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On Radiative Fluids

by N. Straumann
University of Ziirich and SIN

(20. X. 1975)

Abstract. The Thomas calculation of the energy-momentum tensor of radiation quanta,
which are nearly in thermal equilibrium with a relativistically moving material medium, is simplified
and extended to more general transport equations. It is shown that the fluid (matter plus radiation)
behaves, independently of the detailed form of the Boltzmann equation, like a relativistic imperfect
fluid (in the formulation of Eckart). General expressions for the coefficients of heat conduction,
shear viscosity and bulk viscosity are given. Published formulae for these coefficients in special
cases are corrected.

In this note we consider a fluid, consisting of some material medium in relativistic
motion which is locally in thermal equilibrium, plus radiation quanta (photons,
neutrinos) which are not exactly in thermal equilibrium with the material medium.
The study of such fluids is relevant for various astrophysical and cosmological
problems (e.g. the damping of protogalactic fluctuations; see for instance Ref. [2]).

Thomas [1] has computed the energy-momentum tensor of the radiation field by
solving the relativistic transport equation to first order in an expansion around the
local thermal equilibrium (i.e. to first order in the mean free path). Weinberg [2] has
used the results of Thomas to show that the fluid (matter plus radiation) behaves like a
relativistic imperfect fluid, as described by Eckart [3] (for a rederivation of Eckart’s
theory see also [2] or [4]), and has given explicit expressions for the radiative heat
conduction, shear viscosity and bulk viscosity.

The derivations of Thomas [1] are rather lengthy and cumbersome. Furthermore,
his transport equation takes only emission and absorption processes into account and
does not include scattering processes (at least not properly). The purpose of this note
is to both generalize and simplify the work of Thomas. The simplification arises in
keeping the formalism manifestly Lorentz-invariant. The conclusion that the fluid
behaves like a relativistic imperfect fluid (in the formulation of Eckart) does not rely
on any particular assumptions about the right hand side of the Boltzmann equation.
Only the coefficients for heat conduction and viscosity depend on the specific model.
We show that a proper treatment of scattering changes the results for the viscosity
coefficients.

1. Solution of the Transport Equation to First Order in the Mean Free Path

Let F(k, x) be the distribution function of the radiation quanta. F is normalized
such that F(k, x)d3xd®k gives the number of quanta in the volume element d°x at the
space-time point x, and whose 3-momenta k lie within d3k. With this definition F(k, x)
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is Lorentz-invariant. This follows for instance from the following form of the particle
current four-vector (¢ = # = 1):

No(x) = fkuF(k )“’3"c

and the fact that d%k/k° is a Lorentz-invariant measure.

Let U* be the four-velocity, (U-U = 1), of the material medium and T(x) its
local temperature. We assume that F(k, x) is close to the local thermal equilibrium and
write

F = FO® 4 FO (1
where (we consider for definiteness photons)
FOU, %) = 2 1 : @
’ (2m)3 exp(k-UlksT) — 1

and |[F®| « F©@, To first order, the transport equation has the following general form
0
M 0 — (1)
k oxn F L[F®), €)

where L is a linear operator. Specific cases for L will be discussed later. At the moment,
we keep the arguments very general.

Let G, be the little group belonging to U(x) (i.e. the group of all Lorentz-trans-
formations leaving U(x) invariant). G, is isomorphic to SO(3). It is convenient to
consider F(k, x) as a function of w = (k- U), n* and x, where

= k*{(k-U) — U=~ 4)
w = k-U is obviously invariant under G, for every point x, and »* transforms
according to the representation D* of G,. Note that n- U = O and n-n = — 1.

As in Ref. [5] we expand F®(w, n*, x) with respect to n* into irreducible (under
G,) polynomials

Fw, n*, x) = A(w, x) + B,(w, x)n* + C,(w, x)(n*n* + 1**) + - (5)
where
hY = gty — JHUY 6)

is the projection operator on the hyperplane normal to U*“. Since h#4n’ = n* we can
require that #5-B' = B*. Similarly, we can, without loss of generality, assume that
C,, is symmetric and satisfies the conditions

hzciw = Cuv, Ciit =0

(the latter since n*n, + 3h% is traceless). In a comoving reference system at x (i.e. a
system where U(x) = (1, 0, 0, 0)), the expansion (5) reduces to an expansmn in terms
of spherical harmonics of the unit vector k. The terms not written in (5) are not
needed for the calculation of the energy momentum tensor.

The linear operator L is clearly a scalar with respect to the group G,. Hence it
operates in the irreducible subspaces spanned by the irreducible polynomials in (5)
as a multiple of the unit operator. We can thus write

LIFV] = —w[kod + k3 B,n* + k,C(n*n” + 38*°) + - - -], @)
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where the «; are functions of w and x only. For a given model they can (in principle)
be calculated. Examples will be given later.

Using the transport equation (3), we next express A4, B, and C,, in terms of U¥,
T and «,. In order to do this, we introduce a measure dQ; on the two-dimensional
surface S = {k|k? = 0,k° > 0, k- U = const.}. dQy is defined to be the unique G-
invariant measure on S, normalized such that

fdQUz 4.
S

In a comoving system dQy reduces to the angular integration of the vector k. The
irreducible polynomials in (7) are orthogonal with respect to dQ ;. They are normalized
as follows:

i
o L n*n'dQy = —1h*,

4iﬂ f (' + Y (nn? + ho0)dQy = (B0 + BB + B — Mevhee.,
S

Taking moments of (3) and using (7) we obtain

4%[ k"@AF(O)dQU == —OJKOA, (8)

S

4% f P FOdQ, = dwn,B,, ©)
S

2 | 0w, + $h )00 FOAQ, = —FrweC,. (10)
S

With equation (2) we now evaluate the left hand sides of (8), (9) and (10). We have,
putting FO(k, x) = $(w/T):

4lﬂ L k49, FOdQ, = ;q&'.% L [%) kvke,0,U" — Il,kua,,r] Q.

