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Local Gauge Models Predicting their own
Superselection Rules')

by Jean-Louis Bonnard?)

Institute de Physique Théorique, Université de Lausanne, Lausanne, Switzerland

and R. F. Streater®)
ZIF, Universitit Bielefeld, Bielefeld, Germany

(16. X. 1975)

Abstract. By considering local SO(2) or U(1) transformations of a two-component Boson
field in two-dimensional space-time, we construct certain non-vacuum representations (now called

solitons) of the canonical commutation relations. Superselection rules operate between the spaces
of these representations.

I. Introduction

If A is the C*-algebra of observables of the theory, then according to Haag and
Kastler [1], states of different ‘charge’ are assumed to belong to different, i.e. in-
equivalent, representations of 2. Thus, the charge label appears as a ‘ Casimir operator’
for 2, being diagonal, and constant, on each irreducible part:

H = @a Hq () = @q mo(¥)
where
‘”1(14)

T 2(A)
w(A) =

mg(A)

Here, 5 is the Hilbert space of the whole theory, and 5, is the space of states of
charge g, carrying the representation =, of . If we assume that all the =, are irreducible,

1)  Based in part on joint work contained in J.-L. Bonnard’s unfinished Ph.D. thesis; a short
version was presented at the International Conference on Mathematical Problems of
Quantum Field Theory and Statistical Mechanics, Moscow, Dec. 1972.

2)  Died August 1972.

%)  Permanent address: Bedford College, Regents Park, London.
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and inequivalent, then it can be proved that #(2)’ (the set of bounded operators on
S commuting with (%)) is an abelian von Neumann algebra. This, then, is the origin
of Wightman’s hypothesis of commutative superselection rules.

Haag et al [2] hope to obtain all the 5, and =, from the vacuum sector, =,
acting on 5, by ‘localized automorphisms’, (or morphisms if we wish to allow
parastatistics). The idea is that if = is an automorphism of ¥ that is not unitarily
implemented in the representation ,, and if  e5#,, then we obtain a new state (in
the sense of expectation value) by

p(A) = g, mo(r(A))

This state is not a vector state in 5#,, but lies in some other representation of ¥,
namely, the representation =, defined by =,(4) = my(7(A4)).

Just as Hamilton’s equations in classical mechanics are covariant under canonical
changes of generalized coordinates, so we would hope that quantum field theory is
covariant under the quantum analogue of changes in generalized coordinates, namely,
automorphisms of 2. However, the localization in space of an observable has an
intrinsic meaning, independent of which fields are used to describe the system. For
this reason we only consider automorphisms that preserve the localization. Thus, we
consider automorphisms = such that

1. 7is an automorphism of each 2(0), the algebra of observables of the open set
0 of space-time,

2. 7 is not implementable.

3. The new representation m,(4) = my(7(A4)) on 5, should be covariant; that is
the Poincaré automorphisms L = (A, a) should be implemented by unitary operators
U,(A, a) on the Hilbert space 5#,, and the energy-momentum spectrum must lie in
the forward cone.

4. 7 should reduce to the identity on local observables localized outside some
compact set.

For models satisfying these axioms, see [3]. By making use of local gauge trans-
formations of the groups SO(2) or U(1), we shall construct models satisfying 1, 2 and
4, and presumably 3 too.

II. The U(1) and SO(2) Gauge Theories in Two Dimensions

Let 4 = 4P @ 4#® carry two copies of the representation [m, 0] of & in 2
dimensions. Let 5# be the Fock space over #, and a¥(p), a%(p) the creation operators
in the Fock representation. The definition of af (and af) defines and is defined by a
distinguished conjugation (on #% and #® respectively); namely, to each vector
fe 4P, Cfis defined by the requirement that (a*(f))* = a(Cf), where a*(f) is the

smeared operator f F(p)a*(p) dp. When we write 40 = Ly(R, dp), a‘(p) means

F(—p), so ‘real’ f are real in x-space. In this way, # is the direct sum of four real L,
spaces.

There are two distinct localizations of this theory, the charged field and the
SO(2) doublet. These define different Borchers classes ([4]); they have gauge groups
called U(1) and SO(2) respectively.
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1. The charged field

= (2,,)—1:2[ af(p)enip.x_f as(p)e'** dp.
V2w
2. The SO(2) doublet

469 = @my [ at(p)e ™" + ay(p)e™

V2w
$a(x) = (2m) 12 f az(pe=** :‘/;_wdz(}’)e“"x .

