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The P(¢4), Green’s Functions: Asymptotic Perturbation
Expansion

by Jonathan Dimock?:2)
Department of Mathematics, SUNY at Buffalo, Amherst, N.Y. 14226

(19. IX. 75)

Abstract. The real time Green’s functions in the P(¢): quantum field theory are infinitely
differentiable functions of the coupling constant A up to and including A = 0. It follows that the
perturbation series are asymptotic as A — 0*.

1. Introduction

1.1. This paper is one of a series on perturbation theory and the general question
of smooth dependence on coupling constants for P(¢), quantum field theory models.
In Ref. [2] it was shown that the Schwinger functions or imaginary time Green’s
functions are infinitely differentiable in the coupling constant A, for A in an interval of
the form [0, A,). As a consequence the perturbation series for the Schwinger functions
are asymptotic. In Ref. [3] it was shown that the real time Green’s functions are
infinitely differentiable on (0, A,). In the present paper we show that the differentiability
extends to the endpoint A = 0, and hence that the standard perturbation series for
these functions are asymptotic. We recall that the series definitely do not converge as
was shown by Jaffe [9].

The result tells us something about the structure of the Green’s functions for
small A. For example in (¢*),, since the truncated four point function has a non-trivial
series we can conclude that it is non-zero. This is a property not shared by free field
theories and establishes a sense in which the theory is non-trivial.?)

1.2. Our basic structure and notation are the same as in Ref. [3], where further
references are given. The Hamiltonian has the form H = H, + A f 1 P(p(x)):dx — E

where H, is the free Hamiltonian for mass m,, # is a lower semi-bounded polynomial,
@(x) is the time zero field operator, and E = E(m,, A, &) is chosen so H > 0. Certain

aspects of our proofs are simpler if we take H = H, + A f :p(x)¢: dx — E, d an even
integer, and we shall work with this case. The results however are generally valid. We

1)  Research supported by Joint Awards Council/University Awards Committee of State
University of New York/Research Foundation.

2)  Present Address: Département de Physique Théorique, Université de Genéve, Genéve.

3)  Osterwalder and Seneor (to appear) and Eckmann, Epstein, and Frohlich (to appear) study
the perturbation series for the S-matrix, and are able to conclude that scattering is non-
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always take A € [0, Ay) with A, sufficiently small so that the construction of Glimm,
Jaffe, and Spencer [5, 6] is applicable. In particular then the physical mass m(A)
satisfies m(X) = my, > 0 for A € [0, A), i.e. there is a uniform mass gap.

Time ordered products are defined by Nelson’s technique [3, 10]. In the
physical Hilbert space s let #* be the scale associated with H. Then for a, €
Ce(RY, L(H#, 1)), supp a, < (t_, 0),and Im @ < 0, 8 # 0, we define inductively
in F(o2m 1, HY):

El(t,,t.) = exp(—ib(t, — t_)H)

t+
Bt a, . .., mE) = f exp(—i8(t, — SYENGUS)ES_+(5, Gory - + s @1y £) 5.
) (1.1
IfE?_, e £(o° "1, H#"), then a priori we have only Ef € L (%", # ~'). However,
one shows that [H, Ef] e L(#?"~*, s# 1) which implies E? € L(#"*1, #"). The
E}7 are analytic in Im 6 < 0 and continuous in Im 8 < 0, & # 0. If Q is the vacuum in
H(HQ = 0) then (Q, EfQ) is independent of ¢, provided supp a, < (¢_, t.), and so
t. are not specified. We also define

Gg(al, e ey an) — z (Q, E,f(an(l), ey an(n))Q)

where the sum is over all permutations = of (1, ..., n).
The time zero fields ¢(g) = f @(x)g(x) dx define operators in L(#*, # ~') with

||<P(g)H1 -1 [[g”1 for some C independent of A. Then for £, g € C£(RY), fe(g) is in
Cy(RY, (o1, #~1)). Now with h = (hy, ..., h,), h, = [, @ g,, we define Green’s
functions as distributions by

Ge(h) = Gﬂ(fi?’(gl), U | sf;l(P(gn))

Wick ordered products :¢": (g) = f:q:(x)*: g(x) dx may also be defined on 5# and
satisfy for r < d and A € (0, Ay)

|7 (g)]1,-1 < CATD(g)|g] (1.2)

where D(g) = 1 + diameter (supp g). Then f:¢": (g) is in CP(RY, L(H#?, H# 1))
and with r = (ry, .. ., r,) we define generalized Green’s functions by

Go(r, h) = Go(f1 191 (81)s - ., fu 19" (8n))- (1.3)

We also define truncated Green’s functions inductively by G%3(ry, hy) = G(ry, ;)
and

GI(r, 1) = Gy(r, b) — 21‘1 G3(rp> hy) (1.4)

PeP

where the sum is over all proper partitions P of (1,...,n), h, = {A}xep, and r, =
{ri}xep- Both Gu(r, h) and G3}(r, h) are analytic in Im 8§ < 0 and continuous in
Imf <0,80 #0.

