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A Mechanical Quantum Measuring Process’)

by Barbara Whitten-Wolfe
Western College, Miami University, Oxford, Ohio 45056 (USA)

and Gérard G. Emch

Depts. of Mathematics and of Physics, University of Rochester,
Rochester, New York 14627 (USA)

(22. VIIL. 75)

Abstract. A mechanistic analysis of the quantum measuring process is proposed. This takes
into account both the reduction of the wave packet and the recording of the measurement on a
macroscopic apparatus. An exactly solvable model is given to sustain the theory.

Outline

In this paper a mechanistic model is proposed which shows that the usual frame-
work of quantum mechanics (when adapted to the study of infinite systems) is suffi-
cient to deal consistently with the following two problems of the quantum measuring
process: (i) the ‘reduction of the wave packet;’ (ii) the transfer of information from a
microscopic to a macroscopic level. In Section I we present our description of the
quantum measuring process. In Section II we propose an exactly solvable model to
support this description. In Section III we analyze the model of Section II and show
that it does indeed behave according to the general framework descrlbed in Section I.
Concluding remarks are presented in Section IV.

I. The Framework

The literature on the quantum measuring process is quite extensive. The reader
will find reviews in Reece [1] and Whitten-Wolfe [2]. Our description draws mainly
on the recent work of Hepp [3] and Emch [4], and consolidates some aspects of both.

A measuring process involves three elements: a system . to be measured, a
measuring apparatus 7, and an interaction which couples ¥ and /. Each of these
elements will be described in some detail below.

The system to be measured is a quantum system described by its C*-algebra of
observables B and its set of states €; we will denote its initial state by ¢. We restrict
our attention to the mathematically simple case in which the observables R € B to be
measured are compatible and have jointly discrete spectrum. We therefore write:
R = 3, r;P;, where the index set J is countable, r; € R, and the P,’s are mutually
orthogonal projectors in B, adding up to 1.

1)  Work supported in part by NSF Grant #38626.
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The measuring apparatus is an infinite quantum system. It is described by the

C*-algebra A = | J, A(A)" of its quasi-local observables, and by the set of states &
on 2. (For details of the C*-algebraic description see Emch [5].) We denote the
initial state of &7 by .

In order for &/ to function as an apparatus which measures R € B, its algebra of
observables 2% must provide a set of operators {M;} which are in one-to-one corre-
spondence with the set of projectors {P;}.

An interaction is switched on at ¢t = 0 (the beginning of the measuring process)
between the system % and the apparatus /. For every observable X of interest, we
denote by ;[ X] the time-evolute of X under this interaction. We place five require-
ments on this interaction.

First, we follow von Neumann [6] in requiring that the measurement be repeatable
on &. This is taken to mean that the effect of the measurement on & is to collapse the
state ¢ into a mixture of the eigenstates of R. Specifically:

lim<p ® 5 a[B ® I]> = >, Apss B
— 00 7

for all B € B, where

. _ Lo, P,BP;»
<(P!9 B> - <9’;Pj>

A = L Pp.

Second, the measurement must transfer information about & to %7, where we can
‘read’ it. We thus require that the effect of the measurement on the apparatus be

limp ® ; ell ® MD> = 3 A<ty My

for all M, e {M}, where

A =L, P
(g MY = 6y with 0 dispersion.

Note that the A’s contain all information about the state ¢ available from R, so the
pertinent information has indeed been transferred from & to .

Note also that we do not require the state of .7 after the measurement to take the
form >; Ap; on all of 2. This is weaker than the usual requirement, but is physically
reasonable, since the M,’s are the only observables which give us information about %,

Third, it is physically desirable that the measurement produce an effect which the
experimenter can perceive with this own senses. The infinite size of the measuring
apparatus can indeed be used to give a precise meaning to the requirement that the
effect of the measurement be macroscopic on &/ The M,’s will be space-averaged
observables [5], and as such will belong to the center 8, = 7,(A)" N 7, (Y)’ of the GNS
representation for ¢. Other consequences of the infinite size of ./ will be touched upon
in Section IV.