We subject ¢ to local U(1) gauge transformations (x € R)
$'(x,0) = e*¥(x,0);  7'(x, 0) = *n(x, 0)
$*x,0) = e"90g¥(x,0);  #*(x, 0) = e Dn(x, 0)
where = = ¢; and we subject ¢, and ¢, to local SO(2) rotations:

$1(x, 0) = cos 8(x)é.(x, 0) + sin 8(x)ps(x, 0)
$a(x, 0) = —sin O(x)¢,(x, 0) + cos 8(x)ps(x, 0)

and the same for #’s. These are canonical transformations, and can be extended to the
c*-algebra generated by the field. To get the charged sectors, we must choose the
transformations so that they are not implemented in the vacuum representation.

II1. The Shale Criterion [5]

Let # be a complex Hilbert space, with a complex conjugation C so that 4 =
H + iH, where H consists of real vectors. Let T: # — % be a real symplectic trans-
formation; then there is a unique C*-automorphism = of the C*-algebra generated
by the Weyl operators W (f), such that (W (f)) = W(ZIf). This r is implemented in
the Fock representation if and only if 7T — [is a (real) Hilbert-Schmidt operator on
#4. See [6] for a generalization to Weyl systems based on smaller classes of test-functions,
e.g. &.

In our models, we can explicitly compute I — T*T, and so check the implement-

ability of =. Let y be the operator y: #(R) — &(R) defined by ):7 (») = Vp® + m*f(p),
and let s and ¢ be the operators sf(x) = sin 8(x)-f(x), ¢f(x) = cos 0(x)-f(x). Then we
find T in the two cases:

Case 1, with U(1) symmetry.

c S c -5 c sy = S

i -5 c -5 —C -5 ¢ S c i

T, =3y v+ 3y v~
c hy c -85 -Cc -5 c =S
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Case 2, with SO(2) symmetry.

c 0 s O 0 00O
o 0 00O 0c0.s'_1
L= s 0col”™ o o000
0 00O 0 —s 0 ¢

In each case, the 4 x 4 matrix acts on the direct sum
= AD @ D @ AD + i,

where 4, = Ly(R, dx) (r standing for real-valued functions). To prove these forms
for 7, consider the Fock representation of the CCR over LE(R, dx), relative to the
conjugation Cf =/ Let g(x), p(x) be the canonical fields, and let a*(x) =
(1/4/2)(g + ip) be the creation operator. Then ay, = 0, where i, is the Fock vacuum.
We see that the charged field, ¢, is given by

¢ = 7-1(511 + ip + 12— fpz)

V2 V2
s Y (Tt P ga —ipa),
i V2 V2
Thus,
- —1q1+q2’ - -1P1 — P2
_ P11 P2 _ "t qs
Renr =y 2 Imn =y V2
Hence
Re ¢ y 0 y?* 0 T 9
Imé} ¢ 0 »* 0 —yiIp _rl”
Renw V2 0 y 0 ¥ qz B q2
Im = -y 0 v 0 Pa Pa
We find I"-* by solving for ¢, g3, p1, Pa:
y 00 -yt
-1
pio 1 0 vy v 0
V2 y 0 0 p-1

0 —y y1 0

Thus the transformation on #, in this basis, is

71 c s 00
f -5 c 00
pl = P—l F = T]_.
qa 0 0 ¢ s
D2 0 -5 ¢
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Actually, the action on the test-functions is got by replacing § by — 6 in the above T.
This does not affect the implementability of 7. The formula for Ty is derived quickly
from

1 = yq1, $2 = Yqa, m =y~ lpy, Ty = Y~ pg.

Thus, I — T'T is a 4 x 4 matrix of pseudo-differential operators; it is of Hilbert—
Schmidt class if and only if each entry is. The cross terms in T*7 cancel, leaving

c - c s c s c -5
A = TIT, = 34y s c s —c 2 ) c —s —c e
c -5 c s c s c -
L -5 —=Cc =3 ¢ § —c S c
c —§ —c -—s§ e s —c s\ )
s c - & -5 c s c
+y(—c s c s v —c -5 c = ”f
s c - c -5 c s c/ )
¢c 0 -5 O c 0 5 O
B=TiT, = 00 OO - 0 00O ,
0 0 —s 0 ¢ O
00 0O 0 00O
000 O 0 0 00O
. 0 ¢c 0 —s \ 0 0 »
ooo of Vo o0o0o0)
0 s O ¢ 0 —s 0 ¢

We note that if y commuted with ¢ and s, these would be 7, i.e. SO(2) rotations applied
locally to p;(x), g/(x) are orthogonal and therefore implementable. In the relativistic
localization, v does not commute with ¢ and s. We list the diagonal and upper com-
ponents of 4 and B.