Spemal cases of the Gy(r, h) are the real time Green’s functions G(r, h) =
Gy(r, h)|o-1 and the Schwinger functions G(r, #) = Gy(r, h)|s= -i. The G(r, h) are the
main items of interest, while the G(r, /) are special in that they have a representation as
path space integrals (which indeed is crucial for the very construction of the model).
et dq be the Gaussian measure on real-valued %’(R?) with mean zero and covariance

hg ummsm =

l\ L YT 7 VI .
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(—A + m3)~'. We define in L,(#", dg), p < , :q": (h) = [ :q(x)': h(x) dx. For each
bounded region A < R? let dv, be the measure

dvy = exp(—X:q% (xa)) dq / f exp(— A g% (xa)) dq

and define

GA(i‘, h) = fr[ :qu: (hk:) dVA.
k=1

Then G(r, k) converges as |A| — oo [5, 6] and one version of the Feynman-Kac—-
Nelson formula is

G(r, h) = |A1[1—I;I:o Gu(r, h). (1.5)

1.3. The known smoothness results are the following [2, 3]. It is shown first for

6 = —iand A € [0, A,) and then for general 6 and A € (0, A,) that G5 (r, /) is an 1nﬁn1tely
differentiable function of A and that

DrGy(r, h) = (—ib)" > Gi(r, d; h, x(, ). (1.6)

Here the sum is over i, je Z™ and x(i, j) = (0, ® Xjp> - - +» Pi,, @ Xj,,) Where p; and y;
are partitions of unity indexed by Z!. The y, are taken to have the form y,(x) =
x(x — j) with x e C°(RY) and supp x = (—1, 1). The p; are special and are required
to satisfy for some 7 > n,

@ > pi = (1.7)

(b) supp p; = {z:|t — i| < max(l, |i|/37)}
(c) For « > 1, there is a constant K, such that

lpi®]: < K(Ji] + D~**1. Also |pf, < K

The existence of such a partition for all = is established in [3]. The crucial property is
(1.7c) which says the p; become smoother as |i| — oo, a property which leads to time-
like clustering. In fact it follows from the mass gap that for fixed r, A4, 6, N there exists
a constant K such that

(G5, s b, (0. )] < K(li] + D=¥(j| + DoA-carm (1.8)

for all A € (0, Ap). This establishes the convergence of the sum in (1.6) and is the main
ingredient in the proof of (1.6).

1.4. To extend control to A = 0 at real time we must prove a bound like (1.8)
uniform in A € (0, A,). The strategy for accomplishing this is to make a finite expansion
of G”(r, d; h, x(i, j)) in powers of the interaction. This general technique has con-
sistently been useful in constructive quantum field theory and has been called the pull-
through formula. The point here is that by breaking up the operators :¢": we avoid
the bounds || :¢": |;,-; = O(A~*) which cause the trouble in (1 8). The new operators
introduced all have the form A:¢™: and the bound ||A:¢": |, _; = O(1) is quite
satisfactory. Our main task is then to show that the delicate real-time clustering
factors (7| + 1)=7(|j| + 1)~¥ still are present for each term in the expansion (Section



202 J. Dimock H.P. A.

4). Once the bounds are proved the perturbation theory results follow directly
(Section 95).

The expansion itself has the nicest form at imaginary time. The basic expansion
step is then just integration by parts on path space. The relevant techniques have been
established by Glimm and Jaffe [7]. In fact they give the whole argument of expansion
plus clustering in this case (for different reasons). Our approach will be to develop a
particular form of the imaginary time expansion (Section 2), and then generate the
real time expansion by analytic continuation (Section 3).

2. Imaginary Time Expansion

We consider functions of the form J' [TEoy :q(x)e: w(xy, . . ., x,) dx. The kernels

w will always be L, functions of compact support and so this is well defined in
L(¥',dq) for p < oo [1]. If R(x) = [ 11 :q(x,)'*: then the integration by parts
formula is [7]:

f :q(y)": ROIw(x, y) dx dy dvy

— f gy 1 Oy — 2)(GRE)/3q(2) — Axal2) d :9(2)*~1: R(¥))
x w(x, y)dx dy dz dv, 2.1

where the formal derivatives are to be evaluated by

8 :q(xi)": /3q(2) = re:q(x)e™*: 8(x,, — 2),

and C(y — z) is the kernel (—A + m2)~*(y, z) and is in L,(R?) for p < oo. This
identity would be proved by making an explicit approximation by finite dimensional
integrals, e.g. as in [1].

We want to iterate (2.1) and for this it is essential to use the language of graphs.
The integrand on the left is labeled by a graph with n + 1 vertices, a vertex with r legs
for each factor :g(x)":. The integrand on the right is a sum of terms labeled by graphs.
The 6R/8q terms are labeled by graphs with a line joining a leg of the first vertex to
each of the legs in the other vertices. The interaction term is labeled by d graphs
joining this leg to each of d legs in a new vertex. One says that the identity consists of
contracting the first leg in all possible ways.

Now beginning with G,(r, h) = IHLI :q": () dv, contract the first leg in all
possible ways, contract the second leg in all possible ways, and so on until all initial
legs are contracted. The result is a sum over all possible contraction schemes, or
equivalently a sum over all graphs I' = ¥, %) which satisfy the following conditions.
The vertices ¥~ = #7 U ¥/, consist of initial vertices ¥ (depending on r), and a finite
number of new vertices ¥7,. The lines % are such that: (a) #7 legs are all contracted,
(b) 7, vertices are joined to at least one #7 vertex, and (c) ¥ vertices are not joined to
each other. We call such a graph an expansion graph. Now for each I' define r, =
number of uncontracted legs at vertex v, relabel . by ¥7, set x = {x,},.y, and for a
line / joining legs /; € v, and I, € v, define x,, = x,,, X;, = X,,. Then we have:

Theorem 2.1 [7]

Gar, b) = Z f [TAGI]] Cou = x )] T = Axalxa) :q(xo): dx dvs.  (2.2)

ve¥1 le? ve¥ 'y
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For the remainder of this chapter we rewrite this identity in a more suitable form.