Under the integral sign we can replace k“9,T by (see (4)) wU*0,T and k*k,0,U" by
w?n*n,0,U". Hence we obtain

1 2 1 |[—
Z«?L k40, FO4dQ, = JL}.. ¢'(w/T)- [T U+a,T + 3 U,,,]. (11)
Consequently (8) gives
low, |1 1
4=79 [7, Ua,T + 5 Uf;]- (12)
Similarly, we find from (9) and (10)
1 11 )
B, = K_l%’,qs [ThKBvT - U a,,Uu], (13)
Cuy = Lo ¢'[mo\U, + mo\U, — %h,, U] (14)

2K2 T
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2. Energy-momentum Tensor of the Radiation Field

The energy-momentum tensor T4 of the photons is given by
T8 (x) = f k“k"F(k, )d3k (15)
From F©® we obtain the expected contribution:
f kukvﬂm%f‘ = f " dww®d(w/kT)- f W + US( + UMy
= aOT‘*(U“U" — ).
We add this to the matter tensor T4, which is taken to be that of an ideal fluid:

Tﬁv — pMUqu _ pM(guv _ U”‘Uv),

where p, and p, are the material pressure and energy density. The total energy-
momentum tensor 7*¥ of the fluid (matter plus radiation) is thus

“ = p(T,n)U*U” — p(T, n)(g** — U*U") + f k4’ FQ ik (16)

Here T and #n are the temperature and number density of the material medium, and
p(T, n), p(T, n) are the total pressure and energy density, that matter and radiation
would have if they were in thermal equilibrium at temperature 7.

From (5), (12), (13) and (14) a straightforward calculation gives

d°k _ 4aT* 1 1 1
f Kk F Ok, x) 5 = == (U“U" -3 h‘”) (T U, + 3 U,AA)

0

3
4“T = (U + BUS(T, — TUUy,)
4avT4 2
+ 5 hﬂﬂhw(va o+ Uno = 38aU3). (17)
Here k; denotes the Rosseland mean of «;:
1 [y () (@/T) doo -
K; [o w*¢'(/T) deo

For i, = k; = &, equation (17) reduces to the Thomas expression.
Now the dissipative term AT*¥ in the phenomenological theory of Eckart reads
(see Ref. [2])

AT» = x(# U + WAUS)T 5 — TUU,,) H3)
+ nhuath(Ua’p + Uo,a %gGDU ) + Ch”VUA

If the first term in (17) would be absent, the expression (17) would be consistent with
(19). The discrepancy between (17) and (19) arises, as has been pointed out by Weinberg
[2], because the temperature in the general theory of Eckart does not coincide with the
temperature of the material medium which appears in (16) and (17). If one redefines
the temperature in (16) and (17) according to the Eckart definition, then the result (17)
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is indeed consistent with (19). This can be shown along the same lines as in [2]. The

second and the third term in (17) remain unchanged, whereas the first term is replaced
by
4aT* 1 _ @/OD) ]y

3 (9p/2T), A

and has thus the form of the last term in (19). For the coefficients y,  and { one ob-
tains

4aT?
X _—

Ko

e (20)
4aT*
- ISEZ’ 1)
_ 4aT*[1 (8p[oT),)?
=2 - G @2

These equations generalize the results obtained by Weinberg [2].

3. A Specific Model

If the material medium is not degenerate and if the temperature is not too high,
then the transport equation has the following form (see e.g. Ref. [6])

k*0,F = —wnoy(w)(1 — e™“*T)(F — F©)
_ wnas(w)[F(k) " f (', B)F(w, ') dQ’U]. 23)

Here o,(w) and o (w) are the absorption and scattering cross sections, respectively, and
, o~ _ 1 doy(k', k)
p(@’, n) = o da,
In (23) we have only included coherent scattering. For Thomson scattering we have
’ 1 r_.r
p(', n) = y, [l + 3(n*n” + $0*)(mn, + $4,,)]. (24)
If we assume that the dominant scattering process is Thomson scattering, we obtain
for the coefficients «; in (7), from (23) and (24), the following expressions:
Ko(w) = nog(w)(1 — e~ @*T),
rk1(w) = nloy(w)(1 — e~ “*T) + o), (25)
Kg(w) = nlog(w)(1 — e~ **T) + F5omm].

In the particular case in which Thomson scattering dominates, we obtain from (20),
(21), (22) and (25)

_ 4aT?
x - 3n0’Th’

_ 10 4aT*
1= 9 15nog

{=0. (26)
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These expressions differ in two respects from Weinberg’s results: (i) » is larger by a
factor 10/9 (this has also been pointed out in Ref. [S]); (ii) the bulk viscosity vanishes.
These differences come about because the transport equation used by Thomas does
not properly describe scattering processes. From (22) and (25), one sees that only
absorption processes contribute to the bulk viscosity.
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