more difficult problem to solve exactly than the single spin
deviation impurity problem. If one proceeds as for the single spin deviation problem,
using as a basis the states \m, ri) containing spin deviations at lattice sites m and n,
one finds that (J, l\V\m,ny is non-zero not only when/, /, m and n are the impurity
sites or its neighbors, but also when / (or /) and m (or ri) are arbitrary sites anywhere
in the lattice. This means that the Lifshitz [5] partitioning technique does not solve
the problem. In addition, the two spin deviation eigenstates of the pure host, although
known [23-27], are more complicated than the single spin deviation eigenstates of the
pure host, and consist of a two magnon band in which there is magnon-magnon
scattering and one or more two magnon bound states lying below the band. Oguchi
and Ono [12] formulated the Dyson equation for two spin deviations in the infinite
chain Heisenberg ferromagnet containing a substituted impurity for spins i and no
anisotropy or external field, and obtained an approximate solution by ignoring all
matrix elements of J? except those between the impurity and its neighbors and by
ignoring magnon-magnon interactions in the pure chain.

We are particularly interested in the cases for which the ground state contains two
spin deviations. In the solution of the single spin deviation problem for the infinite
chain Heisenberg ferromagnet containing an impurity, it has been found that localized
states below the spin wave band can lie below the normal ground state (the fully
aligned state) if the impurity host exchange is antiferromagnetic [7-12]. In the
Appendix to the present paper, it is found that the ground state can be expected to contain
250 spin deviations, where 50 is the impurity spin, for a significant range of parameter
values, if and only if the impurity is antiferromagnetic [28]. Therefore we are
particularly interested in the case of an antiferromagnetic impurity of spin 50 1, with
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the other parameters of the problem arbitrary, because this gives rise to a ground state
containing two spin deviations. Oguchi and Ono [12] approximated the ground state
in this case by requiring one spin deviation to remain on the impurity, while allowing
the other spin deviation to be shared among all lattice sites, which is just a modification
of the single spin deviation problem. Ono and Endo [29] recently improved upon the
approximation by allowing the spin deviation on the impurity to be shared also by its
nearest neighbors.

Instead of Oguchi and Ono's approximate ground state, one might choose two
spin deviations of type 51, the single spin deviation eigenstates of lowest energy
[11, 17]. This choice places both spin deviations on an equal footing and is consistent
with linear spin wave theory, which regards state 51 as a magnon of negative excitation
energy localized about the impurity, for antiferromagnetic impurity-host exchange [11],
and which ignores magnon-magnon interactions. Thus linear spin wave theory dictates
that the ground state has the maximum number of 51 magnons consistent with the
restriction that no spin S, is deviated by more than 25;, and since most of the 51
spin deviation is concentrated on the impurity, this restriction is reached for two
magnons, if 50 1. Linear spin wave theory can be regarded as giving a first approximation

to the other double spin deviation eigenstates also. The approximation can
then be improved by accounting for magnon-magnon interactions.

Our approach to finding the non-band double spin deviation eigenstates is to
take the double spin deviation states as given by linear spin wave theory in terms
of the single spin deviation eigenstates as basis, to diagonalize the Hamiltonian with
respect to these states, and then to treat the effect of the various bands on these states
as a perturbation on the wave functions. Our results will be accurate for the region
of parameter values where the perturbation is small. This approach can be generalized
to more than two spin deviations and to lattices of higher dimension, at a cost in
labor and numerical difficulty.

Vm. Basis States

The TV single spin deviation eigenstates \m) of <# are given as a sum over single
spin deviation states |/> at lattice sites /, as \m) 2f=~oJ cmj|/>, where the wave
function coefficients cm) were obtained in the previous sections. They may be written
in terms of the magnon creation operator 5 + JJ^o1 cm1âf, where a/|0> |/> and
the cmj are real, |0> being the fully aligned state with Sz (TV - 1)5 + 50, as \m)
b,X |0>. The âf operators are given in terms of the spin operators by the Holstein-
Primakoff transformation [30]. The double spin deviation eigenstates are TV2 in
number and are given by linear spin wave theory, which neglects interactions between
the single spin deviation magnons, as

'Ai
\m, n) 5+5+10> 2 cmjcnl\f, /> + -y/2 2 cm/cwU />, m^n

n j
1 „ l '+1 C8-1)

K m) - 7/2 (*m)Z|°> 772 2 C™iCml\j, 0+2 CWJ>>

where |/, /> âfâ,+ \0y, j A I, |/,/> (l/A/2)(ó/)a|0>, and j and / range over all
lattice sites. The states given by equation (8.1) are orthonormal, and form a complete
set if S, ^ 1 for all spins. However, if some St i, these states are 'over-complete',
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since they then contain the unphysical state |/, />, From equation (8.1) and ortho-
normality of the single spin deviation eigenstates, we have

(m, n\Sf\m, ri) S - ci, - c2nl, m A n, (8.2)

where all |/, /> states (whether S} i or not) are responsible for 4c2 tc2t of the spin
deviation c2,; + c2.,, and

(m, m\Êï\m, m) S - 2c2,,, (8.3)

where all |/, /> states are responsible for 2ci, of the spin deviation 2c2,,. We see that
when the spin deviation at site / is small, the contribution to the spin deviation from
the |/, /> states is very small. It will turn out that for the only S, i case we will
consider, 50 1 and S i, the contribution from unphysical states is small for the
range of parameter values of interest to us. Therefore, rather than encumber our
formalism with a prescription for projecting out the unphysical states |/, /> for 5,

i [24], which would also cause our basis states to be non-orthogonal, we shall confine
the validity of our results to the range of parameter values for which the spin deviation
at site / is less than one if S} i.

Just as in the case of one spin deviation, the two spin deviation eigenstates are
divided into those symmetric about the impurity site and those antisymmetric about
the impurity site. From equation (8.1) and the symmetry cmJV_; cmj derived in
Section II for periodic boundary conditions, one sees that \m, ri) is symmetric if \m)
and \ri) are both symmetric or antisymmetric and that \m, ri) is antisymmetric if one is

symmetric and the other is antisymmetric. $ has no matrix elements connecting
symmetric states to antisymmetric states. Thus the true double spin deviation eigenstates
(which may be expanded in the \m, n) basis) are either symmetric or antisymmetric.

