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A Mechanical Quantum Measuring Process1)

by Barbara Whitten-Wolfe

Western College, Miami University, Oxford, Ohio 45056 (USA)

and Gérard G. Emch

Depts. of Mathematics and of Physics, University of Rochester,
Rochester, New York 14627 (USA)

(22. VIII. 75)

Abstract. A mechanistic analysis of the quantum measuring process is proposed. This takes
into account both the reduction of the wave packet and the recording of the measurement on a
macroscopic apparatus. An exactly solvable model is given to sustain the theory.

Outline

In this paper a mechanistic model is proposed which shows that the usual framework

of quantum mechanics (when adapted to the study of infinite systems) is
sufficient to deal consistently with the following two problems of the quantum measuring
process: (i) the 'reduction of the wave packet;' (ii) the transfer of information from a
microscopic to a macroscopic level. In Section I we present our description of the
quantum measuring process. In Section II we propose an exactly solvable model to
support this description. In Section III we analyze the model of Section II and show
that it does indeed behave according to the general framework described in Section I.
Concluding remarks are presented in Section IV.

I. The Framework

The literature on the quantum measuring process is quite extensive. The reader
will find reviews in Reece [1] and Whitten-Wolfe [2]. Our description draws mainly
on the recent work of Hepp [3] and Emch [4], and consolidates some aspects of both.

A measuring process involves three elements: a system TA to be measured, a
measuring apparatus sé, and an interaction which couples Tf and jA. Each of these
elements will be described in some detail below.

The system to be measured is a quantum system described by its C*-algebra of
observables 23 and its set of states %; we will denote its initial state by cp. We restrict
our attention to the mathematically simple case in which the observables R e 93 to be
measured are compatible and have jointly discrete spectrum. We therefore write:
R — 1,jej rjPj, where the index set J is countable, r} e R, and the P/s are mutually
orthogonal projectors in 93, adding up to 1.

l) Work supported in part by NSF Grant #38626.
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The measuring apparatus is an infinite quantum system. It is described by the

C*-algebra 31 (JA 21(A)" of its quasi-local observables, and by the set of states S
on 21. (For details of the C*-algebraic description see Emch [5].) We denote the
initial state of sé by ip.

In order for sé to function as an apparatus which measures R e 93, its algebra of
observables 21 must provide a set of operators {M,} which are in one-to-one
correspondence with the set of projectors {PA.

An interaction is switched on at * 0 (the beginning of the measuring process)
between the system SA and the apparatus sé. For every observable X of interest, we
denote by at[X] the time-evolute of X under this interaction. We place five requirements

on this interaction.
First, we follow von Neumann [6] in requiring that the measurement be repeatable

on SA. This is taken to mean that the effect of the measurement on SA is to collapse the
state cp into a mixture of the eigenstates of R. Specifically:

limO <g> if); a,[B <g> /]> T A/c»,; 5>
t-»eo *Jl

for all B e 93, where

i9i'By--ÇpTPF
Ay <<p;P,>.

Second, the measurement must transfer information about SA to sé, where we can
'read' it. We thus require that the effect of the measurement on the apparatus be

lim<9> <S> >/-; at[I <g> M,]> y X/A>T, Mjy
l—to '-f

for all Afj e {M,}, where

A, ir, PJ7

(if),; Mjy 8tj with 0 dispersion.

Note that the A's contain all information about the state cp available from R, so the
pertinent information has indeed been transferred from SA to sé.

Note also that we do not require the state ofsé after the measurement to take the
form 2y Xfipj on all of 21. This is weaker than the usual requirement, but is physically
reasonable, since the M/s axe the only observables which give us information about SA.

Third, it is physically desirable that the measurement produce an effect which the
experimenter can perceive with this own senses. The infinite size of the measuring
apparatus can indeed be used to give a precise meaning to the requirement that the
effect of the measurement be macroscopic on sé. The M/s will be space-averaged
observables [5], and as such will belong to the center 3^, ^(21)" Fi ttJ'A)' of the GNS
representation for if). Other consequences of the infinite size ofsé will be touched upon
in Section IV.