Step I. For any expansion graph I, let 4 = {h,},.y- be a set of functions indexed
by 7, and define

(T, h = J 1_[JC(x,1 — x3,.) [ | holx0) :q(x,)v: dix dv,. 2.3)

lez vey¥

Then with & = {A,}sey, and — Ay, = {—Axa}ver-, the expansion becomes G(r, ) =
>r (T, h, — Xx,). Furthermore we define i = {i,}yeyy, 7 = {Johver, and let x(i, j) =
{pi, ® xs,}vev, Where p satisfies (1.7) for some 7 > |¥3|. Then we have

GA(r’ h) = z Z jA(F’ ;= AXAX(i’j))' (24)
r i,j
The sums are finite, but since we eventually take |A| — co we prove the following
lemma.
Lemma 2.2
1T b xax@. 7)) = O( T exp(-ma e (1] + L)

VEY
for some € > 0, uniformly in A.

Proof. 1t suffices to consider A,, v € ¥, supported in lattice squares A,. We first
prove the bound with x(i, j) replaced by x(i’, 7, j) = {xi.0:, ® X1, }vev,- W€ use the
general bound

j EL :q"(x,): w(x) dx dv,

which holds uniformly in A for w supported in lattice squares [5, 6]. Thus with
A, = Ay, ,; for ve?; we have for p = |Z£|/2

TAGSGRN)) I 0||1‘I o

< Ko Wl @.5)

La({Ap}pe¥)

_ (U(]_—IIHCHLP(A,le,z))
= 0(1_[ exp(—imo(|is| + Ijvl))

vedy

since for each v € ¥, there is a line to v’ € ¥7 and

[C lLyap x 80> = Olexp(—3mod(A,, Ay,)) = Oexp(—dmo(|is| + [ju])-
Now we use

1a(. .. X6 D)) < >, JACRY R S)))

i:liy — iyl <2+ |iyl/31973]

and obtain the required bound.

Step II. Let y = (T, ) be a pair consisting of a graph I' = (¥, £) and an ordering
m of ¥~ We also write y = (V, &) with V' = (¥, =) a set of ordered vertices. In Hepp’s
terminology I' is a Feynman graph and y is a Dirac graph [8]. Given y we define

Ity B = [ TT Cx, = x) [T i) q(ye: dix* o 2.6)

ley VeV
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where dx* means we 1ntegrate x = {x,} = {t,, x,,} only over the region ¢, -3 .
Then I,(T, h) = 3, I,((T, =), k) and the expansion becomes
GA(ra h) = Z Z iA('y’ s ’\XAX(IS J)) (27)
y i,

Step III. We now rewrite (2.6). First go to separate space-time variables replacing
€ R? by (t,, x,). Given y, [ joins a lower leg /_ to a higher leg /., and for #;, > #,_
we have

Cti, —ti_,x, —x_) = f (dmw) =t exp(—w(t,, — 1) — ip(x, — x;_)) dp,
where o, = w(p) = VpZ + m2. We identify
H exp(—ip(x;, — X)) = 1—[ exp(— ipyxy)
l v
H exp(—aoft;, — 1) = H exp(—w,t,) (2.8)

where for any v we let £ (&) be those lines joining v to a higher (lower) vertex and
define

Po= D Bi— 2 P

le#y lesy
z P — Z D (2.9)
le#y leg}

Then we have, formally at least, with p = {p ez, B = {f, ® gu}vev-

Lonh = | [] rod dolstr o). (2.10)
Ia(y, h, p) = f 1—[ :q(ty, x,)v: e~ Off (1,)e Porog (x,) dt * dx dvy. (2.11)
veV

Since for v € V, we have r, = 0, I,(y, h, p) is proportional to [ Tyey, &,(p»). Furthermore
one can show using (2.5), (2.8) that for fixed A, |/A(y, h, p)| < const [ [,er, Igv(pv)|
uniformly in A. Combined with the following lemma this shows that the integral in
(2.10) converges. The rigorous verification of (2.10) follows by introducing momentum
cutoffs so that the interchange of integrations can be justified.

Lemma 2.3. For some constant K
JTT 18I [T oo < KT lgolla
veV, le® veVy

Proof. For each v e V,, let N, be those lines joining v to a V¥, vertex, let L, be
those lines joining v to a V; vertex, and let %, = N, U L, be all lines at v. The basic
estimate at the vertex v is

| ( [ 18 T o dp,)m [ i de

leLy leN,
1/2
< (j 18(po)|? H wttE dPt)
le Py
< K82 (2.12)
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For each v € V7, let L} be those lines joining v to a higher V, vertex. To set up the
estimate (2.12) we successively apply the Schwarz in the variables {p;},;* beginning
with the first vertex and working up. Each time we split the two g,(p,) factors which

depend on p; and split w; ' = w; 2w Y2, After doing this for all vertices less than
v we have

[TToran ] ([ 16@or [T ortdn) ] Kl

leM, v"E;V]_ leLys, <y u<v
v v

where M, is all lines joining two ¥V, vertices >v or a ¥V, vertex to a V; vertex >v,
and L, ., is all lines joining v’ € V; to a V; vertex less than v. Continuing to the last
vertex gives the estimate.

Step IV. We now let | A| — co. By a modification of (1.5), f(y, h, p) = lim Iy(y, , p)
exists and with £ = E=—!