In the solution of the single spin deviation problem, there are TV/2 symmetric
and TV/2 antisymmetric eigenstates [31]. Although TV2 double spin deviation states

may be formed from them, only N(N + l)/2 of these are distinguishable, since the
boson state \m, n) is indistinguishable from \n, m). Thus (TV/2)(TV/2 + 1) symmetric
and TV2/4 antisymmetric distinguishable double spin deviation states are found.

Two approaches were considered for the evaluation of the matrix elements of 7$
in terms of the basis states \m, ri). One was an expansion of 7$ in terms of 5-type
bosons, the other an expansion of \m, ri) in terms of the states |/, />. <# may be written
in terms of â-type boson operators using the Holstein-Primakoff transformation, and
the a-type boson operators may then be expressed in terms of 5-type boson operators.
In this approach, terms such as V2S,- — âfâ, arise which must be expanded in powers
of Sr1 to be evaluated. The leading terms in Sr1 axe readily found for an arbitrary
number of spin deviations of the 5-type. However, we are interested in the cases for
which the ground state contains 250 spin deviations, and for most of the ranges of
parameters, it is expected from analogy with the single spin deviation solution that
most of the spin deviation will be concentrated on the impurity in these cases. Thus
the successive matrix element terms derived from the So1 expansion ofV2S0 + a£a0
will be of the same order of magnitude, so that each term must be found and the
terms must be summed to infinite order in Sô1. The attempt to do this sum becomes
quite laborious, and this approach was abandoned in favor of leaving $ intact and
expanding \m, ri) in terms of |/, />. By use of equation (8.1), the orthonormality of
the wave function coefficients cmj, and the relation

(m\£\ri) (Eo + 2JSem)8mn, (8.4)
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where E0 is the energy of the fully aligned state, the matrix elements in terms of the
basis states \m, ri) may be written in the forms

(m, n\J?\p,q)/2JS (8mp8nq + 8mq8np)(E0/2JS + em + en)

T J.\DmnVq ~T" JJnmpq T" lspqmn + JJqprim)

\Amnpq > -*nmpq "r "mnqp > *nmqp) ^^-"mnpqi

m # n, p # q, (8.5)
(m, m\3fc\n,p)/2s/2JS Dnmmp + Dpmmn + 2Dmmnp

r mmnp "~ rmmpn l--mmnv> rt r1 p, ("•"/
and

(m, m\#\n, n)/2JS 8mn(E0/2JS + 2em)

A^mmnn ' 1-^nnmm rmnmn) l^mmnn, \P- ')
where

(JV/2-1
JV/2

/f c:mj+xcnjCPjCqj + £ cmj_xcnjcPjCqj
1=1 1=2

- Vy £cmoCniCpiCqi\ - So^/y £cmXcnoCPoCqo, (8.8)

/N,v1 \
Pmnpq 5 \ Z Cmjcn,f+lcpicq,j+l ~ £Cm0cnlcp0cql I ' (°-9)

and

JV/2

Lmnpq 2k 2_, (2 — °jNlACmlCniCP)Cq) + 299Cm0Cn0CpoC9o (8.10)

Inequations (8.5-8.11), s Vi — 1/25 and s0 Vl — 1 /250. In deriving equations
(8.5-8.10), use has been made of the symmetry cmW_y ±cmj [32]. The D terms arise
from the ÊfÊJ±i exchange terms, the F terms, from the 5^5f+i exchange terms, and
the L terms, from the (5f)2 anisotropy. In this approach, the matrix elements may be
evaluated exactly, but the calculation quickly becomes prohibitively laborious for states
containing greater numbers of spin deviations.

IX. Diagonalization with Respect to Discrete States

According to linear spin wave theory, the double spin deviation eigenstates are
of the form \m, ri) as given by equation (8.1) with excitation energy Em + En, where
Em is the excitation energy of the single spin deviation eigenstate \m). The single spin
deviation eigenstates consist of ~ TV symmetric and antisymmetric states of non-local
character [33] which form a quasi-continuum of energies throughout the spin wave
band (as given by the pure host), together with as many as three states of discrete
energy (two symmetric, one antisymmetric), with spin deviation localized about the
impurity which lie outside the band for certain ranges of parameters. Thus there are
double spin deviation states \m, ri) of three different kinds:

(1) Non-local band states arising when \m) and \ri) axe single spin deviation band
eigenstates. Their number is ~TV2.

(2) Partially local band states arising when \m) is within the single spin deviation
band and \ri) is outside or vice versa. Their number is XN.
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(3) Localized states, which arise when \m) and \ri) axe both outside the single
spin deviation band. Their number is ^ 6, of which 4 are symmetric, and 2 are
antisymmetric.

The Hamiltonian is easily diagonalized with respect to the six localized non-band
double spin deviation states.
Suppose

*\l) Ei\l}, (9.1)

where

|/} 2 x>*\m)). (9.2)
m l

\l} denotes any one of six eigenstates of equation (9.1), ordered in increasing eigen-
energy E, from / 1 to 6, and \m)) denotes any one of the six non-band double spin
deviation states, ordered in some fashion. From equations (9.1) and (9.2) and the
orthonormality of the \m)) states, we obtain the six homogenous equations

2 liim'\jê>\m)) - E,Bm,m]xlm 0, tri and / - 1,..., 6, (9.3)
m l

in the six unknowns xlm for each /. The absolute magnitude of xlm is determined by
the orthonormality of |/}. Since $ does not connect symmetric states to antisymmetric
states, equation (9.3) reduces to four equations for the symmetric states and two equations

for the antisymmetric states. Of course, depending on the parameter values,
fewer than three single spin deviation states may lie outside the one magnon band,
further reducing the number of equations.

Besides E, and xlm, another physical quantity which we calculate is the average
z-component of the spin at site n, in state |/}, {/|5^|/}. Equations (8.2), (8.3) and (9.2)
yield the result

{/|o„|/} 5n — 2(X;jSllS1Cslin + XitS2S2Cs2in + XltAXAXCAiin)

— XitsiS2(cSXtn + Cs2yn) — 2\72 XiiSXS2(XifSisx + XiiS2s2)CSi,ncS2,n (9.4)

for |/} symmetric, where 5 denotes a symmetric and A an antisymmetric state, and
51, 52, and Al refer to single spin deviation eigenstates below the one magnon band.
A similar result for antisymmetric |/} is obtained. If parameter values are such that
there are single spin deviation eigenstates above the one magnon band, only a change
in notation is required.