Fourth, the measuring process should be mechanistic. By this we mean that the
evolution, with & coupled to &7 should be obtained as the infinite volume limit
(A — ©) of an Hamiltonian evolution.

Our last requirement is one of stability. If a measurement were to be successful
only when the apparatus begins exactly in the initial state ¢, the experimenter would
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have to specify completely the state of his apparatus before he could begin. This
clearly would make measurement too difficult a task. We therefore place one final
requirement on the measuring process. The measurement must give the same result
if o7 begins in any state i)’ in some class of states S, < &, which are experimentally
‘close’ to ¢:

)] tl_ifgﬁv QY uy[BRI] = Z Al@;; By, forallpeg,ally’ € &, and all
Be3B;

(i) limlp ® ¥; all ® M) = ; Mhy; M,  forallpe, all ' € &, and
all M; e {M}.

A physically appealing candidate for &, is the subset &, of all normal states on
the von Neumann algebra ,(2)” canonically associated (by the GNS construction)
to 2 and . In particular, &, contains the set of all states y obtained from ¢ by
(quasi-)local disturbances (see, for instance, Winnink [7]): <J'; A> = {b; B*AB) with
B e . Even more interestingly, &, contains all states [8] which satisfy the equilibrium
KMS condition (for an introductory review, see for instance [5]) with respect to (quasi-)
local perturbations of the original evolution defining 4. We will show that the model
described in Section II is stable enough to allow &, = &,.

This completes our description of the quantum measuring process.

II. Description of the Model

In order to demonstrate that the class of measuring processes described previously
is not empty, we now present an exactly solvable model which fulfills all the conditions
listed in Section 1.

In this model the system & is a single 3-spin. The algebra of observables is
B = #(C?). We will measure the z-component o of the spin, with eigen-projectors
Py . The system begins in an arbitrary initial state p € §.

The apparatus consists of two infinite non-interacting chains of -spins, labeled
by o, and 7,,. These two chains have been prepared, at finite temperature 8, by placing
them in the magnetic fields B, and B,, respectively. Therefore, the initial state 4 is the
corresponding Gibbs state.

For times ¢ > 0, the magnetic fields are switched off, and the interaction between
& and &/ is obtained, in the limit M —o0, from the Hamiltonian H® = P} ® HY,
where ‘

M

M __ XX X X

A — J Z (O'me - OnTm+1 + van'r?n ot U%T%+1)-
m=1

Note that the relabeling o,, — Son, 7 — Sem—1, converts H, into the usual x — y
Hamiltonian:

.
HY =J > (SiS#.. + S¥S¥.,),  where N = 2M.
n=1

We can thus describe this apparatus as a one-dimensional quantum lattice system.
To each site ne Z*, we attach a C*-algebra 2, = #(C?). For every finite subset

A = Z*, we define A(A) = (X),., U, The algebra of quasi-local observables for the
infinite system is the C*-inductive limit 2 = |, A(A)".
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To properly define the initial state ¢ and the time evolution, we first consider the
finite system B ® A([1, N]). For ¢t > 0, we define the time evolution of by
o [C] = exp[iH"t]C exp[—iH"t] forall Ce®B & A([1, N]).
On 2, the state ¢, is given by the density matrix
pn = exp(—Bh,)/Tr[exp(—pBh,)] = (1 + SZtanh BB,), where A, = — B,S%.

We then construct the state ¢V on A([1, N]) as ¥V = (XN ¢,. Clearly this state

extends uniquely to a state ¢ = ®nsz+ Y, on A such that |yq, xy = ¥V for all N.
The fact that the ¥V (and ) are product states will significantly simplify the analysis.

Since we wish to use this apparatus to measure of, we need to find a set of
operators {M .} € 8, which corresponds to the spectral projectors Ps of 0'0 We first
define the magnetization of the finite even (odd) chain as

2 N/2 N/2

M =5 2 St MY =3 Zszn .

Now let MY = (tanh BB, — tanh BB,)" (MY — MY). We then let
M_ =w — oplim 7, (M"Y),
N—=+w

/

M,=1-M_

be the operators in 3, corresponding to P§.