Iy, b, p) = (Q, Ele=f, :9": (¢ ™8 )huer) D), (2.13)

where for r, = 0 we define :¢"™: (e~ "?v%g,) = V2ug,(p,)I.
Since we have a suitable A-uniform bound on the p behavior using Lemma 2.3,
I(y, k) = lim I,(y, h) exists and

Iy, ) = f [T @mw)~ dpdy, &, p). 2.14)

le®
Finally by Lemma 2.2 we may take |A| — oo in (2.7) and obtain

G(r,h) = > g Iy, b, — (G, ). | (2.15)

3. Real Time Expansion

3.1. We want to analytically continue the expansion (2.13), (2.14), (2.15) away
from 6 = —i. We restrict ourselves to the region

P2 ={0cC:Imb0 <0,% < |0 <2}

or its closure 2 which includes 6 = 1. For any Dirac graph y = (V, %), h =
{fo ® ulvev, P = {Pihce and 0 € 2 we define

L, b, p) = (Q, E%(e="4f, :¢%: (e~ *g,)}oer) ). G.1)
I ) = | [] @)™ dpity, b, ). (2)

Our goal is then to show

Gy(r, h) = z Z Iy, h, —i0Ax(i, 7)) (33)

4

where the sum is over all expansion graphs y with vertices V' = V; U ¥V, consisting
of initial vertices V; (depending on r) and new vertices ¥, and where the vertex
functions are & = {f, ® g,}vev, (after relabeling) and —ifAx(i, j) = {—i0Ap; @ X;}veva

3.2. The first difficulty is to show that the integral (3.2) is well-defined. Bounds
on (3.1) using the estimates of [3] are not sufficient since they involve norms of the
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form | 0*/ot*(e~'0+f,)||; which grow in p. To avoid this we digress and define a time
ordered product with shifted Hamiltonians.

Let a, € Ce(RY, L(H#1, H# 1)), supp @, < (-, ), and take Q, > 0. Then for
6 € 2 we define inductively

E(ty, Qo, t) = exp(—iG(H + Q0)(t+ — 1))
ET?(['O-’ Qm am ey Ql; al) QO; t—)

ts
= j exp(—i8(H + Q)(t, — $))as(6)E?_1(5, Qp— 1y Gyry - - +» oy 1) 5.

Just as in the treatment of [3, 10] one establishes inductively the following points
0((H + Q)E; — EJ(H + Qo))

== Eltss s Qs oy 1) + it )ES . (3.4a)
k=1

HETBL(t'i" Qm Ap, - . oy QO’ t—)"2n+1,1 s Kn(l + Qa’)]_—:[ |aklﬂ
k

2 = Z [ 1@t - a (3.4b)

(The point here is to use

|ESul, < [(H + Qp + DEfu||_; < (1 + Qo)|E?|gn-1,-1]t]2n+1
+ |(H + Q)Ef — ES(H + Q)| 2n-1,-1]#]2n+1

together with part (a))
E?¢ is continuous in the a. (3.40)
Ef e L(o#?"+1, #1)is analytic in 2 and continuous in Z. (3.4d)

Let § = — Re 0 + iIm 6 and d&(f) = a(—1). Then if supp a, < (¢_, 1)

we have the identity on s#2"*1 x gf2n+1

Eﬁ.(t+, Qm Qs . . ., Ay, QO: t-)* = Ef?(_t—: th dla ceey avns Qm —t+) (34&)
Eg(t.;_, Qm a,, ..., a, QO; t—)
— e"eﬂ"“E,f(t_,_, O =n-ntyg  QlB =gty f )ploRgt- (3.4f)

3.3. We now develop general estimates on Iy(y, A, p) and I4(y, h) for fixed
y = (V,¥). We use the notation

filn = Z 17,
|f| = I—[ lﬁ:hvl-

VeV

Lemma 3.1. I(y, h, p) is analytic in 2, continuous in 2, and there is a constant K
such that

1Lk, b, )| < K] [ 182 | [ A7 D(g0)]gs]l /]

veVy veVg

forall b, 0 €9, A (0, A).
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Proof. For each vertex v define Q, = >, w, > 0 where the sum is over all lines /
joining a vertex preceding or equal to v to a vertex subsequent to v. Then Q, — Q, =
—w, (v’ = predecessor of v) and so by (3.4f)

I(y, h, p) = (Q, EX({Q,, f, 1™ (67 "*g,)}ver) ). (3.5)
Now since
FARRZZIH M) veV,

|ﬁ2| IVIA_ID(gv)“gv” © vE V2
the bound follows from (3.4b) and the 8 dependence by (3.4d).

|fo 297 (e7*v"g)| v < { (3.6)

Lemma 3.2. I,(y, h) is well defined, analytic in 2, continuous to &, and there is a
constant X such that

v, W] < KT ] lgolla ] [ 272 Dlgo)lgoll 1S

veV, veVg

forallh, 6 €2, e (0, A,).
Proof. Immediate from Lemma 3.1 and Lemma 2.3.

Definition. For any subset o < V let f; = {f,}.c, and define for integer N.
IfaIN = « sup W I-I [ﬂ:(av)llal- (37)

By =N “pey
Lemma 3.3. For any N, N’ there is a constant K such that if

(a) There is a partition (o, ¢") of ¥ and T € (— o0, o) such that supp f, < (—o0, T)
for ve o and supp f, < (¢, ) for veo’.
(b) vy connects o, o

then

IIB('V’ h)l s KlfaINIfa’lN’ n "gv“2 I_I ’\th(gv)”gv"ao

veVy veVa

for all 8 € Z, A€ (0, A,).

Proof. Let © be the last vertex in o. If v < © for some v € o’ then Iy, h) = 0.
Thus we assume » > & for all v € ¢’ and have from (3.5).