The matrix elements required in equation (9.3) are calculated exactly in Ref. [17].
For a wide range of parameters the most important matrix element for the calculation
of the lowest lying double spin deviation state is

[(51, Sl\jt\Sl, 51) - E0]j2JS 2esl + v for TV-»oo, (9.5)

where

v 2c|1>0{2j[A|1asl(l - «IJ-1 - A|lV/y £] - 2j0As1vV £

- S-iV&c&Q - al,)-1 - X2S1£] - 2A|,k(1 - al,)-1 - cp}, (9.6)

and Asl A(esl) and asl a(esx) axe defined by equations (2.17) and (3.2). The state
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51 is the lowest lying single spin deviation state below the one magnon band, and
equation (9.5) gives the expectation value of $ in the double spin deviation state
151, 51) consisting of two 51 magnons to within an error of order TV-1, where 2esl
is the excitation energy as given by linear spin wave theory and v is the interaction
energy between two 51 magnons.

The states |/} together with the band states excluded from equations (9.1-9.6)
form an orthonormal complete basis for the double spin deviation problem. If the
effect of the band states on |/} is small, their effect may be treated as a perturbation,
which will produce corrections to |/} and Et. This is done in the next section. If Et
lies within a double spin deviation band of states having the same symmetry as |/}, |/}
would be expected to decay into the band states and to have a finite line width. In
this situation, our calculation, which does not yield any line width for |/}, cannot be
expected to describe |/} at all, although the appearance of such a state |/} within a
band may possibly indicate a resonance at E,. Presuming this situation does not occur
for the state |/} of interest and the parameter values considered, we shall refer to the
states |/} as 'discrete' states, since the remaining double spin deviation states of our
basis form energy bands. It should be borne in mind, however, that an exact calculation,

if it were done, might not only yield energy shifts for the |/} states, but small
line widths as well, even when Et is not within a band.

X. Perturbational Effect of Band States on Discrete States

Let the true discrete eigenstate |/], which is represented by |/} in the absence of
the perturbation due to the band states, be expanded in terms of our basis as

i/i «.i/} + 2 ««-in + 2 ">!*))> (101)
l'*l 0*1

where \b)) represents any one of the double spin deviation band states and ut are the
expansion coefficients. In this section, the following conventions on arbitrary state
indices will be used: i and/ will designate states which may be either discrete or band
states; / and /' will designate discrete states only; b and b' will designate band states
only. Thus 3^lv {l\J^\T} 0, / =¦= /', since the discrete states have been diagonalized
among themselves. If the true eigenenergy for |/] is E, the following set of
homogeneous equations for the wave function coefficients is found,

(E - Ej)u, 2 -^"i, ' (10.2)
i*l

and

u( fau, + 2 ^»u\(E - ET)-1, i /, (10.3)
\ i*i I

where E} 3f}j. Equation (10.3) has been written in a manner suggesting iteration,
since it is expected that \ut\,i A /will be small compared to |w,|. Substituting equation
(10.3) for Kj in equation (10.2), we have the exact relation

(E - E7)Ul M, 2 ^u^AE - Ej)-1 + 2 2 *«*««K£ - EA1. (10.4)
1*1 i*l 1*1
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The iteration can be continued by substituting equation (10.3) for ut in equation (10.4).
If

2^,m, «K«,|, (10.5)
i*i

then it is seen from equations (10.3) and (10.4) that each successive new term in the
interaction scheme is much smaller than the preceding term, so that

u{ x •#>,(£¦ - Ei)-1, i A I, (10.6)

and

E - E, x 2 ^ME - Ej)- \ (10.7)
i*l

in the first approximation.
Equation (10.7) is an implicit equation for E. To remove is from the denominator,

we assume [34]

|AE,| s \E - E,\ « \E, - EB\, (10.8)

where EB is the energy of the band state lying closest to |/} in energy. Then equation
(10.7) becomes

AE, x 2 |{/|^|2>))|2(£, - Eby\ (10.9)
b

To the same approximation, equation (10.6) becomes

ub x ^,w,(£, - Ehy\ (10.10)

For discrete states \l'}, T /, equation (10.6) yields uv x 0. Applying the condition
2t \ui\2 1, we find from equation (10.10) that

\ul\ i + 2 i*w« - E»y2- (l(U1)

From equation (10.9) it is seen that equation (10.8) implies

2 Wb\2iEt - Eby2 « 1, (10.12)
b

so we may replace u, by 1 and obtain u0 x ^bi(El — E,,)'1 from equation (10.11) in
the first approximation, or

|/]*|/} + 2P^}|*))- (10.13)
b Ei- hb

Using equation (10.10), Condition (10.5) can be written self-consistently as

2 ^bb-^b-iiEi -Ef)-1
b'*b

« ÄI- (10.14)

At first glance, one might suppose that the left and right hand sides of (10.14) are
of the same order of magnitude except for is, — E0, since both sides are of the same
order in TV. For instance, if b and V each represent a state composed of two single spin
deviation band eigenstates, then ^f6-, and At°bl are of the same order of magnitude,
^7bb, is of order TV-2 (as seen from equations (8.5-8.10), noting from Ref. [17] that
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the wave function coefficients appearing are all of order TV "1/2), and b' ranges over
TV2 states. If this were true, Condition (10.14) could be satisfied only if is, were far
away from EB. However, it is possible that the band states are 'well-diagonalized'
such that Condition (10.14) may be satisfied for is, rather close to EB, and we shall see
in Section XI that this can be true for the lowest lying discrete state. The quantity on
the left hand side of Condition (10.14) is rather difficult to calculate. We expect that
Condition (10.14) will be satisfied when Condition (10.8) is satisfied, so in practice
we shall consider satisfaction of Condition (10.8) as sufficient for validity of equations
(10.9) and (10.13).