Fourth, the measuring process should be mechanistic. By this we mean that the
evolution, with SA coupled to sé, should be obtained as the infinite volume limit
(A ->- oo) of an Hamiltonian evolution.

Our last requirement is one of stability. If a measurement were to be successful
only when the apparatus begins exactly in the initial state >f), the experimenter would
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have to specify completely the state of his apparatus before he could begin. This
clearly would make measurement too difficult a task. We therefore place one final
requirement on the measuring process. The measurement must give the same result
if sé begins in any state if)' in some class of states ©0 <zz ©, which are experimentally
'close' to if):

(i) lim<9> <g> if)'; at[B ® /]> Y X/<pV, By, for all cp e S, all f e 60, and all

5e93;
(ii) lim<<p ® if)'; at[I <g> Mj\y 'S Xjiifij-, Mjy, for all cp e S, all if)' e ©0, and

t-*<*> j1
all Mf e {MA.

A physically appealing candidate for ©0 is the subset ©^ of all normal states on
the von Neumann algebra ttJQI)" canonically associated (by the GNS construction)
to 21 and ip. In particular, Q>t contains the set of all states if)' obtained from if) by
(quasi-)local disturbances (see, for instance, Winnink [7]): {if)'; A) (if); B*AB7y with
B e 21. Even more interestingly, ©^ contains all states [8] which satisfy the equilibrium
KMS condition (for an introductory review, see for instance [5]) with respect to (quasi-)
local perturbations of the original evolution defining if). We will show that the model
described in Section II is stable enough to allow ©0 3 ©*.

This completes our description of the quantum measuring process.

n. Description of the Model

In order to demonstrate that the class of measuring processes described previously
is not empty, we now present an exactly solvable model which fulfills all the conditions
listed in Section I.

In this model the system SA is a single ^-spin. The algebra of observables is
93 Sê(f77,2). We will measure the z-component o% of the spin, with eigen-projectors
Po*. The system begins in an arbitrary initial state epe'S..

The apparatus consists of two infinite non-interacting chains of ^-spins, labeled
by an and rn. These two chains have been prepared, at finite temperature ß, by placing
them in the magnetic fields Ba and Bt, respectively. Therefore, the initial state if) is the
corresponding Gibbs state.

For times r > 0, the magnetic fields are switched off, and the interaction between
SA and sé is obtained, in the limit M->oo, from the Hamiltonian HM P£ ® H%,
where

M

m / T (« + crl-rl + i + airi + o»t»+1).
m l

Note that the relabeling am-^S2m, rm-+ S2m-i, converts HA into the usual x — y
Hamiltonian:

Hl jy (SXSX+X + SyS*+i), where N 2M.
71 1

We can thus describe this apparatus as a one-dimensional quantum lattice system.
To each site neZ+, we attach a C*-algebra 2L, SS(C2). For every finite subset
A ¦= Z+, we define 21(A) 0neA 2tn. The algebra of quasi-local observables for the

infinite system is the C*-inductive limit 21 \JA 21(A)".
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To properly define the initial state ip and the time evolution, we first consider the
finite system 93 ® 2l([l, A^]). For t ~£ 0, we define the time evolution af by

a?[C] exp[iHNt]C exp[-iHNt] for all C e 93 <g> 21([1, N]).

On 21„ the state if)n is given by the density matrix

pn exp(-ßhn)/Tr[exp(-ßhn)] i(l + S* tanhßBn), where hn -BnSt
We then construct the state ipN on 21([1, A^]) as >fiN (g)^=1 </<„. Clearly this state
extends uniquely to a state if) (§)neZ+ </>„ on 21 such that >l>\-a(ii,m) — 4»N f°r an N-
The fact that the ipN (and if>) are product states will significantly simplify the analysis.

