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The Bloch Equation at Low Temperatures

by W. R. Schneider
Brown Boveri Research Center, CH-5401 Baden, Switzerland

9.1X. 75)

Abstract. The Bloch equation (linear Boltzmann equation for fermions) may be written as
L.f = g, where L, is a bounded self-adjoint operator and x the normalized inverse temperature.
For sufficiently large x the inverse of L, exists and is bounded. This leads to the x5-law for the
electrical conductivity.

1. Introduction

Let o be the Hilbert space of complex-valued functions on the reals with scalar
product

(f.8) = f dyo(Nf(Me() (1.1)
where the density p is given by

p(y) = e¥(e¥ + 1)72 = (2 cosh(y/2)) 2 (1.2)
(integrals extend over R if not otherwise indicated). Define the Bloch operator L, by

(LNO) = [ 66 = DK, Do) = 0 = A0+ 2 (1)

for all fe o# such that L, fe %,
The kernels K,(n € N) are given by

Ku(y,2) = 22"’ + D{(e*** + D|1 — e~ *|} 7% (1.4)

0 is the step function, p a positive constant and x~! = T/T, the temperature nor-
malized with a suitable reference temperature 7.

The Bloch equation, i.e. the linearized Boltzmann equation for electrons (with
isotropic energy momentum dispersion) interacting with phonons reads now

L.f = g (1.5)

with go(») = 1 (this is equation (82) of [1] via the identification ¢ = pPx%f, pQ = l)
Remark that g, € 2 with || g,| = 1.

Assuming existence and uniqueness of the solution £, of (1.5) the static electric
conductivity is given by

o(x) = cx*(f:> &) (1.6)

with a constant ¢ independent of x.
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It will be shown that L, is a bounded self-adjoint operator which has a bounded
inverse for sufficiently large x. Hence, the solution of (1.5) is given by f, = Lz g,.
Furthermore, L;! has a limit as x tends to infinity. The corresponding limit of
(fx> o) is calculated explicitly, yielding

}cl_{li) (fxs gO) = (240€(5)) -t (1 7)

where { denotes Riemann’s Zeta function. In view of (1.6) this means that the con-
ductivity behaves like x° for large x (7-° — law of Bloch [2]).

The proof of these assertions involves an intermediate step consisting of the
discussion of a simpler problem,

where M, is obtained from (1.3) by omitting the step function. In Section 2 the
problems (1.8) and (1.5) are treated, whereas Section 3 is devoted to an extension of
(1.5) by including impurity scattering.

2. The Bloch Equation
Let 52 denote the Hilbert space L2(R) with the usual scalar product. 5 and 57,

introduced in Section 1, are isomorphic via
) = WNH» = Vo)), @1

To any operator O in S corresponds O = UOQU! in 2.
For n € N we define the operator B, in # by

BNO) = | dKo DI + 2) 22)
where K, is given by (1.4). The corresponding operator B, in 5 is given by

B f=b.=f (2.3)
(* denoting convolution) with

bw(y) = %y**|csch(y/2)]. (2.4)
By Young’s inequality we have

18,11 < (184 (2.5)

Actually, equality holds in (2.5) due to the fact that b, is even and non-negatlve
Evaluation of the r.h.s. of (2.5) yields

Balx = 22m)! 22+ — )20 + 1). 26)

The operators B, are self-adjoint and their spectra are absolutely continuous as they
are unitarily equivalent to multiplication by real analytic functions.
In view of (1.3) we also introduce operators B, . in £ :

(Busf)0) = | dstlx® = K3, D + 2). @D
They correspond to B, , in 5 which are defined as convolution with b, ., where
bn,x(y) = H(xz - yz)bn(y) (28)
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By arguments identical to those given above the operators B, , and B, — B, , are
self-adjoint, have absolutely continuous spectra and satisfy

Hﬁnxn = [bn,xlx (2.9)
and
1B, — Buull = [Bn — bu,x]1, (2.10)

respectively. A simple estimate shows that the r.h.s. of (2.10) vanishes exponentially
fast as x tends to infinity. Hence, we have

Lemma 1. B, is the norm-limit of B, , where B, and B, , are defined as con-
volution by b, and b, ,, respectively, with b, and b, , given by (2.4) and (2.8).
Let

a = B;g, (2.11)
and

ax = B, .o (2.12)
We define operators 4 and A4, by

(AN) = a(Wf () (2.13)

and similarly for A4, for those f'e # where the r.h.s. of (2.13) is in 2£. As a and a,
are real A and A, are self-adjoint.
The Bloch equation (1.5) with L, given by (1.3) may now be written as