We now proceed to develop formulas viable to numerical computation. As seen
from equations (8.5-8.10), Eb in equation (10.9) may be written as the sum of the
corresponding single spin deviation eigenenergies within an error of order TV"1. We
then have for the symmetric states |/],

AE, x 2 \{l\J?\Sl, Sb)\2(E, - ES1 - Ef)-1
b

+ 2 |{/|^|52, Sb)\2(E, - ES2 - Ef)-1
b

+ 2 W\*\A\, Ab)\\E, - EA1 - Ef)-1
b

+ E"Zb \{l\J?\Sb, Sb')\2(E, -Eb- E,,)-1
bb'

+ 2
*

\{l\&\Ab, Ab')\2(El - Eb- Eb.y\ |/} symmetric, (10.15)

where 5 denotes a symmetric and A denotes an antisymmetric 5-type magnon and
51, 52, and Al refer to single spin deviation eigenstates below the one magnon band.
If parameter values are such that there are single spin deviation eigenstates above the
one magnon band, only a change in notation is required. Since the band states form a

quasi-continuum for TV» 1, it is necessary to convert the sums in equation (10.15)
to integrals, as 2,bS,A ""*" j Ps.a de', where pSiA is the density of symmetric or
antisymmetric single spin deviation eigenstates and e' is the corresponding normalized
eigenenergy. pSiA may be replaced by p0/2 to order unity. In the same manner, the
energy correction to the antisymmetric discrete states due to the band states can also
be found.

From equation (10.13) the correction A{/|5„|/} to the average of the spin z-
component at site n in state |/} can be written in the first approximation as

A{l\S*n\l} x 2 2 {l\7#\b))((b\Sn - 2 cincinhth\l)(Ei - EA1. (10.16)
b ii

Since the wave function perturbation is essentially of first order, equation (10.16) is a
first order result. Since the energy perturbation is essentially second order, our
formulas compute AE, to greater accuracy than A{/|5*|/}.

The matrix elements required in equations (10.15-10.16) are calculated exactly
by use of equations (8.5-8.10), the single spin deviation wave function coefficients,
trigonometric identities, and several summation formulas for geometric progressions.
Their explicit forms are not given here, but may be found in Ref. [17]. No analytic
closed form was found for the integrals over these matrix elements; therefore the
integrations had to be performed numerically.
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XI. Discussion of the Results

For the numerical computations, only the case of S0 1, £ > 0 and k <p 0

(no anisotropy) is considered. Instead of the single spin deviation eigenenergy e„ the
parameter e, e, — gh is used because e] is independent of gh, as are also the wave
function coefficients. Similarly S[ S,- 2gh and AS, AS', (where S, (E, -
E0)/2JS) for the double spin deviation problem are independent of gh, as are also the
perturbed eigenstates. AS, is the change in c, due to the perturbational effect of the
band states. Throughout this section, it is to be understood that Ae AS', S S, + AS,
and S' S{ + AS refer to the discrete double spin deviation of lowest energy.

The numerical computations were performed on the Florida State University
CDC 6400 computer. The numerical errors in all quantities obtained from our theory
which are presented in this section are estimated to be < 0.1 %. Details of the numerical
computations are given in Ref. [17], where results of our calculation for additional
parameter values other than those presented here may also be found.

/. Zero appliedfield
Before proceeding with the calculation of the metamagnetic transition from a

ground state with one spin deviation to one with two spin deviations, we study S'
and [/|5^|/] for the case -q (g0 — g)h 0 (such as occurs for zero applied field h)
and compare our results with the Oguchi and Ono approximation for the two spin
deviation ground state in which one spin deviation is isolated on the impurity while
the second deviation is free to move about in the lattice [35]. The results are shown
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Part a: Energy é" (E — E0)/2SJotthe double spin deviation state of lowest energy as a function
of £, for i; 0, S 1, So 1, K 0, K0 0 along with upper and lower bounds. The energy
esi of the lowest single spin deviation state, 24i, and the energy of Oguchi and Ono's [12] double spin
deviation state are shown for comparison. Part b: Fractional energy change A§'/&' of the lowest
lying double spin deviation state due to the band state perturbation, as a function of £, for -q 0,
S 1, K 0, Ko 0, So 1. The dashed line is the asymptote as £ —> oo. The parameters are
defined in equations (2.1) and (2.13), and E0 is the energy of the bottom of the spin wave band.
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in Figures 6-9. In Figures 6a and 8a, we see that S' is considerably lower in energy
than the lowest single spin deviation energy e^, but is raised above the lowest two
spin deviation energy 2e'sl as given by the linear spin wave theory, by interaction
between the various 5-type magnons present. Since AS', < 0 for the lowest lying discrete
state, the net interaction of this state with the band magnons lowers its energy, but the
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S0-<S§>

1.0

0.4
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..__ Uauchi a Ono
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I spin deviation state

-A<S0>

Figure 7

Spin deviation S0 — <>S"o> of the impurity ion corresponding to the energy $' of the lowest lying
double spin deviation state as a function of £, for ij 0, S 1, S0 1, K 0, K0 0, along with
the change — A<5o> in spin deviation due to the band state perturbation. The spin deviation of the
51 single spin deviation state are shown for comparison. Dashed lines are asymptotes as £^oo.
The parameters are defined in equations (2.1) and (2.13).

larger interaction (of opposite sign) with the discrete state magnons causes a net
increase of S above 2esx. The largest interaction between discrete state magnons occurs
between two 51 magnons and is positive, as given by equation (9.6), and the lowest
lying discrete state has a large |51, 51) component xslsl. The remaining discrete states
have a relatively minor, but measurable, effect on S '.

It is also seen in Figures 6a and 8a, that the energy S' computed for the double
spin deviation eigenstate approaches the upper bound as £-»-0, and approaches
the lower bound as £ -> oo. The fractional difference between S' and the lower bound
approaches zero as £ -> co. This is the behavior required of the true lowest eigenstate
(see Appendix). Although the energy of the Oguchi and Ono state correctly approaches
the upper bound as |->0, as £-»oo it approaches — 2.366f for host spin 5=1
instead of the correct — 2.5f, and — 2.618£ for 5 i instead of the correct — 3£ (see
Appendix, equations (A.l) and (A.8)).
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Figures 6b and 8b display the fractional change in the energy AS'/S' of the lowest
lying double spin deviation state due to the band state perturbation, which is measure
of the degree of satisfaction of Condition (10.8). We must have | AS'/S'\ « 1 in order
that equations (10.15) and (10.16) give accurately the effect of the band states on the
energy and spin deviation. A characteristic of AS'/S' is an asymptotic approach as
£ -> oo to a small constant which is smaller for larger host spin 5, a dip which is
smaller and occurs at larger £ for larger 5, and an upswing to zero at £ 0 (the
dip occurs at £ ~ 0.001, AS'/S' ~ 0.25, for 5 i in Figure 8b and so cannot be
shown). This behavior occurs because the matrix elements in equation (10.15) are of
order £ as £ -> oo as are the energy denominators, but approach zero faster than £

as £ -> 0 while the energy denominators are again of order £. The contribution of the
band perturbation to the impurity spin deviation has behavior similar to AS'/S', as
seen in Figure 7 and 9, as might be expected from the form of equation (10.16).