Since we wish to use this apparatus to measure o-g, we need to find a set of
operators {M±} e S^ which corresponds to the spectral projectors Prf of o-g. We first
define the magnetization of the finite even (odd) chain as

-y NI2 rn NI2
M°N JjZ Sfn; M? ^ 2 ^n-1.

ivn l ¦/vn l '
Now let Ml (tanhß/i,, - tanh ßBj) ' \M^ - Mf). We then let

M_ w — op lim -nJMf),
N-roa

and

M+ I - M_

be the operators in 81 corresponding to P£.

III. Analysis of the Model

In this section we will prove that the model described in Section II is indeed a
measuring process, as defined in Section I. Thus we must show that the interaction
between SA and sé reduces the wave function of SA; that it transfers information from
7? to sé; that the effect upon sé is macroscopic; that the model is mechanistic; and
that the measurement gives the same result for any state ip' e ©^.

By construction, the model is clearly mechanistic. The observables M± we have
chosen to correspond with the eigenprojectors of a% are space averages, so the macro-
scopicity condition is satisfied automatically. In Theorem 1, we show the reduction
of the wave function and the transfer of information for the simple case in which the
apparatus begins in the initial state if). Our answer to the stability question is to be
found in Theorem 2.

Theorem 1. Let A± {<p;PA, <9>±;5> (XAKfAfBPfy for all cpeS, all
B e23, and </., af, Ml, H% be defined as in Section II. Then

(i) lim lim {cp ® if); af[B <g> /]> V A/<p,; 5> for all <p e S, B e 93.
(-»oo /V-»co j*

(ii) lim lim {cp <S) if); <[/ <g> M»]y Y A,<0,; M±> where {<f>. ; MA)
t-»00 itf-*C0 y*
#;M±>,
{if)+ ; MA) lim lim {if); exp[iH%t]MN± exp[-iH%t]y,

t-* oo /V-t^oo

(ipj-; Mi) 8y with zero dispersion.
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Proof. We first notice that since

exp[±iHNt] exp[±itPrî <8> Hf]
0 +

0

we have

49

Pet ® exp[±itH%] + Pô ® I,

{cp ® if); af[B ® /]> {cp ® «/.; PçjBPJ ® / + P0"ÄP0" ® /
+ P0-ÄP0+ ® expf-z^*] + P0+5P0" ® exp[/#M>

X + {cp+;By + A_<<p_;5> + <<p; P0-5P0+>

x <<A;exp[-//72<]> + {cp;P$BP^y{ip; exp[//Y^]>

Furthermore

<<P ® ,/,; af [/ ® M*]> {cp ® 0; J>0- ® MÏ + Pit ® exp[//zl']M* exp[-/#£<]>
A_#;MÏ> + A^; exp[//7^]MÏ exp[-z7/2<]>.

Hence the Theorem follows directly from Lemmata 1 and 2 below.

Lemma 1. With </. and H% defined as in Section II
lim {if);exp[±iH%t]y 0.

AT-.co

Lemma 2. With ifi, Hf, Ml defined as in Section II
(i) <0_;M_> <0_;(M_)2> L where <<A_; °> {ip; o>;

(ii) {if)+ ; Af_> lim lim {if); exp[iH%t]MN_ exp[-iH%t]y 0;
(-* co JV-*oo

(iii) {<f)+ ; (M_)2> lim lim {if); exp[iH%t](MN_)2 exp[-iH%t]y 0.
t-, co jv-+ co

Proof of Lemma 1. First, we must diagonalize the Hamiltonian H*. We follow
the procedure of Lieb, Schultz, and Mattis [9]. We redefine HI in terms of the
Fermion operator

C„ <

S77 exp -i« 2 O + sjD for« 1,2,..., N

{Ci for n N + 1.

(This choice of boundary conditions makes the analysis simpler.) We then have

N

"a 2J > (CnC,,.,-! + Cn+1Cn).
71 1

We next introduce the normal mode Fermion operators

Vk N-112 2 eiknCn where k ^f,p 1,2,..., N.