By = Bz = yey~%cy + ysy~3sy

Byo = By, = y7leyPey™! + ylsylsyd
B3 = yey~2sy — ysy~%cy

By = y7ley’sy™t — yTlsyPey”
By = Byy = By = B3y =0
24, = B;; + By, i=1223,4
2413 = —2434 = —By; + By,
2412 = —2A434 = By3 + By,

2A14 = 21423 = B13 — By,

1
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Hence a necessary and sufficient condition for the implementability (in either U(1)
or SO(2)) is that each of 1 — By, 1 — By,, B;5 and By, should be a Hilbert-Schmidt
operator on L%(R, dx).

Theorem. Suppose m > 0. Suppose 6(x) is such that sin 6 and 1— cos e .
Then 7 is implementable.

Proof. Letcos 0 = 1 — ¢; then t € & and
Bz =y(1 — t)y~2%sy — ysy (1 = t)y
= [y~'sy — ysy~ '] + [ysy %ty — yty~3syl.

We show that each bracket is H.S. The kernel of y~'sy — ysy~! in momentum
space is

K(p1, pa) = (pf + m®)~145(p, — po)(p3 + m?)'*
— (p? + mH)5(p, — po)(p3 + m?)~14,

Let p = (p1 — p2)/2, ¢ = (p1 + p2)/2. As a function of p, Ke & and so is in L,.
It remains to show K is L, as a function of ¢g. Indeed, expanding by the binomical
theorem gives

K(py, p2) = —252p)(plg + 0(1/¢%),  q—>co.
This is in L2. The kernel of ysy =2ty — yty~2sy is

K(ps, p2) = (52 + m® [ dk{5(py — Dk = p) = F(ps = K)3(k = po)]
x (k2 + m®)12(p8 + m)e,

Again, if §, fe & the convolution goes to zero rapidly if p = (p; — ps)/2 goes to
infinity, ¢ = (p; + p.)/2 being fixed. K is therefore square-integrable in this variable,
and it suffices to consider g. We see that

(P} + m>' = (p? £ 2pg + ¢* + m»)'* = 0(¢*'?), p—>o0.

By changing the variable of integration to k — ¢ = k' in the first partand k' = ¢ — k
in the second, we get

K(p1, p2) = 0(¢"®) f dk's(p — KiK' + p)
x {(k'? + ¢ + 2k'g + m®)~V2(k'? + g% — 2k'q + m?)~12}0(g'2)

_ ()(q)fdkf(p — k)ik + P)q'_l(_y_c * 0(1))

q g
1
=Q|-) eL,.
(q) 2

Therefore B, 3 is of Hilbert-Schmidt class. The operator B,, is proved to be H.S. in a
similar way.
To deal with B,, and B;;, we write 1 = ¢2 + s2and ¢ = 1 — . Then

1 — Bao = (1 — 1)2 + 52 — =1 — )31 — £)y~1 — y~lsysy~1,
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The operators ¢t — y~ty, t — yty~%, t2 — y~y%ty~! and 5% — y~lsy’sy~! are
separately H.S., by the same argument as given for B,; Similarly I — Bs; is Hilbert-
Schmidt, and the theorem is proved.

We conclude that SO(2) and U(1) transformations are locally implementable,
and we have a representation of the current group over SO(2) or U(1), as defined in
[7]. In [8] the infinitesimal version, i.e. the current algebra over SO(2), was solved.

After this work was essentially complete, we received a preprint of [9], where it
is proved that, for the U(1) case, local gauge transformations are not implementable
in four-dimensional space-time. We would come to the same conclusion, since
g~ '¢ L? in R? or R®. However, we disagree with a casual remark in [9] that the result
is independent of dimension.

IV. Appendix; by R. F. Streater

One might attempt to arrive at the ‘charged sectors’ of [2] by arranging 6(x)
to have a tail, as suggested by the successful theory described in [3]; that is, one
might choose 8eC®, d0/éxe P with 6(—) =0, 6(4+w) = Q # 2nm. Since
§(p) ~ (sin Q/p) (p — 0) and é(p) ~ (cos Q/p) (p — 0) in that case, and one of these
at least is not square integrable, one may hope that the corresponding automorphisms
fail to be implementable. This is not the case, however; all the ‘infra-red’ singularities
of the kernels of 4 and B cancel the zeros, at p, = p,, of factors like [w(p,)|w(p2)]*'? —
[w(ps2)|w(py)]H.