Since \AS'/S'\ « 1 for all £ and 5 (except near £ 0.001 for S i) for the
lowest lying discrete double spin deviation state, one might say that the first order
perturbation on the wave function gives an accurate result for all £ and 5. However,
Condition (10.14) must be satisfied for the perturbation expansion to converge. The
largest contribution to AS' is for \b)) \Sb, Sb') in equations (10.9) and (10.15),
because for this set of band states, |^,| » \^7b-,\, V # b. If further, \b')) is a partially
local band state such as |51, Sb), it is found that $ebb. -> 0 is £ -> 0 at least as fast as
S' -> 0, so that Condition (10.14) is well satisfied for this case for all £. If \b)) \Sb, Sb')
and \b')) is also a non-local band state, \Ab", Ab"), the evaluation of $CW is tedious
and has not been carried out. However, in this case, both \b)) and \b')) spread the
spin deviation almost equally over all lattice sites and are very similar to the set of
states \k, k'y containing free pure host magnons of momentum k and k', the spin
deviation at each lattice site being of order TV"1. The pure host two spin deviation
problem has been solved exactly [23-27], and it is found that the two magnon
interaction is small, except for the creation of bands of two magnon bound states. Our
approach is incapable of yielding these bound magnons, since the perturbation
expansion must then be carried to infinite order, but since there are only ~ TV such states
as compared to ~TV2 unbound magnon states, and since no bound magnons have
energies below that of the fully aligned state, we presume their effect on the lowest
lying discrete state is small, except, perhaps for £ ~ 0. Certainly Condition (10.14) is
satisfied for large £, but it may be that S' approaches zero as £ -> 0 with a somewhat
different functional dependence than that given by our first order perturbation on the
wave function.

In Figures 7 and 9 is shown the spin deviation of the impurity ion in the lowest
lying discrete double spin deviation state, as calculated from equations (9.4) and
(10.16) and also as given by the Oguchi and Ono approximation. The impurity spin
deviation should approach 2 as £ -» 0 and as £ -*¦ oo should approach the spin
deviation characteristic of the lowest state of the system composed of the impurity and
its nearest neighbors (see Appendix). Both our approximation and that of Oguchi
and Ono give the correct result for £ 0. For £->oo and 5=1, our calculation
yields the correct result, 1.5 (see Appendix, equation (A.10)), within numerical error,
but the Oguchi and Ono result is 1.79. For £ ->oo and 5 i, our approximation
gives 0.96, close to the correct result, 1.0, while that of Oguchi and Ono gives 1.72.

But also for 5 i, our approximation slightly violates the kinematic restriction that
the spin deviation be no greater than 2 (for 50 1) for small £, reaching a peak
spin deviation of 2.009. It may be that inclusion of higher order perturbation terms
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would yield better results for 5 i in our scheme, but the violation of the kinematic
restriction may be at least partly due to the unphysical states |/, />, / 0. Even
though 50 1, we see in equations (8.2) and (8.3) that these states contribute spin
deviation to the impurity ion when our basis states \m, ri) axe used.

We see that our approximation yields results generally superior to that used by
Oguchi and Ono, for the lowest lying double spin deviation eigenstate. We also see
that the inclusion of the band perturbation is essential to obtain correct behavior of
the energy and spin deviation. It is perhaps surprising that the band states, which have
non-local components, give a non-vanishing contribution as £ -*- oo, since the spin
deviation in this limit must be fully concentrated on the impurity and its neighbors
(see Appendix). This may be understood by noting that the non-local components
strongly 'interfere' for sites farther away from the impurity, such that the sums in
equation (10.16) decrease rapidly with distance from the impurity, and the spin
deviation perturbation vanishes for sites other than the impurity and its nearest
neighbors in the limit £-^oo [17].

2. The metamagnetic transition

When a magnetic field is applied, the energy S of the lowest double spin deviation
state is raised relative to the energy esl of the lowest single spin deviation state, which
is itself raised relative to the fully aligned state. A metamagnetic transition from two
spin deviations to one or zero spin deviations can occur at a critical field hc2, below
which the ground state contains two spin deviations. A metamagnetic transition from
one spin deviation to the fully aligned state can occur at a critical field hcl, above
which the ground state contains no spin deviations. Since esl is measured relative to
the fully aligned state, hcl is given by esl 0, or

gha =-e'si, (HT)
provided hcX > 0 (e'sx < 0). The ground state contains at least one spin deviation if
h < hcl. If e'si > 0, the ground state is the fully aligned state. Then hc2 is given by
S €SX, or

ghc2 e'si - *', (11.2)

if hcX < hc2, provided hc2 > 0 (e'sx > S'). If S' > e'sl, the ground state cannot contain
two spin deviations.

The condition hcX < hc2 implies from equations (11.1) and (11.2) that S' > 2e'sx,

that is, the net interaction of two 51 magnons with each other and the other magnons
must be repulsive. If the net interaction is attractive, or £' < 2e'sx (hcX > hc2), the
metamagnetic transition occurs directly from two spin deviations to the fully aligned
state, and hcX is meaningless. If S' < 2e'sx, the phase transition is given by S 0, or

ghc2 -S'/2. (11.3)

If S' < 2e'sx, the ground state contains two spin deviations if h < hc2, none if h > hc2.
Since S' and e'sx axe independent of gh, it is convenient to fix 5, £, and -q and

determine hcl and hc2 from equations (11.1-11.3). Then, for given 5 and £, the value
of gQ/g at which hc occurs is given for each value of -q by [36]

golg 1 + vlghc (11.4)

where hc is hcX or hc2. The results of this calculation are displayed in Figure 10 as
phase diagrams of h vs. g0/g for £ 10, 1, and 0.1, and for 5 1 and i, wherein
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hcX and hc2 phase lines are shown. A general feature of the hc2 phase lines is that thy
are similar to the hcl phase lines, and like hcl, hc2 -> £/g0 as g0/g -»¦ 0 and hc2 -*¦ — e*»°
as go/g -+ oo.