III. Analysis of the Model

In this section we will prove that the model described in Section II is indeed a
measuring process, as defined in Section I. Thus we must show that the interaction
between & and ./ reduces the wave function of %; that it transfers information from
& to & ; that the effect upon &7 is macroscopic; that the model is mechanistic; and
that the measurement gives the same result for any state ' € &,,.

By construction, the model is clearly mechanistic. The observables M, we have
chosen to correspond with the eigenprojectors of ¢% are space averages, so the macro-
scopicity condition is satisfied automatically. In Theorem 1, we show the reduction
of the wave function and the transfer of information for the simple case in which the
apparatus begins in the initial state 4. Our answer to the stability question is to be
found in Theorem 2.

Theorem 1. Let A, = {p; P§>, {p.; B> = (A,) Xe; Py BP§) for all p € &, all
Be®B, and ¢, of, MY, HY be defined as in Section II. Then
@ lim lim <p ® $; f (B I = Z A p,;; B) forallpe%, BeD.

t—=00 N—

(i) lim lim <p ® ¢; 'l @ MLD =ZA,-<¢,»; M.>  where (y_; M,) =
i

t—=o N—ow

<¢3 Mi>9
oy M = lim lim &b exp[iHY MY exp[—iHYt]D,
t— o0 N o

{(fy; M) = 8,  with zero dispersion.
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Proof. We first notice that since

exp[+ iHVt] = exp[+itP¢ @ HY]
= P} Qexp[+itHY] + P; ® I,

we have

R ;' [BRID = @Y; P{BPf @I+ P;BP; @1
+ Py BP? ® exp[—iHYt] + P¢ BP; @ exp[iHt])
= A{p4; B> + A_p_; BY + <¢; Py BP; )
x (; exp[—iHYt]) + {@; P§ BP; »{¢; exp[iH}t]>

Furthermore

(p@Y; o [IQ MY =Lp R¢; P; @ MY + P§ Q exp[iHYt]IMY exp[—iH}t])
= A_(; MY + A s exp[iH{ MY exp[—iH}1]).

Hence the Theorem follows directly from Lemmata 1 and 2 below.
Lemma 1. With ¢ and HY defined as in Section II
lim {y;exp[+iH}t]) = 0.
N—=
Lemma 2. With ¢, HY, MY defined as in Section II
O GsM = ;M) =1, whereP_;0) =<P;0;
(i) <Py; M_> = lim lim <; exp[iHYtIMY exp[—iHt]> = 0;
t—0 N—=ow
(i) <Pi; (M_)% =1lim lim {f; exp[iHYt](MY)? exp[—iHYt]) = 0.
t—= 0 N—=ow
Proof of Lemma 1. First, we must diagonalize the Hamiltonian H). We follow

the procedure of Lieb, Schultz, and Mattis [9]. We redefine H} in terms of the
Fermion operator

n-1
. S exp[—%m‘ z 1+ Sﬁ)] forn=1,2,...,N
n = fo=1

& forn =N + 1.

(This choice of boundary conditions makes the analysis simpler.) We then have
N
HY =27 3 (CiCusy + CFiCo).
n=1
We next introduce the normal mode Fermion operators

21rp
_ AT-1/2 ikn _ _
1y = N kge C. where k = —,p=1,2,..., N.

These operators diagonalize HY :
HY = 4Jz cos knp .
k

We have thus
exp[+iHY1] = [ [ (1 + hyndn),  where by, = exp(+4iJicos k) — 1.
k
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In order to evaluate the expectation value of this operator in the state ¢, we first
notice that ¢ is the Gibbs state for the evolution obtained from the free Hamiltonian:

h¥ = —3>¥_. B,Sz Hence ¢ is quasi-free and gauge-invariant, so that
T
<¢'; "7:{%1 te n:ckr'qk7> = Z (_)P I—I <¢‘; ﬂtﬁlcm,>-
Pe#r i=1

We now evaluate <i; n¥n,>:

1 _ . 1 w o
s mimy = ﬁ; e~ Hmelin(yy s CXC,> = f\[(1 + tanh BB,) ,,Zl e 24k =D

N/2

L —i2n -1k -0
+ ZN(I + tanh BB),) 12:1 e
= (2 + tanh BB, + tanh BB,)$,, + i(tanh BB, — tanh BB,),,
= ad, + b8y  wherel/ =1+ =
This expectation value is therefore 0 unless k is equal to /, or to its ‘conjugate’

I + 7. Hence, ¢ acts as a product state, except on ‘conjugate pairs’. Therefore we can
write

2

G expl+iHND =& [ A + hafne)

k=2nIN
= 1—[ <y (1 + g1 + hk”];"]k))
k=2nIN
= [ [+ alu + k) + @ — bDhhs]
k=2n/N
= [ ] 1 + tanh BB, tanh BB,
k=2n/N

+ (1 — tanh BB, tanh BB,) cos(4Jt cos k)}.
Clearly

|4{1 + tanh BB, tanh BB, + (1 — tanh BB, tanh B8B,) cos (4Jt cos k)}| < 1

for all k. Further, unless 4J¢ cos k = 2mp (p an integer), this expression is strictly less
than 1. We therefore have a product of 1N terms, all bounded by one, most of which
are strictly less than one. Consequently, for all ¢ > 0

n

|<¢; exp(+ iHE1))| < H |4{1 + tanh BB, tanh BB, + (1 — tanh BB, tanh BB,)
k=2n/N

x cos(4Jtcos k)} -0  as N—oo. Q.E.D.

Proof of Lemma 2. Since {{_; o> = {; o>, part (i) is obviously true. Next, as in
Lemma 1, we write HY and (MY — MY) in terms of the normal modes

HY = 4J Z cos kngn,,
k

4
My — MY = ]T]Z Nk M
k

<
| o UNIvERg) T z
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Then

exp[+iHY (MY — MNexp[—iHY1]
= %Z {exp[4iJt cos kniEn, i exp[—4iJt cos kxiin,]
k

x exp[4it cos knfnglng eXp[— 4iJt cos knfng]

——Z(l + hmEne(L + BE) = N exp(8iJt cos Klrfm.

Using the expression for {i; 9ifn,> found in Lemma 1, we have
(s exp[iHAtI(M§ — MY)exp[—iH{t]

1 .
= Kr(tanh BB,—tanh BB, Zk: exp [8iJt cos k].
Then

N—w

1 . 1 fam ~
lim 5, > expl8idt cos k] = 5- fo exp[8iJt cos k] dk = Jo(8J).

Since the Bessel function Jy(#) behaves like ¢~1/2 for large ¢, we have
lim hm {f; exp[iHYtIMY exp[—iHIt]) = 11m Jo(8J1) = 0.

t—-o N—

By a similar computation we get

lim <y; exp[it HYJ(MY)? exp[—itH]]) = Jo(8Jt)
= (Al,im (§; explitHYIMY exp[—itH{ D).

And thus
s (M) = (Pys M) = 0. Q.E.D.

We now turn to the stability problem. Theorem 2 below shows that our model is
indeed resilient enough to withstand the substitution of any ¢’ in &, for the initial
state ¢ in Theorem 1.

Theorem 2. Let: p € €, BEB, ¢, «F, MY, M; be defined as in Section II; A, @;, ¢,
be as in Theorem 1; and ¢’ be any state in &,. Then
() lim lim<p®¢;f[BRID = Z A\<9s; B,

t—0 N=>w®

(i) lim lim <p ® ¢/'; o} [l @ MLD = S M M.
-0 N-— 7

Because the detailed computations involved in the proof of this theorem are
rather tedious, we only outline the argument. See [2] for the detailed proofs. We begin
with three lemmata.

Lemma 3. Let ¢ be the state defined in Section II; ¢z for B € U be defined by
(g A> = {; B*AB) for all A € U; {C"} be a sequence of operators in U such that

i CYe([1,N) for all N,

(i) |C¥|<C<w forall N,

(iii) Nlim P —Pg; CV> =0  forall Be Y, = U A(A).
-+ 4+ 0

A
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Then: limy_, (¢ — '; C¥)> = 0 for all ' € &,.