These operators diagonalize //^ :

//f 4/2cos^%.
We have thus

exp[±iH%t] T~J (1 + h^ifjT), where Afc exp(±4Ut cos k) — 1.
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In order to evaluate the expectation value of this operator in the state </., we first
notice that </< is the Gibbs state for the evolution obtained from the free Hamiltonian :

hN — 2n i BnS*. Hence if) is quasi-free and gauge-invariant, so that

T

{<!>; y*siki ¦ - - v*TVkT> 2 i-)PT\^; vtv^A-
Pe0>T i 1

We now evaluate {if); rfòrij):

i i NI2

<4>;vim> ^e-^JA*; c*cny ^,(1 + tanh^) Y e-™-»»
Jy mn ""* n l

i NI2

+ A (i + tanhßBj) 2 e"«2"-1'«-»
n 1

i(2 + tanh ßB, + tanh ßBj)SM + i(tanh ßB„ - tanh ßB,)8kl

a8kl + b8ki where I I ± ir.

This expectation value is therefore 0 unless k is equal to /, or to its 'conjugate'
I ± tt. Hence, if) acts as a product state, except on 'conjugate pairs'. Therefore we can
write

{ip;exp(±imt)y {if); ]~[ (1 + hkV*Vk)y
fe 2nlN

n

H <</-; 0 + hkV*-nk)(i + h4viù>
k 2nlN

fj [1 + a(hk + hk) + (a2 - b2)hkhk]
k 2n{N

n

YJ iAl + tanh ßBa tanh ßBt
k 2nlN

+ (1 - tanh ßB„ tanh ßBf) cos(4Jt cos k)}.

Clearly

|JK1 + tanh ßB„ tanh ßBz + (1 - tanh ßB„ tanh ßBz) cos (AJt cos k))\ ^ 1

for all k. Further, unless 4Jt cos k 2-np (p an integer), this expression is strictly less
than 1. We therefore have a product of iN terms, all bounded by one, most of which
are strictly less than one. Consequently, for all t > 0

n

\{if); exp(± iH%t)y\ 4 J J |i{l + tanh ßBa tanh ßB, + (1 - tanh ßB„ tanh ßBj)
k 2jiW
x cos(4Jf cos k)}\ ->- 0 as 7V-> co. Q.E.D.

Proof ofLemma 2. Since <i/._ ; °> {if); o>, part (i) is obviously true. Next, as in
Lemma 1, we write H% and (Mf — Mf) in terms of the normal modes

m 4/2cos kvhk,
k

M» -M? jsjJtr,Uf
JV k

V«

MlVMSIjf
MWWTfi
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Then

exp(+iH%t](Mf - M?)cxp[-iH2t]
4 _AT2 (exP[4^ COS krfc-q^rß exp[-4Ut COS kr,^]ly k

x exp[4iJt cos kritmhic exp[-4iJt cos k~-q*r)k]

^2^ + h>MkV& + hf) ^2exPf8/7f cos ^vitalising

the expression for <</.; rfê-rijy found in Lemma 1, we have

{if); exp[iHNAt](Mf - Mf)exp[-iH»t\y

-^(tanh /3/i^-tanh ßB%) 2 exp [SiJt cos k]." k

Then
1 -^ 1 Ç2"lim — y exp[8iJt cos k] ^- exp[8//* cos /c] <& J0(8Jt).

»-.oo A -^ Z7T Jo

Since the Bessel function /0(r) behaves like t~112 for large r, we have

lim lim {if); exp[iH$t)MÏ exp[-iH%t]y lim JjSJt) 0.
(-?co N-, co É-+CO

By a similar computation we get

lim {if); exp[itHf](Ml)2 exp[-itH%l> J0(SJt)2

(lim{if); exp[itH%]MN. exp[-itH%]y)2:
W-»co

And thus

<<A+ ; (M_)2> (<^+ ; MAy)2 0. Q.E.D.