Also shown in Figure 10 is a curve, denoted by hcT, which represents the two sp

deviation phase line without including the band perturbation AS. The net interacts
of two 51 magnons with each other and the other discrete magnon states is repulsi* >

so that hc2. < hci- It is found that if -q < 0, or if -q > 0 and not too large, the intef'
action between two 51 magnons is dominant. Since AS' < 0, we have hc2 > ^'l
but, with one exception, AS' is small enough in Figure 10 that hc2 is close to hC2' afl
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hc2 < Ki, so that the net interaction of two 51 magnons with all magnon states,
including band magnons, is repulsive. Note that in Figure 10, for £ 0.1 and 5 i, we
have hc2 > hcX for g0/g > 2.7. In this range of parameters, we also have \AS'/S'\ > 1,

so that the first order perturbation calculation is invalid. This becomes clear from Figures
6b and 8b which show that \AS'/S'\ is largest for 5 i when £ is small, for -q 0.
In the broken part of the curve which represents hc2 for £ 0.1 and 5 i, a simple
pole appears [17] in the first sum in equation (10.15) for AS, because Sj > S'SX. Even
for £ 0.1 and 5 i, our approximation appears valid for g0/g < 1, since \AS'/S'\
is then small.

For 5 i, the spin deviation at all lattice sites j is less than 25^ in the vicinity
of the hc2 phase line in our calculation of the lowest lying discrete double spin deviation
eigenstate, except for the region described in the preceding paragraph where
\AS'/S'\ > 1. The unphysical states |/,/>,/ -é 0, appear to have no obvious effect in
cases where the band perturbation theory is valid.

The question arises, whether for 50 1, a region of parameter values exist for
which the ground state contains more than two spin deviations. We answer this
question by paraphrasing a more general result found in the Appendix to suit the
case at hand of zero anisotropy. It is expected that for 5 ^ 1, g0/g > 25 — 1, a region
exists for £ » 1 and gh « £/2S where the ground state contains 45 spin deviations.
But in all other parameter regions, it is expected that the ground state contains no
more than two spin deviations.

Xu. Conclusion

We have developed an approximation scheme for finding the discrete double spin
deviation eigenstates of the infinite chain Heisenberg ferromagnet containing a
substituted impurity. Taking the double spin deviation states as given by linear spin wave
theory in terms of the exact single spin deviation eigenstates as basis, the Hamiltonian
was diagonalized with respect to the discrete states, and the band states were treated
as a perturbation on the resulting wave functions. The approximation was applied
to the lowest lying discrete double spin deviation state for impurity spin one and appears
to yield accurate results for the eigenenergy, wave function, and metamagnetic transition

over a wide range of parameters.
This approximation scheme was compared to the Oguchi and Ono approximation

[12] in which one spin deviation is required to remain on the impurity ion, for the
case of zero field, zero anistropy, and antiferromagnetic impurity-host exchange. For
this case, the spin deviation is rather well localized about the impurity ion, and the
Oguchi and Ono approximation should yield its most favorable result. Our approximation

scheme in this case definitely gives the more accurate result over a wider range
of impurity-host exchange. The Oguchi and Ono approximation is particularly poor
for large antiferromagnetic impurity-host exchange, but has been improved upon by
Ono and Endo [29] by allowing the second spin deviation to be shared by the impurity
with its neighbors, and their result is much closer to ours for this case. However,
Ono and Endo's basis states are not orthogonal, and are approximately orthogonal
only when the spin deviation is rather well localized about the impurity, so that their
approximation is still rather restricted. Our basis states are exactly orthogonal,
regardless of the localization of the spin deviation, and our method appears to give
good results for parameter ranges for which the spin deviation is not well localized.

Our approximation scheme should give even better results for the discrete double
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spin deviation states of the three-dimensional ferromagnet containing an impurity,
because Condition (10.14), which is required for convergence of the band perturbation
results, should be better satisfied than in the one-dimensional case. This is because in
three dimensions the propagating band magnons can avoid each other so that their
interaction should be less. This reasoning is found to be valid when comparing the
two spin deviation solutions for the one- and three-dimensional cases in the pure host
[23-27]. Extension of our calculation to the three-dimensional case is possible. The
increase in number of neighbors to the impurity ion results in a larger matrix to be
solved for the single spin deviation problem and results in more discrete states to be
included in the diagonalization as well as more band states of different symmetry [16]
to be accounted for in the band perturbation, which will also involve integrals over
the three-dimensional density of states. The three-dimensional pure host Green functions

cannot be given a closed form, but there are viable approximations for them
[37, 38].

The extension of our approximation scheme to more than two spin deviations,
while simple in principle, becomes tedious and intractable for a large number of spin
deviations. For the n-spin deviation problem, ~TVn different states must be formed
from one spin deviation eigenstates, resulting in ~ 3n discrete states to be included in
the diagonalization and, more importantly, resulting in ~n dimensional integrals to
be evaluated in the band perturbation calculation. Higher order terms in the perturbation

expansion, very difficult to calculate, may be required as well.
A crude but simple estimate of the energy of the lowest lying «-spin deviation

state can be made when the excitation energy esl of the lowest lying single spin
deviation eigenstate is negative, in the region of parameter values (see Section XI) for
which the dominant interaction for two magnons is the interaction energy between
two 51 magnons, given by v in equation (9.6). If we include only two body
interactions, then the energy of the n-spin deviation state in the interacting magnon picture
is

S(ri) ~ nesx + n(n - l)»/2, (12.1)

n(n — l)/2 being the number of two body interaction bonds for n magnons of type
51. If esl < 0, the ground state is obtained by exciting 51 magnons out of the fully
aligned state until either the addition of another magnon would raise the energy
(S(n + 1) > S(ri) < Stri — 1)) or until the spin deviation at some lattice site/ would
be greater than 25;, whichever happens first. Thus the number of spin deviations ng
in the ground state is given by

-esiv-1 < ng < 1 - esilT1, esl < 0, v > 0, (12.2)

provided the spin deviation at each lattice site/ is no greater than 25^. We see that ng
is large when |esl| » ». If » < 0, no minimum energy is reached as a function of n,
and the ground state then contains the maximum number of spin deviations consistent
with the kinematic restriction on the spin deviation. However, for all parameter ranges
considered in Section XI, it is found that v > 0. We note that Wortis [23] has developed
a Green-function method to find the double spin deviation states, in particular, the
bound states of two magnons, for a pure ferromagnet. We have extended his method
to the impurity problem [39]. It was found, that his method leads to great
mathematical complications already in the one spin deviation case, without leading to any
new results. Application of Wortis' method to the two spin deviation impurity
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problem led to even greater complexities, and no approximation scheme was found
which would be as transparent as the one used here.