Proof. We first show that limy_, ¥ — ¢p; CV> = 0 for all Be A = (J, A(A)™.
If Be ¥, for all ¢ > 0, there exists a B, € U, such that

|B — Bo| 2] B] + B — Bo|) < €/2C.

Assumption (iii) implies that there exists an N, such that
| — g3 C¥>| < 2  forall N> N..

Then

< — hp; €| < [<P; C¥ — BECVBo)| + |<¢; BCVB, — BGCVB)|
+ |[<; B¥CYB — B*C¥B))|
< K¢ = 503 €| + [|B — Bo|CQ2|B|| + | B — Bol)
< g, for all N > N..

This proves our first assertion that limy_, ,{¢ — ¥z; C¥> = 0 for Be .

We next show that, for every ¢’ € {f; | Be A}", limy_ ,{¢ — ¢'; C¥> = 0. For
all € > 0, there exists a Be 2 such that ||’ — ¢ < ¢/2C. Choose N, such that
|[<¢p — p; CV>| < €/2, for all N > N.. Then

I<p — 95 CVD| < K¢ — {ip; €| + [<Khs — ¢ CV))|
< €2+ | — ¢s]C
< e, for all N > N..

The last step of the proof consists in showing that {§; | Be U}* = &,. We first

notice (Prop. 2.4.8.(ii) in [10]) that {§; | B € A}" = B, the set of all vector states on
(), with {,, #,, ¥} denoting the GNS triple associated to . Since, on the other

hand, ¢ is KMS for the evolution obtained from A¥ = —>¥_, B,SZ 4 is faithful.
Thus, ¥ is a cyclic and separating vector for 7,(2)” in J#,. Therefore, (Thm. 4, p. 233
in [11]) %w ES 6,1,. Q.E.D.

Lemma 4. Let y and HY be defined as before, and ¢’ be in ;. Then
lim (J'; exp[+iHYt]> = 0.
N-wx

Proof. Sincelimy _, ,<{i; exp[+ iHYt]> = 0(Lemma 1), and since C¥ = exp[+iH}1]
satisfies conditions (i) and (ii) of Lemma 3, it is sufficient to show that

lim (p; exp[+iH{t]) = 0
N—=o

for Be ¥,.
We first show that, for finite 7

RORE PR R MO 3o R 72 £ L I . MU Ty
T

< K mhy - ommy oomy [ [ (He HeHyHD e oy - g an + - M)

i=1
n

< [ T HHI.

p=2n/N
p#k,l
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where H, = 1 + (exp[+4iJtcos p] — )n¥n,, and [ designates a product over
distinct ‘conjugate pairs’. This follows easily from the fact that i behaves like a
product state for the 7’s, except on ‘conjugate pairs’.

It 1s then possible to show that, for finite T

[<b; G ... CRCry .. Cpy eXp[+iHYHCE .. . ChCrivry -+ - Cup)l

N b4
SUYNT > TRIKy; [ | HyHpl
[+ S I ar=1 p=inlN
pPFQq

The expectation value

E(]

g, ﬁ H.H;) = H H1 + tanh BBC, tanh BB,

p=2nIN »=2n/N
p#q P#q

+ (1 — tanh BB, tanh 8B,)cos(4J¢ cos p)}

is the same product as that which appears in the proof of Lemma 1, except that at
most 7 factors have been removed. Since 7T is finite, this expectation value will go to
zero as N — oo, and therefore

Kl g« 0 T G, w1 0 G B[ L IHTCE o 36 . Cup2| =0

as N — oo.

Mg +1 °

Now, if B e ,, it can be written as:

R

Ng
B=> & {l, + B.CEC, + %iC, + 8,CH,
r=1ln=1

where R and N, are finite, and «, B, v, 6 € C. Since ¢ and exp[+iH}t] are gauge-
invariant, {(Jp; exp[£iHYt]> = {J; B* exp[+ iHYt]B)> will be a finite sum of terms
of the form

Chi Cn, v 5 GGy, 35 s Cop P FIHTNCT 55 s CF o vy 4 00 » i

Therefore
lim {¢p; exp[+iH}t]> =0 for Be %,. Q.E.D.
N—=ow

Lemma 5. Let: ¢y, MY, HY be defined as before; and ¢ be in &,. Then
lim (¢ — '; exp[iHYt]MY exp[—iH}t]) = 0.
N—=w

Proof. Since CV = MY satisfies assumptions (i) and (ii) of Lemma 3, it is sufficient
to show that limy_, (¢ — ¢; exp[iHYt]MY exp[—iH}t]> = 0 for B € ¥,.