We now turn to the stability problem. Theorem 2 below shows that our model is
indeed resilient enough to withstand the substitution of any 4>' in &H for the initial
state i/i in Theorem 1.

Theorem 2. Let: cp e S, B e 93, if), af, Mf, Mj be defined as in Section II; A;, cph fa
he as in Theorem 1 ; and if)' he any state in ©^. Then

(i) lim lim <<p ® </>' ; af[B ® /]> Y A/^; fi>,
t-,00 JV-.00 *-f

(ii) lim lim {cp ® f ; af [/ ® M»]y Y Ay<^; M±>.
(-»co AT-.CO -y*

Because the detailed computations involved in the proof of this theorem are
rather tedious, we only outline the argument. See [2] for the detailed proofs. We begin
with three lemmata.

Lemma 3. Let if) be the state defined in Section II; if)B for Be 2t be defined by
<i/iB; A) <</>; B*AB7y for all A e 21; {CN} be a sequence of operators in 2t such that

(i) CNe2i([l,/v"]) for all N,
(ii) ||CN|| < C < oo for all N,
(iii) lim {ip-<l>B; CNy 0 for all B e % I J 21(A).

xr_j. -i_ ni ^¦r'
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Then: limN^x{ifi - fa; Cw> 0 for ail fa e ©„,.

Proof We first show that lim^«^ - fa; CN> 0 for all B e 21 Ua 31(A)".
If B e 21, for all e > 0, there exists a B0 e 2l0 such that

\\B - B0\\(2\\B\\ + \\B - B0\\) < e/2C.

Assumption (iii) implies that there exists an Ne such that

K<A - 4>b0; CNy\ < eß for all N > Ne.

Then

\{<f) - if)B; CNy\ 4 \{fa CN - B*CNB0y\ + \{fa B*CNB0 - B*CNBy\
+ \{fa B*CNB - B*CNBy\

< {{<!> - <£*„; c>\ + \\b - 50||<W|| + \\b - b0\\)
< e, for all N > Ne.

This proves our first assertion that lim^^i/. — if)B; CNy 0 for B e 21.

We next show that, for every fa e{if)B\ Be 21}", hmN^x{ij) - fa; CN> 0. For
all e > 0, there exists a 5 e 21 such that \\fa — </iB|| < e/2C. Choose Ne such that
\{ip - fa; CNy\ < e/2, for all N > Ne. Then

|<0 - fa; Cw>| < \{if) - \'<B; C»y\ + \{fa - fa; C»y\
< eß + \\fa -fa\\C
< e, for all N > Ne.

The last step of the proof consists in showing that {tf)B \ B e 21}" ©„,. We first
notice (Prop. 2.4.8.(ii) in [10]) that {tf)B\ Be 21}" 93„,, the set of all vector states on
rrjty, with {fa, ATj,, »¥} denoting the GNS triple associated to é. Since, on the other
hand, </. is KMS for the evolution obtained from h" - 2tT= i BnS*, if) is faithful.
Thus, Y is a cyclic and separating vector for w>(2Q" in AA^. Therefore, (Thm. 4, p. 233

in[llD93„ et. Q.E.D.

Lemma 4. Let if) and H% be defined as before, and fa he in ©„,. Then

lim {fa;exp[±iH%t]y 0.
JV-»co

Proof Since limjv^oo<0; exp[±iH%t]y 0 (Lemma 1), and since CN exp[±iH%t]
satisfies conditions (i) and (ii) of Lemma 3, it is sufficient to show that

lim <i/.B;exp[+z".rYlf]> 0
N-»co

for B e 2i0.
We first show that, for finite T:

|<0; V*! - ¦ ¦ vtvh ¦ ¦ ¦ Vis- exP[± iH%t]vl + 1... VkTVu- + i ¦ ¦ ¦ Vir>\
T

< \{<l>;vi,---vtvii---vu Yl'iHkiH*iH'tHh)vi+1 ¦ ¦ ¦ v*tvl-+i¦ ¦ ¦ vA\
(=i

x \{fa fj HpH,y\.
p 2nlN
p*k,l
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where Hv 1 + (exp[±4/Jrcos/?] — l)vtvr, and IT designates a product over
distinct 'conjugate pairs'. This follows easily from the fact that if) behaves like a

product state for the i?'s, except on 'conjugate pairs'.
It is then possible to show that, for finite T