Appendix

The problem of the exact multiple spin deviation ground state for the infinite
chain Heisenberg ferromagnet with impurity remains unsolved. Since our calculation
is an approximation, useful upper and lower bounds on the ground state energy will
be obtained by a method similar to the one used by Anderson [40] for the pure anti-
ferromagnet and by Oguchi and Ono [12] for magnetic impurity problems. An estimate
will also be given for the number of spin deviations contained in the ground state.

Since we are interested only in cases for which the fully aligned state is not the
ground state, we shall assume throughout the appendix that the impurity-host
exchange is antiferromagnetic (J0 < 0). To simplify the analysis, we shall also assume
that both impurity and host anisotropics are of the easy axis type (K > 0, K0 ^ 0).

1. Bounds on the ground state energy

The energy of the 'Neél state' (250 spin deviations on the impurity ion, none on
the host ions) is an upper energy bound to the ground state of the Hamiltonian given
by equation (2.1), according to the Ritz variational principle. From equation (2.1),
we see that the upper energy bound Ev is given by

E0 E0 + 4J0S0S + 2pg0HS0, (A.l)

where E0 is the energy of the fully aligned state.
Since the ground state energy of a Hamiltonian can be no smaller than the sum

of the lowest eigenenergies of its parts [12,39], a lower energy bound may be obtained
as a sum of the lowest eigenenergies of

Aj -J&-& + Ss.f) -iJ0(y2 - S'2 - 502) (A.2)

and the remainder 3$>N_n,=3@' — ^3]. Here 5' Sx + Sv-X, is the sum of the spins
of the neighbors to the impurity and & §' + §0 is the total spin of the three spin
system. From equation (A.2) we see that H3J commutes with ÏÂ2, 7ÂZ, S'2, and 5§, so
that the angular momentum vector coupling coefficients can be used to form the
eigenstates of Aj- We denote the eigenvalues of &2, TA*, S'2 by ST(SA + 1), M and
S'(S' + 1) respectively. The eigenstates \SA, S', M} axe a complete orthonormal set
ofeigenstates of 3f3j, with eigenenergies

En,(SA, 5', M) -USTI? + 1) - S'(S' + 1) - S0(S0 + l)]/2. (A.3)

Since in the fully aligned state M 25 + 50, the number of spin deviations m of
the three-spin system is related to M as

m 25 + 50 - M. (A.4)

From equation (A.3), we see that for each SA and 5' there is a degeneracy of 2SA + 1,

since E3J does not depend on M. This is because Aj is isotropic and independent of
SAZ. Thus the eigenenergies of Aj are independent of the number of spin deviations.
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Since/0 < 0, the minimum ofü^is obtained when 5' 25 and •£" \S' — S0\.
Then equation (A.3) yields

E3J(2S - 50, 25, M) J0(2S0S + S0) (A.5)

and

E3J(S0 - 25, 25, M) J0(2S0S + 25), (A.6)

Equation (A.5) gives the minimum when 50 < 25, equation (A.6), when 50 > 25.
The lowest eigenstate of Asj is fully aligned, with energy

EN-3J E0 + 2J0S0S. (A.7)

Then from equations (A.5-A.7), we find the lower energy bound EL, as

*-* + «W+ß* IUI (A,,

2. Spin deviations in the ground state

Next we discuss the number of spin deviations contained in the ground state,
for H K K0 0. The ground state approaches the 'Neél state' with energy Ea
(equation (A.l)) in the limit Jo/J->~0-, since in this limit the antiferromagnetic
impurity-host exchange has no effect on the host spin alignment, and the energy is
minimized by full alignment of the host spins and antiparallel alignment of the
impurity spin. The ground state approaches the state with energy EL (equation (A.8))
in the limit J0/J-*—<xi, since in this limit the host-host exchange has no effect on the
alignment of the impurity and its neighbors. The energy is now minimized by full
alignment of the host spins, excluding the impurity and its two neighbors. The cluster
consisting of the spins of the impurity and its neighbors assumes the spin state whose

energy is E3], given by equations (A.5-A.6). Hence, for J0/J^- —oo, the ground state
is degenerate unless 50 25, as seen from equations (A.4-A.6), containing 250
through 45 spin deviations. But states having other than 250 spin deviations are higher
in energy for J0/J-+0, the lowest such state having the character of a spin wave.
For values of J0/J between 0 and —oo, it is possible that an eigenstate of $ having
other than 250 spin deviations may cross over the 250 spin deviation eigenstate and
become lower in energy than the latter, but this is thought to be unlikely, since it
would imply a special significance for the particular value of JJJ for which the two
states become equal in energy. If such a 'crossover' does not occur, the ground state
contains 250 spin deviations for H K K0 0 except in the limit J0/J^-—cx>, at
which point the 250 spin deviation eigenstate becomes degenerate with those having
250 through 45 spin deviations.