The common feature of the successful models of theories predicting their own
superselection rules is the presence of a spontaneously broken symmetry. In the
Fermion model described in [3], the symmetry ¢(x)— #(x) + 5 is spontaneously
broken. Presumably, for the sine-gordon equation, the same is true provided » = 2mn
forn=...,-1,0,1,2, .... The Fermions arising in [3] satisfy the dynamics of the
Thirring model of zero mass, as was first suggested and proved in [10] and [11].
Coleman [12] shows, at least in perturbation theory, that the sine-gordon equation is
equivalent to the massive Thirring model.

An early example [13] is the suggestion that in one-dimensional quantum lattice
systems, the boundary point between a region with spins up and a region with spins
down, behaves as the coordinate of a particle, called a ‘Blochon’ because it represents
the Bloch wall between magnetic domains. Here, use is made of the spontaneously
broken rotation symmetry to obtain the non-implementable automorphism.

These models suggest that, instead of using free fields ¢, and ¢,, as in §1-3, we
should use two independent copies of (¢); with large parameter, for which the
symmetry ¢ — — ¢ is known to the spontaneously broken [14]. Let us denote the two
vacua by @, and w_. Then the tensor product of two such field theories has four
vacua, w, @ w,. These vacua are related to each other by the subgroup of SO(2)
generated by a rotation of #/2: ¢; — ¢, ¢ — — ¢,, under which the Hamiltonian
H$ + HP + X:dt: + A:4%: is invariant. So, starting with the vacuum w_ @ w_
and performing the SO(2) transformation =,, with 8(—c0) = 0, 6(4+ ) = =/2 we
arrive at states carrying a quantum number conserved mod 4. A similar idea has been
recently put forward by Frohlich [15], who remarks that these states resemble the
soliton solutions of classical non-linear equations.

Since the local SO(2) transformations are locally implemented in the Fock
representation, they are also locally implementable in any locally Fock theory such

as ¢5. Indeed, the local implementing operator, ‘exp J}f dx0(x)(b1da — bod1)’ lies in
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the quasi-local C*-algebra if the local algebras are weakly closed and 6 € 2. A cor-
responding operator therefore exists in any representation. If 8(—c0) # 6(+ o)
however, then the soliton representation is definitely not equivalent to the vacuum
representation, as is easily proved using a lemma of Hegerfeldt [16].

The soliton model described so far has several deficiencies: a field theory with
two vacua is not a good model for elementary particles; moreover, the theory is
structurally unstable under the addition of linear external fields, and the presence of
such a coupling, however small, destroys the very existence of the soliton state. In
[3], these problems are solved by introducing a superselection rule — only V¢é and
not ¢, are regarded as observables. The broken symmetry group ¢ — ¢ + 5 now
becomes a broken gauge group, and all the vacua coincide on the algebra of ob-
servables. Moreover, in [3], the Fermion states are localized in the sense of Knight
[17], since they look like the vacuum, and the transformation ¢ — ¢ + 5 reduces to
the identity automorphism, outside the support of V7, as required by [2].

Applying the same remedy to the present model, let us agree that the transforma-
tion o: ¢, — ¢, $s — — ¢, is to be a gauge transformation; the observable algebra
is then defined to be the subalgebra invariant under o. The transformation =, is then
a gauge transformation of the second kind (but also a local morphism in the language
of [2]). By agreeing this, we rule out gauge-symmetry breaking terms in the interaction,
and the theory becomes, presumably, structurally stable under the allowed perturba-
tions. As before, the vacuum becomes unique and =, reduces to the identity outside a
compact set.

To be sure we still remain with a theory, we must check that 7,, restricted to the
observable algebra, is not implementable. To prove this, note that 4 = sin ¢,(f;)
sin ¢,(f3) + sin ¢5(f1) sin ¢,(f3) is a bounded observable. Now displace f; to the left
and f; to the right. In the vacuum (w_ @ _) representation clustering implies that

A — a = 2 {sin ¢1(f1))<sin ¢,(f3)> weakly
and in the soliton representation,
A — —a weakly.

Since we may easily choose f; and f; so that a # 0, an argument along the lines given
in [16], lemma 2.1, shows that the representations are inequivalent.

With this choice of observable algebra, all the various possible soliton states
coincide.

The implementability of space translations and the existence of the momentum
operator in the soliton state follows easily from the local implementability of SO(2).
The rest of the missing axiom (3), Lorentz covariance and the spectrum, is less trivial.
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