\{fa C* C*sCmi... Cm, exp[± imt]ct+1... C*TCm,+1... cmTy\

4 1/NT f T\2T\{fa fj HnHty\.
«l Qt 1 p 2nlN

p*n
The expectation value

{fa fj HvHty= fj ii» + tanh ßB„ tanh ßB%

p 2nlN p 2nlN
p*i p*q

+ (1 - tanh ßB„ tanh ßBz)cos(4Jt cos p)}

is the same product as that which appears in the proof of Lemma 1, except that at
most T factors have been removed. Since T is finite, this expectation value will go to
zero as N-> oo, and therefore

\{fa C* C*sCmi... Cm, exp[± iHZt]C*,+1... C*TCm,+1... Cmr>| -> 0
as N->oo.

Now, if B e 210, it can be written as :

R N0

B 2 <S> W* + ßnCXn + /.CB + 8JC*},
r=ln=l

where R and N0 axe finite, and a, ß, y, 8e C. Since ip and exp[±iH%t] axe gauge-
invariant, {i/jB; exp[±iH%t]y {if); B* exp[±iHft]By will be a finite sum of terms
of the form

{fa C* C£Cmi... Cm, exp(± iWt]C*s+1... C*TCm,+1... Cmr>.

Therefore

lim {fa; exp[±iH%t]y 0 for B e 210. Q.E.D.
7V-*co

Lemma 5. Let: ifi, Ml, H% be defined as before; and fa be in ©^. Then

lim<0 - fa; exp(iHft]MN_ exp[-iH$t]y 0.
N->oo

iVoo/. Since Cw Ml satisfies assumptions (i) and (ii) of Lemma 3, it is sufficient
to show that limw^eo<0 - ipB; exp[iH%t]Mf exp[-/7/^r]> 0 for B e 2i0.

For each Be<210, there exists an N0 < oo such that Be 91([1, N0J). Choose
N > N0. Then

exp[iHft]MN exp[-iH%t]
4 v-^;(tanh ßBa - tanh ßBA1 2 exP[8^ cos k]ntvtAT

(tanh ßBa - tanh ßB.y1 2 exp[8z7< cos k] 2 eteV-'fc(m-B)C*Cn._4_

J" JC 171,71 1
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The sums over m and n can each be divided into a sum over sites from 1 to N0, and a
sum over sites from NQ + 1 to N. If one index is larger than N0, and the other is
smaller than or equal to N0, the expectation value for the linear form if) — if)B will be

zero, since </> — tj>B acts like a gauge-invariant product form for sites beyond 7V0. We
therefore have

{ip - fa; exp(imt]M» exp[-iH%t]y
4 (No

(tanh ßB„ - tanh ßBj) "x -^ 2 exp[8z7' cos kV 2A Jc lm,7i l

x <<£ - fa; C*Cny + 2 e-'»"e-*k<m-"><0 - ^B; C*Cn>
m,7i /y0 + l

The first sum inside the brackets is a finite sum, majorized by 2N2. The second
term is identically zero, since if) and if)B are different only on the first N0 sites. Therefore

\{ip - fa;exp[iH2t]M»exp[-M2t]y\ 4 (tanh/35, - tanh ßBA'(SN^/N.
Since A^o is fixed and finite, we have

lim {if) - fa; exp[iH%t]MN exp[-iH%t]y 0 for all B e 210. Q.E.D.
JV-.CO

Proof of Theorem 2. The proof of this theorem proceeds in a manner analogous
to that of Theorem 1, using Lemmata 4 and 5 in place of Lemmata 1 and 2.