A quantity of physical interest is the expectation value of the spin of the impurity
ion in state \SA,S', M). Using formulae from the theory of coupling of angular
momenta [17], we obtain

{§$} \?(SA + 1) - S'(S' + 1) + 50(50 + l)]M/2^(SA + 1). (A.9)

In the ground state of Aj, for which 5' 25 and SA \S' — 50|, we have for the
expectation value {5^}9 of the impurity spin,

{56% -M50(25 - 50 + l)-\ for 50 < 25, (A. 10)
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and

{Sg}g -M(S0 + 1)(S0 - 25 + L)'1, for 50 > 25. (A. 11)

Setting the number of spin deviations m 250 in equations (A.12-A.14) (M 25 -
S0) we obtain the expected asymptotic value of the spin deviation 50 — {5g}9 of the
impurity ion in the ground state of <# in the limit J0/J-> -oo, given as

So - {§o)g 250 - 50(25 - 50 + I)"1, for 50 «S 25, (A. 13)

and

So - {So)ç 250 - 25(50 - 25 + 1)~\ for 50 > 25, (A.13)

for m 250.
Now consider the case of a finite applied field H and finite anisotropy constants

K and KQ. The partitioning of 3& into Aj and A-zj used in Section A.l is then
inappropriate for discussing the number of spin deviations contained in the ground
state, because the spin deviations on the neighbors of the impurity are then different
for the ground states of Aj and A-zj- Instead, we write .# A + A-z, with

A Aj + Ah + Ak, (A. 14)

where

Ah - -pH(g0§l + g§'% (A. 15)

and

Ak -K0(S%)2 - K[(Sl)2 + (51_02], (A.16)

and where A-z contains no anisotropy or Zeeman terms for the impurity or its
neighbors and always has a fully aligned ground state in the presence of an applied
field or easy axis anisotropy, in the z direction. Since ^3H does not commute with
7A2 unless g0 g and Ak does not commute with 7Â2 unless K0 K, it is inconvenient
to obtain the exact ground state of A for general values of g0, K0, 5, and 50. We will
first consider Ah and Ak as perturbation on Aj, and then will give arguments
based on physical grounds for the number of spin deviations contained in the ground
state of .# when H, K, and K0 become large.

First we consider the case H > 0 and K K0 0. The first order energy perturbation

effect of Ah on the energy of the ground state of 3rf3J is given by

E3H -pH[g0{§i}g + g(M - {50*}fl)], (A.17)

the off diagonal matrix elements of Ah with respect to the degenerate ground states
of Aj being zero. The minimum separation of any two energy levels of Aj is |^o|/2
[17], so that this result is valid for E3H « |/0|/2. From equations (A.10), (A.ll), and
(A.17) we find

E3H -pHM[(2S + l)g - 50g0](25-50 + l)"1, for 50 < 25, (A.18)

and

E3H -pHM[(S0 + l)g0 - 2Sg](S0 -2S+ l)"1, for 50 > 25. (A.19)

E3H is minimized by the maximum of M, M |50 — 251, or the minimum of M,
M —150 - 25|, depending on the sign of the square bracket in (A.18) or (A.19).
This removes the degeneracy of the ground state of Aj with respect to M. From
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equations (A.4), (A.18) and (A.19), we see that for 50 < 25, the ground state of A
contains 250 spin deviations if g0/g ^ (25 — l)/50 and 45 spin deviations if g0/g >
(25 — l)/50. For 50 > 25, the ground state of AA3 contains 250 spin deviations if
go/g < 25/(50 + 1) and 45 spin deviations if g0/g > 25/(50 + 1).

Following closely our discussion about the number of spin deviations contained
in the ground state of $ for the case of H K K0 0, in the limit J0/J^ 0, we
can conclude that the ground state will contain no more than 250 spin deviations, since
the lowest state containing more than 250 spin deviations would be given by a spin
wave-like state superimposed by the 'Neél state' in this limit, with additional energy
~pgH. It is expected from the form of equations (A. 15) that an applied field H >
\Jo\/pgo reduces the number of spin deviations in the ground state of^ For 50 ^ 25,
the ground state of& will contain no more than 250 spin deviations in the limit J0/J ->
—oo, since the ground state of A contains no more than 250 spin deviations. Again
assuming no 'crossover' for J0/J between the limits 0 and —oo, we expect that for
50 ^ 25, the ground state of jfi will contain no more than 250 spin deviations for
arbitrary /, /0, g, g0, and H. The same conclusion is reached for 50 < 25, if g0/g ^
(25 + l)/50, since in this case the ground state of A contains 250 spin deviations.
However, for 50 < 25 and g0/g > (25 + l)/50, the AA3 ground state contains 45 spin
deviations, so that one can expect that, for H « \J0\/pgo and \J0\ » J, the ground
state of AA will contain 45 (45 > 250) spin deviations. This means, that, as | Jo IM is
varied, a crossover occurs from a ground state with 250 to a ground state with
45 spin deviations. The larger g0/g is, the smaller the value of \J0\/J will be at which
the crossover occurs.

Finally, we consider the case H > 0, K0 > 0, K > 0. The first order energy
perturbation of Ak on the Aj ground state is given by

E3K -K0{(S$)2)g - K{(£l)2 + (§Ai)%, (A.20)

the off-diagonal matrix elements being zero. This result is valid if E3K « \J0\/2. The
expectation values in equation (A.20) may be found in a manner similar to that used
to obtain equations (A.9-A. 11). It is found that the Af-dependent terms in E3K axe
proportional to Af2 with positive coefficients [17], so that E3K is always a minimum
when M ±\S0 — 251. Since E3H is minimized by these same M values, in the first
order of perturbation the argument concerning the number of spin deviations in the
ground state of & is unchanged.

From the form of equation (A.20), we see that the effect of Ak on the ground
state is crudely to decrease the spin deviation of a spin Sf if its spin deviation is less
than S, and to increase the spin deviation if it is more than St. When the Ah perturbation

is small, it is easily shown from equations (A. 10) and (A. 11) that in the A
ground state the impurity ion spin deviation is more than 50, except that it is less
than 50 when the ground state contains 45 spin deviations, and that the spin deviation
of the impurity neighbors is less than 5. Thus, if the A ground state contains more
than 250 spin deviations, a large K0 will tend to lower the number of spin deviations
to 250. The energy of a spin wave-like state of 3^ in the presence of anisotropy is
raised by ~(25 — 1)K, and for |/0| « /, we expect only the impurity to have significant

spin deviation. We conclude that the argument set forth concerning the ground
state behavior in the presence of an applied field is little altered by the presence of
anistropy. The ground state of J& is expected to contain no more than 250 spin
deviations, except that it is expected to contain 45 spin deviations for 50 < 25,
g0/g > (25 - l)/50) H« \J0\/pg0, |/0| » J, and K0 « |/0|.
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