Iy, h, p) = (Q, E({y, av}oesrs Uy TIENT, {Qy, ar}re)<d)
a(t) = f(t) :¢/: (€7"%g,). (3.8)
This is formally true and can be proved by approximating the a, by more regular
operators. Since y connects o, o’ we have Q; > m, and thus
1E%(T, {Q0, a}ven) Q]| < ma¥[[(H + Qa)¥EXT, {Q, @o}uen) |
<K D |EUT, {Q a5

ay:Zay=N

<Klfiy []1 180 [] 2 'D(g)lg] -

vednvV, veanVa
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Here the first step follows by the spectral theorem, the second by (3.4a) (in the case at
hand the last term in (3.4a) is absent and Q, = 0), and the third step follows by (3.4b).
Similarly using (3.4¢) we obtain

”Es({gv: av}vea ’ Qv’ T)*Q" Kalfa IN H |§v(.pv)| U A.:lD(gv) ”guuoo

vea’'nVy ves'NVq

and combining these two bounds with Lemma 2.3 gives the result.

Lemma 3.4. For every N, there is a constant XK such that if

@) Suppf, < (-T1,7), T > 1
(b) There is a partition (o, o’) of ¥ such that

d (U supp g, |_J supp gv) >L > 1
vET ves’

(c) vy connects o, o’
then

[Ie(y, B < K(TILY | | D(g)llgollz [ | A~2D(g0)?]180ll IS

veVy veVg

for all e 2, A€ (0, Ay).

Proof. By (c) there exists a line /* joining /; € v, € o and /, € v, € ¢’ and we suppose
for definiteness that v; < v,. Now Iy(y, A, p) dpends on p* = p,. only in the functions
e 0otf 1 ov: (e~ Pv¥g,), v = v, Or vy. Define Iy(y, A, p, g1, g2) by replacing p* by ¢, in
Pv, = @y, — p* and p* by g, in p,, = Q,, + p*. Let «, € C(R?) satisfy «,(x) = 1 for
x € supp g, and «,(x) = 0 for d (x, supp g,) > 4. Now we claim that

1
Iy, h, p) = 2_11_f 6‘v;l(“h == P*)&vz(—% + pM(y, h, p, 41, q2) dq: dq.. (3-9)

The point is that I°(y, h, p) can be regarded as a distribution evaluated at e*'?**g,,
v = v; Or vy, and for any distribution ¢

(P, ex?rgy = \/_ J &g Fp*)<Y, e*'%g,> dg

since «,g, = g, We further define B,, = (— A + m3)a,, so that &,(p) = «(p)~2B,,(p)
and write p = (p’, p*), p’ = {p;}, »». Then interchanging integration variables we have

Iy(y, h) = f Boi(q: — P¥Bu(—q2 + POIW(P*, P, 41, 42) dp* dp’ dg, dy,

W(p*, p',q1,92) = (2m) ! I:I (4rw;) 'w(p* — q1) 2w(p* — q2) 2

X IB(’)’9 hs p& qla q2) (310)
We will show that W is C® in p* and that for any N there is a constant K; such that
I@/op )W, < KTV T llgolla [ T A~ D(g0)llgsll 1. (.11)

veVy veVy
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This gives the result since the p* integral in (3.10) can be estimated by

(2m)-12 j Bonl@s — PBo(—aa + POYW(D*, ...) dp*

= [ Bues ) — 3, dx dy
< ”ﬁm”l"ﬁvz"l Sup IW(X - y;--')l
X€ Supp By,

Yesupp By,

< KaD(2,)D(go)L~ " j |(8/ap*y W(p*, ...)| dp*.

We now prove (3.11). We note that I(y, A, p, 4., g2) can be regarded as a distri-
bution evaluated at e*"“*f,, v = v, or v,, and this is the only dependence on p*. For
any distribution ¥

*
8/0p* (i, e:100MFS = if‘%@ G, te*t0artfy,
Thus we have

a/ap*IB(ya h: D4, q2)
%
= i@ %ﬁ' (Iﬂ(y’ t'ulh’ D, 491, Q2) - IB(’V’ tvzhs D, 91, q2))

where (¢,,h), = t, f,, ® g, for v = v, and (t,,h), = f, ® g, otherwise. Thus using the
argument of Lemma 3.1, and the fact that [t%f,|,y, < KsT®|fo|v; We have for « < N

|@/op*) Loy, b, p, 41, 2)| < KT [ [ 182D [ [ A2 D(g0)]g:ll | f]

veVy veVg

where p; has p* replaced by g, org,if v = v, or v,. Combining this with (8/0p)*w(p)~2 =
O(w(p)~2) and (9/9p)%w(p + q)~2 = O(w(p + q)~2) we have

|(@/ep*) " W(p*, P’ 41, q2)| < KsT™ ]—l—[ w tw(p* — q1) "2o(p* — q2)7?
x [T 18 [T A D(gn)lgl 1]

VeV veVg

Next we do the integral over g;. This gives either (w~2 * |Z,|)(p,) if v; € V; or a con-
stant if v, € V,. Estimating the integral over p by Lemma 2.3 and using ||@ =2 % |§,|]2 <
ew=2|;|gl|ls we obtain (3.11).

3.4. We now show that the sum in (3.3) converges and that the identity holds.
For h ={f, ® g} we define R(h) = 1 + max, R(f, ® g) where R(f, ® gx) =
sup{|x|:x € supp(f; @ gi)}. For i = {i,}sev, we define |i| = max,|i,|, etc.

Lemma 3.5. For every N there are constants K, » such that

o, b, Ax(@ )| < K(il + D7(j| + DRG] T lgullalfolim

veVy

for all 4, i, j, 0 € 2, and A€ (0, Xy).