Q.E.D.

Theorem 2 completes the demonstration that this model behaves like a quantum
measuring process, as defined in Section I.

IV. Concluding Remarks

The model defined in Section II and analyzed in Section III shows conclusively
that the quantum measuring process can be cast, as outlined in Section I, in the general
framework of quantum mechanics. Specifically, a time-independent Hamiltonian
interaction between the system SA to be measured and the apparatus sé can be rigged
up in such a manner that the following essential conditions are satisfied. As time
proceeds to + oo. (i) the initial state cp of SA experiences von Neumann's ' reduction of
the wave packet'; (ii) the relevant information contained in <p is transferred to sé;
(iii) this effect becomes macroscopic on sé; and (iv) the process is stable under a large
class of perturbations of the initial state </< of sé.

As a particular consequence of property (iii), the reading of the result of the
measurement on sé belongs to the realm of classical mechanics, where von Neumann's
[6], [12] infinite regression is innocuous.

The main point of this paper being to prove the consistency of the scheme
proposed in Section I, we have constructed one specific, exactly solvable, mechanistic
model. As one might have expected, a price has to be paid for simplicity and exact
solvability. First, for simplicity's sake, we have restricted ourselves to the measurement

of observables with discrete spectrum; this should ultimately be dispensed with.
Second, our interaction is admittedly somewhat contrived. One peculiarity is that the
reduction of the wave packet is instantaneous (see proofs of Lemmata 1 and 4). The
effect of the interaction on the apparatus, however, is much tamer; the limit is
approached as r-1'2 (see proofs of Lemmata 2 and 5).
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Finally, we have taken the apparatus to be an infinite system. As usual, the main
justification for this idealization is to avoid the spurious recurrences associated with
large but finite systems. It also has the advantage of bringing into focus the macroscopic

aspect of a quantum measuring piocess in which information is transferred
from the microscopic quantum level to the classical level of description.

Acknowledgements

We would like to thank Dr. John C. Wolfe and Prof. K. Hepp for useful
discussions.

REFERENCES

[1] G. Reece, The Theory ofMeasurement in Quantum Mechanics, Intl. J. Theor. Phys. 7,81 (1973).
[2] B. Whitten-Wolfe, On Mechanical Quantum Measuring Processes, Dissertation, University

of Rochester, 1975.
[3] K. Hepp, Quantum Theory of Measurement and Macroscopic Observables, Helv. Phys. Acta

45, 237 (1972).
[4] G. G. Emch, On Quantum Measuring Processes, Helv. Phys. Acta 45, 1049 (1972).
[5] G. G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory (Wiley-

Interscience, New York 1972).
[6] J. von Neumann, Mathematical Foundations of Quantum Mechanics, translated by R. T.

Beyer (Princeton University Press, Princeton 1955).
[7] M. Winnink, An Application of C*-Algebras to Quantum Statistical Mechanics of Systems in

Equilibrium, Dissertation, Rijksuniversiteit te Groningen, 1968.
[8] H. Araki, Relative Hamiltonian for Faithful Normal States ofa von Neumann Algebra, Pubi.

RIMS, Kyoto Univ. 9, 165 (1973).
[9] E. Lieb, T. Schultz and D. Mattis, Two Soluble Models of an Antiferromagnetic Chain,

Ann. Phys. (N.Y.) 16, 407 (1961).
[10] J. Dixmier, Les C*-algèbres et leurs représentations, deux. éd. (Gauthier-Villars, Paris 1969).
[11] J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien (Gauthier-Villars, Paris 1957).
[12] M. Jammer, The Conceptual Development of Quantum Mechanics (McGraw-Hill, New York

1966); The Philosophy of Quantum Mechanics (Wiley-Interscience, New York 1974).




	A mechanical quantum measuring process