{px*(4x — Bi,x) + By }f = go 2.14)

whereas the simplified Bloch equation (1.8) is obtained by dropping the index x on 4,
B, . in (2.14).
From (2.7) and (2.12) we obtain, after some manipulation

a.(y) =2 fx dzz? ¢(y, z) csch z (2.15)
with

#(y, z) = (1 — tanh?(z/2) tanh2(y/2))~ . (2.16)
This leads to

a(—y) = aly) 2.17)
and

J *

540 = | 20, HOME 218)
with

P(») = sinh(y/2) sech®(y/2) (2.19)

i.e. (for x > 0 as we shall always assume)

% ay) >0 fory > 0. (2.20)
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Hence, a, increases monotonically from

a,(0) = 2 f "z eschz > 0 2.21)
to ’

TS = f " dzz? coth(z[2) 2.22)

0

as y varies from O to co. The limiting value (2.22) may be written as

a,(0) = (x8/3) + 4¢(3) — 2 fm dzz%e %1 — e~ ?)~1 (2.23)

X

where the last term decreases exponentially fast as x tends to infinity. Actually, a.(y)
becomes ‘flat’ at y & x for large x as is seen from

a,(x) = (x3/3) — x2In 2 + (#?x/6) + 2.50(3) + r(x)

where the remainder
[ +] X
r(x) =J- dz(x — 2)?(e* + )7 + e"‘f dzz%(e* + e~ *)71
x 0

decreases exponentially fast as x tends to infinity. From (2.20)~(2.22) it follows that
A, has an absolutely continuous spectrum consisting of the interval [a,(0), a,(c0)],
1.e. A, is bounded.

Now, a(y) and da(y)/dy are obtained from (2.15) and (2.18), respectively, by
replacing the upper limit of integration by co. Hence, (2.17) and (2.20) hold also for
a(y). It follows that a(y) increases monotonically from -

a(0) = 2 f " dlea® eseh.x = T3} (2.24)

to infinity. The spectrum of A is absolutely continuous and consists of the interval
[a(0), c0), i.e. 4 is unbounded. From (2.15) and (2.18) and their analogues for a(y) it
follows that

a(y) > a.(y)
and

d d
d—ya(y) > @ax(y), y >0,

whence
0 <a(»)™*—a(y)™* < ao) (2.25)

According to their spectral properties 4 and 4, have bounded inverses which satisfy
by (2.25)

|41 — Az = a.(0)~ (2.26)
As, in view of (2.23), the r.h.s. of (2.26) is O(x~3) for large x we have

Lemma 2. A;* converges in norm to A~* where A;' and A~! are defined as
multiplication by a,(y)~! and a(y)~' with a and a, given by (2.11) and (2.12),
respectively.
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The following lemma concerns the combinations A, — B, , and 4 — B; which
occur in (2.14) and its simplified version. Remark that 4, — B, , is bounded and self-
adjoint whereas 4 — B, is unbounded and self-adjoint on the domain D(4) of 4.

Lemma 3. The operators A, — B, . and 4 — B; are positive and zero is a simple
eigenvalue with eigenvector g,.

Proof. For fe s

(s = BLING) = [ do062 = @ = DIKO 2 = WO — 1@} @20)

and

(s = BN = § [ dy [ 802 = @ = yIHG, ) - 7@ 229)
with
H(y,z) = (y — 2*(e¥ + 1)(e* + 1)|e¥ — e~ 2|}~ 2. (2.29)

From (2.27) it follows that g, is an eigenvector belonging to the eigenvalue zero
whereas (2.29) shows that g, is simple and 4, — B, , positive. Dropping the sub-
scripts x and the 6-functions in (2.27) and (2.28) and choosing fe D(A) yields the
proof for 4 — B,.

Lemma 4. The operators B, are A-compact.

Proof. This is equivalent with A-compactness of B,. As b, and 1/a belong to #
we obtain

|BiA s = |Balll1/a],
i.e. B,4A-1 is a Hilbert-Schmidt operator, hence compact.

Corollary. Let B be a finite real linear combination of {B,}. The operator A + B
is self-adjoint on D(A) and its essential spectrum coincides with that of 4, i.e.

o(4d + B) = a,(4 + B) U [4(0), )

where o and o, denote spectrum and discrete spectrum (set of isolated eigenvalues of
finite multiplicity), respectively. The only possible accumulation point of o, is a(0).
Especially, zero is an isolated eigenvalue of 4 — B,.

Proof. The statements of the corollary follow [3] from Lemma 4 (and Lemma 3).
Let p(X) denote the resolvent set of the operator X.

Lemma 5. For sufficiently large x and arbitrary Ae R

zep(d — AB)) = z€ p(4, — AB,.) (2.30)
and
norm-lim(z — A, + AB; )" = (z — 4 + ABy) . (2.31)

Proof. According to [3] it is sufficient to prove (2.31) for z = i. Let
Ax()‘) = (i = 4 ’\Bl)_l - (i - Ax i ’\-Bl,x)—1
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and A, = A,(0). Repeated use of the resolvent equation yields

AN = A, — Mi — A, + AB)"'B,A, — AABy(i — A + AB)"?
+ Az(l - Ax + /\BI)_IBleBl(i - A + ABI)_l
- A(l - Ax + ABl)—l(Bl - Bl,x)(l - Ax ER AB.‘»,x)_l

leading to the estimate
1AM < (T + [AB)?[Ay] + [|MBy — By,
Together with Lemma 1 and Lemma 2 the result follows.