Proof. The case V, = g follows from Lemma 3.2. Assuming V, # &, we set
C = 3|V,|R(h) and consider three regions:
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(D C2 = |j|, |i|>. The bound in this region follows from Lemma 3.2 since
D(x;,) x5l « = @(1) and |py| ;v = O(1).

dn |i|2 = |j|, C2. Let o, o’ be a partition of ¥,. We prove the bound on the sub-
region satisfying d({0} U i,, i,-) > |i|/|V2| where i, = {i,},e,. This is sufficient since
as o varies we cover all points. Since supp f, < {¢:|t| < |i|/3|V.|} and supp p,, =
{t:|t — i,| < |i|/3|Va|} we have that | ey, supp f, and (U,e, SUpp p;, are separated
from (J,c,- Supp p;, by at least |i|/3|V;|. Thus since y connects ¢’ to ¢ U ¥, we have
by Lemma 3.3

|Ie('ya h, ’\X(iaj))l < Kll{piu}vea’lNHa’l ]__[ “gszlf;Jll‘Vl-

veVy

By (1.7¢) we have the bound
l{piu}vea’|N+la’| < KZ 2 supp H (llvl + 1)_a”+1

ty=N+10"| pegs

< Ko(inf lis| + 1) (3.12

Since inf,.,|i,| = |i|/| V3] this gives a bound @(|i| + 1)~ for any N which is sufficient
in this region.

(IID) |j| = C?% |i|>. Again we restrict attention to the subregion where
d({0} Y js, jo) = |jl/|Va|. Then Uyev, supp g, and e, SUpp x;, are separated from
Uves’ SUDPD X;, bY [jl/3|V2|. Since also supp f, and supp p;, are contained the interval
(—3[j|*2, 3|j|*'®) we have by Lemma 3.4 with L = |[j|/3|V;| and T = 3|j|*/?

11y, b, 2G| < Ks(ljl + D] T llgwllalfoliv

VeV,

which suffices for this region. (We have used D(g,) < 2R(h) < 2|j|*?/3|V2|.)
Theorem 3.6. Go(r, h) = 5, ., I(y, h, —i0Ax(i, j)) for all 6 € D, A € (0, Ao).

Proof. For % < « < 2 define f%(t) = o« f(t/x) and h* = {f;Z @ g..}. Now the
analysis of Section 2 holds with the partition of unity ep{ replacing p;, and so witk

Xa(ia J ) = {_P?v & X.fu}‘DGVz
G_i(r, h) = G(r, h%)
= > > Iy, h*, —rax*(i, )

y i,f

= > > I_uly, b, —dax(i, /).

y i.J

Thus the identity holds for § = —i«. This is a determining set in £ and since both sides
are analytic in & by Lemma 3.2 and Lemma 3.5, the identity extends to &. Similarly
both sides are continuous and we extend to 2.

Corollary 3.7. There exists K, v such that for all 4, 6 € 2, A€ (0, A,)

|Go(r, B)| < KD(h)"I—I | gicll2| ficl 2na-
k=1

Proof. Follows from Lemma 3.5 and Theorem 3.6. Note that for any expansior
graph | V| < 2nd. We are allowed to replace R(h) by

D) =1+ diam( |J supp(f, ® gk))

by translation invariance.



Vol. 49, 1976 The P($); Green’s Functions: Asymptotic Perturbation Expansion 211

3.5. If we define I(T", h) = >, I,((T', 7), h) then our expansion can also be written
as a sum over Feynman graphs.

Go(r, b)) = g (I,(T, h, —i0Ax(i, /). (3.13)

r

We use this form to write an expansion for truncated Green’s functions.

Given I'= (¥, &) and h={h,},ev, let I be the set of connected components of T
If [I'| =1 (ie. if T is connected) we define IJ(T, h) = Iy(T, k). For general T' we
define by induction on |I'|

OB =IO, 0 - D> [ 15T k) (3.14)

QT qe@

where the sum is over the proper partitions Q of I and for ¢ < T', T', and h, have the
obvious meaning.

The expansion for GJ(r, h) can now be written.
Gi(r,h) = > > IF(T, b, —ibXx(i, j))- (3.15)
T 1]

The path space version of this (6 = —i) is due to Glimm and Jaffe [7], and (3.15)
follows by analytic continuation. Or one can verify (3.15) directly from the definitions.
The sum converges by an inductive argument based on Lemma 3.5 (c.f. Section 4).

4. Bounds on Derivatives

We now prove the uniform version of (1.8) at real time. We fix n, m; let & =

(1 @8-, [ ® &), fro 8 €CF(RY); and let x(i, /) = (P, ® Xips - - > Pin @ Xsm)
where p; satisfies (1.7) with + > 2(n + m)d. Also define

n

|h| = 1__[ I gl 2] fel 2cn + mya- @4.1)

k=1
Theorem 4.1. (a) For every N, there exist K, v such that for all A, A € (0, A,), and
i,jeZ™:
|G™(r, d; hy x(, )] < K(|i] + 1)7¥([j| + 1)~YR(h)'|A|.
(b) There exist K, v such that for all A, A€ (0, A,):
| D"G™(r, )| < KD(h)'|h|.

Proof. Part (b) follows from (a) and (1.6). We may take the diameter D(h)
instead of the distance to the origin R(h) by the translation invariance of D"G”(r, h).
To prove (a) we expand according to (3.15) with I™ = I]_,.

GT(r’ d; h, X(ia J)) = Z Z IT(Fs h, X(iaj)s _iAX(i’sj’))
r i,j

=> izj I7(T, ). (4.2)

r O

Here the sum is over all expansion graphs I' = (¥, %) with initial vertices ¥; =
¥1,1U 1,9, 71,1 depending on r and ¥ , consisting of m vertices with d legs. The
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vertex functions are denoted ¢ = {i,},.y and are explicitly (after relabeling A, x(i, )).

h = {f; & gv}ve‘f'l,l = {‘ﬁv}ve?”lll
X(i, J) = {piu ® Xju}ve’f/'l_z = {‘l[‘v}vey'l,g
—ix(@', j) = {_ i/\piv ® Xju}veVz = {‘/Jv}ve‘ff'g‘ (43)

To establish our bound we have only to show that for fixed I', N there exist K, v such
that

(T, )| < K(I| + DN + D~ R(h)|A| (CX))
where with ¥™* = ¥ , U ¥, we define

I= (la l,) = {iv}ve‘V'
J= (.]’ .]I) = {j'u}ve‘f"-

Now let C = 9|7™*|(R(h) + 1) and distinguish. three cases.