For each Be 2, there exists an N, < oo such that Be 2([1, Ny]). Choose
N > N,. Then

exp[iHYtIMY exp[—iHYt]

= %(’fanh BB, — tanh BB;)~! Z exp[8iJt cos klnin;
k

N
= ]% (tanh 8B, — tanh BB)~* > exp[8iJt cos k] > emme~™m-mCXC,,
k n=

m 1
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The sums over m and » can each be divided into a sum over sites from 1 to N,, and a
sum over sites from N, + 1 to N. If one index is larger than N,, and the other is
smaller than or equal to N,, the expectation value for the linear form ¥ — 5 will be
zero, since ¢ — ¢ acts like a gauge-invariant product form for sites beyond N,. We
therefore have

b — Pp; expliH)t]IMY exp[—iH}t]>

No
= (tanh 8B, — tanh BB, "} % 2 exp[8iJt cos k]{ ging — ikim —n)
k m,n=1
N
X — s CACY + > emtmemmen(y _ g, c:::cn>}.
m,n=Ng+1

The first sum inside the brackets is a finite sum, majorized by 2N&. The second
term is identically zero, since ¢ and ¢, are different only on the first N, sites. Therefore

< — 4s; exp[iH[t]MY exp[—iH]t])| < (tanh 8B, — tanh BB,)~*(8NF)/N.
Since N, is fixed and finite, we have

lim {4 — ; exp[iHYt]M™ exp[—iH}t]> =0 for all B e Y,. Q.E.D.

N—©

Proof of Theorem 2. The proof of this theorem proceeds in a manner analogous

to that of Theorem 1, using Lemmata 4 and 5 in place of Lemmata 1 and 2.
Q.E.D.

Theorem 2 completes the demonstration that this model behaves like a quantum
measuring process, as defined in Section I.

IV. Concluding Remarks

The model defined in Section II and analyzed in Section III shows conclusively
that the quantum measuring process can be cast, as outlined in Section I, in the general
framework of quantum mechanics. Specifically, a time-independent Hamiltonian
interaction between the system . to be measured and the apparatus & can be rigged
up in such a manner that the following essential conditions are satisfied. As time
proceeds to +co. (i) the initial state ¢ of & experiences von Neumann’s ‘reduction of
the wave packet’; (ii) the relevant information contained in ¢ is transferred to &;
(iii) this effect becomes macroscopic on &/ ; and (iv) the process is stable under a large
class of perturbations of the initial state ¢ of /.

As a particular consequence of property (iii), the reading of the result of the
measurement on %/ belongs to the realm of classical mechanics, where von Neumann’s
[6], [12] infinite regression is innocuous.

The main point of this paper being to prove the consistency of the scheme pro-
posed in Section I, we have constructed one specific, exactly solvable, mechanistic
model. As one might have expected, a price has to be paid for simplicity and exact
solvability. First, for simplicity’s sake, we have restricted ourselves to the measure-
ment of observables with discrete spectrum ; this should ultimately be dispensed with.
Second, our interaction is admittedly somewhat contrived. One peculiarity is that the
reduction of the wave packet is instantaneous (see proofs of Lemmata 1 and 4). The
effect of the interaction on the apparatus, however, is much tamer; the limit is
approached as t~1/2 (see proofs of Lemmata 2 and 5).
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Finally, we have taken the apparatus to be an infinite system. As usual, the main
justification for this idealization is to avoid the spurious recurrences associated with
large but finite systems. It also has the advantage of bringing into focus the macro-
scopic aspect of a quantum measuring process in which information is transferred
from the microscopic quantum level to the classical level of description.
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