Corollary. Zero is an isolated eigenvalue of 4, — B, , for x sufficiently large.
Now, by (a trivial generalization of) Theorem 5 of [4]

{px*(Ax — B1,x) + By} ™' = (80, By,280)"'P — kEF (k)G 2.32)
where
F() = 2 (eFoy (2.33)
n=0

with «~1 = px? and

E. = S. — (80, By,x80) " 'PB;, xSy
Sy = norm-lim(z — A4, + By ) (P — I)

2—=0
Fy, = —B; .E,
Gx = (gOa Bz,xgo)_lB2,xP — £ (234)
P is the projector on the subspace spanned by g,. Similarly, we have
{px*(4 — By) + B3}~ = (8o, B280) P — kEF(x)G (2.35)

with the r.h.s. defined by formulae obtained from (2.33) and (2.34) by dropping the
subscript x. All operators on the r.h.s. of (2.32) and (2.35) are bounded and the latter
are the norm limits of the former. Hence, the series (2.33) converges absolutely for
x > x, with x, suitably chosen.

From (2.32) it follows that the solution of equation (2.14) is given by

S = (80, B3,x80)"'80 — KEF(x)Grgo (2.36)
leading to

lim (go, /) = (80, B2go) ™" (2.37)
with

(80, B28o) = 2404(5). (2.38)

Remark. The operators B, , do not depend analytically on x. They are norm

continuous but their derivatives B, , are only strongly continuous. A simple calcula-
tion yields

B, . = b,(0){0(x) + U(—x)} (2.39)
where U(x) is the one-parameter group of translations,

OHN) =1y - %) (2.40)
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which is strongly but not norm continuous. However, g, is an analytic vector of
U(x), i.e. U(x)g, depends analytically on x. Hence, the same is true for B, .g,. Thisis a
first step towards answering the open question whether £, (or at least (£}, go)) depends
analytically on x. The case is different for the solution of the simplified Bloch equation
where the analogue of (2.35) immediately exhibits analyticity in (x,, c0] with px2 =
1]

3. The Modified Bloch Equation

If the electrons not only interact with phonons but also with randomly distributed
impurities the Bloch equation (1.5) has to be modified in the following way [5]:

Lof + cog'xf = g (.1

where o, is a positive constant (the constant c¢ is the same as in equation (1.6)). If the
electron-phonon interaction is turned off (3.1) reduces to

cog 1x°f = g, (3.2)
with the solution

Sz = ¢ logx0g,. (3.3)
Inserting (3.3) into (1.6) yields

o(x) = oy, (3.9

i.e. the conductivity becomes temperature independent if it is based only on impurity
scattering. Setting

h = coyix5f _ (3.5
in (3.1) and (1.6) leads to

(c™roox~°L, + Dh = g, (3.6)
and

a(x) = ay(h, go)- (3.7)

Equation (3.6) may be written as (compare with equation (2.14))

(Cx + c™Yoox™%B, )h = go (3-8)
where

C.=1+ c logpx~3(4, — By,,) (3.9)

is a positive bounded operator with lower bound 1 which is a simple eigenvalue and
8o the associated eigenvector (Lemma 3). For sufficiently large x this eigenvalue is
isolated (Corollary to Lemma 5). Hence, |C;!| < 1forallx > 0. As C;'g, = go We
obtain from (3.8)

(I + ¢ toex™5C; 1B, )h = go. (3.10)
The operator C; B, is uniformly bounded by | B |. Therefore, (3.10) may be solved
by the Neumann series for sufficiently large x (e.g. x®> > ¢~ Yao| Bal):

h=go+ Z (—c7toex°C5 ' By, x)"go- (3.11)
n=1
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Inserting (3.11) into (3.7) yields

a(x) = ao{l — ¢ toox~%(go, Ba,80) + S(x)} (3.12)
with
s(x) = iz(—c“laox‘s)”(go, (Cx 'Bs,.)"g0) (3.13)

which is O(x~1°) as x — o0. Introducing the resistivity p(x) = 1/o(x) we get
p(xX) = po + p1(x) + pa(x) (3.14)

where p, = 1/o, is the impurity resistivity, p,(x) the phonon resistivity given by (1.6)
and (2.35) and py(x) the so-called deviation from Matthiessen’s rule. From (2.35) and
(3.12)~(3.14) it follows that py(x) = O(x~7) as x — o0.
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