(D C? > |I]?|J|. By Lemma 3.2 we have |I(T, )| < K|h| for some constant X,
since |#”| < 2(n + m)d. An inductive argument based on (3.14) then gives | IT(T, )| <
K|h| for some K, which suffices in this region.

(D) |I]2 = |J|, C2 In this region it suffices to show that for any N there is a K
such that

[T(T, )| < K(|I] + 1)~V]A].| (4.6)

Moreover we can let (o, ¢') be a fixed partition of ¥"* and consider only the subregion
satisfying d({0} U I,,, I;) > |I|/|#?"*|. In this region we have supp f, < {t:|¢| <
[I1/3|7°*|} and supp p;, < {t: |t — i,| < |I|/3|77*|} (since = = 2(n + m)d = |¥|)
and thus U,ey, , supp f, and U, supp p;, are separated from |J,e,- Supp p;, by at
least |I|/317°*|. We now distinguish two subcases. Let & = o U ¥7; so that G U ¢
=Y andénNdo = 3.

(IIa) I' connects &, o’. By (3.12) we have

I{pi”}uea'INHa'I = @((lll + 1)—N) (47)
and thus by Lemma 3.3 we have for any N, some K.
[I(T, )| < Ki(|I] + 1)~ 7|A|. (4.8)

The bound (4.6) now follows from (3.14) and an inductive argument since any parti-
tion Q of I' must contain a g such that T, connects &, o’. (More precisely we claim
that for ¢ = T, if T, connects &, o', then [I°(T,, )| = O(|I| + 1)~¥|h,| where
hy = {M}vey, ynv ¥q = vertices of T'y. We know that [I(T,, 4)| = O(|I| + 1)~ "|A,]
by (4.8). Thus the claim holds for |g| = 1, and we proceed by finite induction on |g|
using (3.14) for I7(T,, 4,) and isolating a connecting subgraph for each partition.)

(IIb) T" does not connect &, o’. In this case I' splits into two graphs I';, I',. and
we have

I7(T, §) = I(T, §) — KT 4T, ) = > [ ] 170y ) 49)
Q' qe@
where the sum is over all partitions of I' which do not refine T';, T',.. Next I(T, ) is
written as [T, (4mew)~ dp, (Q, E(T, 4, p)Q) where E(T, ¢, p) = 3, E((T, =), ¥, p)
and where for y = (I', #) and ¢, = ¢, ; ® ¢, , we define E(y, ¢, p) to be

E({st 'nl"u.l :(pr,,: (e_ip”xﬁl'v,z)}veV)-
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Then due to the time separation we have for some T (assuming o’ vertices precede &
vertices)

I(Fs l,b) - I(FE5 ‘le)I(Pa” ‘Ibcr’)
= J H (4ﬂwl)_1 dpl(Qa E(FE3 ltbt?a Pz, T)E%E(Ts Fa': ll'a‘a pa’)Q)' (4'10)

Now by the spectral theorem and the uniform mass gap we have as in Lemma 3.3 with
N1 =N+ |O"I 4

”E'(l)'E(Ts Yo's ‘»ba’: pa')Q” < m_Nl ”HNlE(T Ya's ¢’cr s Do )Q“
< K Z ”E(T’ {Qw S)a‘i) Qv (e ip”x‘/’v 2)}vecr )Q"

0y:Bdy =N,
K I{piu}vea |N1 H 1)?(pv)|
veVy,ana’
We also have
"E()/a, ‘/’5’9 Ds» T)*'Q" < Ka H |g~v(pv)[ 1—_[ l)?v(pv)l ]_—_[ |f;)|2(n+m)d ‘
veVi,1 VEVy,2NC veVy,1

and combining these bounds with (4.7) and Lemma 2.3 we obtain
[T, ) — (Ta, $)(Tor, )| < Ko(|I] + 1)V (4.11)

The remaining terms in (4.9) can be bounded by an inductive argument since each
partition Q in 3;, must have one ¢ with ¥; N & # @ and ¥, N ¢’ # &. (In detail we
claim that [I'(Cy, )| = O(I| + 1)~7|h, | forallgc T such that ¥, N & # 0 and
¥, N o’ # 0. By the argument leading to (4.11) we know that

(I(Pq’ ‘:l’q) - I(Paffqna-s ‘)b"Ifqn&)I(Fquna’s ‘)bo"qna')l = @(lll + 1)_N|hql°

Thus the claim holds for |¢g| = 2 and we proceed by induction on |¢| using (4.9) for
I'(T,, ¥,) and isolating a subgraph with vertices in & and o’.)

(IID) |J| > C?%, |I|2. In this region it suffices to show for any N there is a constant
K such that

(T, )] < K(J| + 1)7%]A]. (4.12)

As before we consider the subregion d({0} U J,, J,-) = |/|/|#"*| in which we have
Uver,., SUPP g, and e, SUpD x;, separated from (e, supp x;, by at least |J|/3[¥” *
We also have from |[J| > C2, |I|? that Uver, . SUPP f» and Uyey~ supp p;, are con-
tained in (—3|J|2, 3'IJI”Z)

(IlTa) T connects &, o’. We apply Lemma 3.4 with L = |J|/3|¥™*| and T = 3|J|?
and obtain for any N, some K.

(T, )| < K:(|[J] + 1)~7|4. (4.13)

An inductive argument now gives (4.12).

(ITIIb) I does not connect &, o’. Again we use the representation (4.9). Since
\Uves supp ¢, and | J,.,- supp ¢, are space-like separated, the representation (4.10)
holds by the locality of the theory. We now appeal to a particular form of some well
known space-like cluster properties which follow from the mass gap. In the notation
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of [3], there are two rectangles 0z, @,. such that supp ¥, < 0; for v € G, etc.; and such
that

A(O;, 0,) = |J|/3|77*| = 3|T|¥2 > 3|J|V2
Thus by equation (4.4) of [3]

|(Q E(ys, ¥, s> TVESE(T, yor, Yors Por )Q)l
< KR(exp(~my 3P HE, O] | E#0) + |HE,Q] | HEO])

< K (7] + D)X H 18.(p)] 1—_[ | %(p)] 1—[ | fol 2 + ma-

veVi.1 VeV, 2 veVy,1
Combining this with Lemma 2.3 we have
[T, ¢) — I(Tz, ) (Lo, )| < Ks([J] + 1)~ V]| (4.19

The remaining terms in (4.9) are bound by an inductive argument as before.

Corollary 4.2. Given h, m there is a constant M such that | D"G(r, h)| < M forall
02, re(0, \y).

Proof. By scaling Theorem 4.1b we have |D"GI(r, h)] < M, exp(|6| + |0]~?)
for 0 real and non-zero, A € (0, Ay). The same bound holds for 6 negative imaginary
by the path space treatment [2]. Since D™G](r, k) is analytic in Im 8 < 0 and is not

too singular at 0 or co, one can apply the Phragmen-Lindelhof technique to obtain
| D"Gi(r, h)| < M, exp(2|6] + 2|6] ') forallIm 8 < 0, X € (0, A,) (see [3] for details).

5. Perturbation Theory

Theorem 5.1. The truncated Green’s functions G7(h) = G”(h, ), defined and
C* on (0, A,), have C* extensions to [0, A;). As a consequence they have asymptotic
expansions near zero, i.e. for any integer N.

|GT(h, X) — i D*GE(h, O)XN[k!| = O(A¥+1),

Proof. We know that for any k and A, A; €(0, Ay), D*GT(A;) — D*GT(A,) =
:i D¥*1GT(X') dX'. Thus by Theorem 4.1 D*GT(A) has a continuous extension to
[0, &), denoted gx(A), and g()) = g4(0) + [, ge+1(X) dX'. It follows that for all k

and all A € [0, Ay) g, is differentiable and Dg, = g, ., hence g, is C*® and D¥g, = g,.
Q.E.D.

The point of the theorem is of course that the coefficients D*GT(k, 0) can be
calculated exactly as we now demonstrate. We define a vacuum graph to be one with
¥, = &. The Feynman propagator is the usual.

Ar(t, X) = ODA (1, %) + O(—DA(—1, )

ALt x) = f (4mw)~1 explipx — iwt) dp. .1)
Theorem 5.2
D67, 0) = (= 5 5 ( [ T A, = ) TT 1o
ve¥1,1
Il (P:a ® xj,,)(xv)) (5.2)

ve¥ 1,2
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where the sum is over all connected vacuum Feynman graphs on #n vertices with one
leg (¥7,1) and m vertices with d legs (#7,3).

Proof. For a vacuum graph the Hilbert space structure in I(y, A, p) disappears
and we have for any A

16 h,9) = [ T eofiteoemg ) di* d

UEVI

Then by reversing steps in § II we have for I(T, A).

IT, h) = j dx T A, — %) [T hlxs). (5.3)
ley ve¥1
Thus the theorem states that
D"G™(h, 0) = (—iy" >" > I(T, h, x(i, ))- (5.4)
T 4.4

In this form we see that the sum over i,j is absolutely convergent by (4.4) since
I = I” for a connected graph.

To prove (5.4) we first claim that for 8 € @, Gy(r, h; 0) = lim, Lo+ Gy(r, h; A)
exists and is given by

Go(r, h; 0) = Z’ I,(T, k) (5.5

where the sum is over vacuum graphs. This holds for § = —i since from (2. 4) we have
G(r, h; 0) = S+ I(T, h). We extend to 6 negative imaginary by scaling. By Corollary
L B G,,(r h, A) is uniformly bounded on £ and so by Vitali’s theorem the A — 0* limit
exists for § € & and is analytic. Since the limit agrees with the analytic function
>r Iy(T, h) on a determining set they must be equal, i.e. (5.5) holds for 8 € 2. Now
by Corollary 4.2 the functions Gr, &; -), 0 € &, are a uniformly equicontinuous
family on (0, A,). It follows that the convergence Gy (r, h; +) = Gy(r, h; <) as
6, — 0 € 2 is uniform in A € (0, A,) and thus we obtain (5. 5) for all beD.

From the representation (5.3) one can now argue inductively that G7(r, h; 0) =
>t I(T, h) where the sum is over connected vacuum graphs.

Finally by Theorem 4.1 we may take the A—0* limit in (1.6) to obtain
D"G%(h, 0) = (—i)" 3, G*(1, d; b, (i, /); 0).  Inserting  G™(1, d; h, x(i,); 0) =
>r I(T, h, x(i, j)) and interchanging summations gives (5.4).

Remark. If one formally takes 5, , [dx = [dx 3, ; and uses Zy, ;,01, ® x5, = 1,
then we have the standard

DG 0) = (~i)" 3 ( f & TT A, — %) T1 h,,(x,,)).

leg ve¥1,1

Our expression (5.2) is one way of making this precise.
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