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The Massive Thirring-Schwinger Model (QED,):
Convergence of Perturbation Theory and Particle
Structure

by Jiirg Frohlich')

Department of Mathematics, Princeton University, Princeton, New Jersey 08540

and Erhard Seiler?)

Department of Physics, Harvard University, Cambridge, Massachusetts 02138
(10. V. 76)

Abstract. The equivalence of the massive Thirring-Schwinger model in two space-time dimensions
(QED,) on the charge-0-sector and the ‘sine-Gordon’ theory with a bare mass proportional to the electric
charge is reconsidered and rigorously derived from a more general equivalence theorem. It is then shown
that for sufficiently large electric charge the Feynman perturbation expansion of the Euclidean Green’s
functions in the Fermion mass M about M = 0 converges. Existence of one particle states (Fermion-anti-
Fermion bound states) and nontriviality of the S-matrix are proven. The dependence of the scattering
matrix on the charges at infinity is analyzed.

Introduction

In this paper we study the massive Thirring-Schwinger model (QED,) in two
space-time dimensions on the charge 0-sector. This model was previously discussed
in References [4], [15], [16], [17] and references given there. It is a model for
massive, relativistic Fermions — formally described by a Dirac two-spinor ‘field” y/—
with current-current and Coulomb self-interaction. The formal Lagrangian of this
model is given by

L) = Zo) — Z,(),
with

L) = L.(g,e;¥) + M-NWy),
and
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Here £ () 1s the Lagrangian of a free Dirac two-spinor field i of mass 0; the symbols

N(J) etc. denote suitable normal products which will be given a precise meaning by

the constructnons of sectlon 1; /# = N(yy"y) is the conserved current. Furthermore

J° =j% + j2, where /% is a formal c-number current specifying charges at infinity;
Vix) = 2|x| 1s the one-dimensional Coulomb potential.

Since the only manifestation of electromagnetism in one space dimension is the
Coulomb interaction between charges, the model defined by the Lagrangian (0.1)
may be viewed as a model of Quantum Electrodynamics (QED,) in two space-time
dimensions. (In the two-dimensional world the photon is a real particle only if it is
massive. Massive QED, has been discussed in [17].)

The interaction N( ](’V * 10) is extremely long range. As a consequence, electric
charge is completely confined, i.e. there are no charged physical states, at least for
g > 0 and M ?/e? sufficiently small. (This is shown in Section 2.) Under these cir-
cumstances the charged fields y and ¥ may not be well-defined. In any event, they do
not have a well-defined time-evolution. (This situation changes for g > g iiica = 0
and M?/e? sufficiently large: then there exist Poincaré covariant charged sectors of
charge +¢q # 0.)

It 1s a common experience that in constructive quantum field theory models for
interacting Fermi fields are much more difficult to analyze than models of interacting
(scalar) Bose fields. One reason for this is that there is no natural Euclidean field
theory for Fermions, whereas much of the success in constructing relativistic, inter-
acting Bose fields is due to the existence of a powerful Euclidean field theory formalism
for Bosons; see [11, 37]. A second reason for these difficulties is that Fermi field
theories tend to have more serious ultraviolet divergencies than theories of (scalar
or neutral vector) Bose fields. The theory formally defined in (0.1) is renormalizable
but not superrenormalizable, and so far there are no techniques allowing for a direct
construction of non-superrenormalizable models.

The basic idea of how to avoid all these difficulties and the starting point of this
paper is to map the Fermi field theory formally defined in (0.1) isomorphically onto
a quantum field theory involving only scalar Bose fields; [3, 4, 37]. The fact that, in
our case, it is possible to realize this idea and make it a powerful tool in the analysis
of QED, is a two-dimensional ‘miracle’: In two space-time dimensions neutral, local
bilinear composite fields formed out of i and i can be identified with local functions
of a scalar, neutral Bose field (in this connection cf. [7, 8, 27]).

We propose to prove

Theorem 1: For g > 0 and on the charge-0-sector QED,, formally defined by
(0.1), is equivalent to the sine-Gordon theory with a non-vanishing mass term defined
by the following formal Lagrangian :

ZL(p) = ZLo(0) — ZL(9),
where Z (o) is the Lagrangian of a free, neutral, scalar field ¢ with mass m,, and
Z (@) = A:cos(ep(x, t) + 0):,. 0.2)

(Here : :; denotes normal ordering with respect to bare mass 1 ; (seee.g. [17, 37]).
More precisely: If one identifies

7 with — 56— " 0,0
T
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N@y)  with :cos(ep + 0):,, 0¢€[0,2n)

s 0.3
iIN(rysy) with —:sin(ep + 0):4, ©3)
and
E. -0 0, z 8_2 l 2.
5 V. with 1239
(‘Schwinger mechanism’, [43]), and if one sets
e? B 1
= 3 A, — M —_— = 0.4
o =717 g/n ’ dn 1 + g/n (04)

then the Wightman functions of the two models are identical. (The interpretation of
the so far unspecified angle 6 € [0, 2n) is described in Section 1.)
We give a rigorous proof of Theorem 1 in Section 1, anticipating the results of
Section 2 (existence and Wightman axioms for the sine-Gordon theory; see also [17]).
Technically the main ingredients for our arguments in Section 1 are

4

a

[T |z - Zj|a|wi = W; 1
= Det[ :l
i,j=1

(@) A lemma of Cauchy’s asserting that
1gi<j<n
[T |z —wi*
where the z;’s and w,’s are complex numbers (and 0 < « < 2), and
(b) Bogoliubov transformations.
In the course of the proof we find it convenient to view QED, as the limit of
massive QED, (discussed in [17]) as the mass of the photon tends to 0.

In Section 2 we prove

Theorem 2: The Feynman perturbation expansion of the Euclidean Green’s
functions (EGF’s) of the sine-Gordon theory (0.2) in A (=M; for given &*/4n =
(1 + g/n)~! < 1) about A = 0 converges, provided m2 (= €*(1 + g/n)~') is large
enough.

The proof of Theorem 2 is based on the cluster expansion of Glimm, Jaffe and
Spencer [21] and a result of Dimock [6]. Although following the strategy of [21],
one can quite easily derive many different versions of formal cluster expansions, some
of which may possibly be more appropriate for the analysis of the sine-Gordon theory
than the one of [21], we apply the expansion developed in detail in [21, 38]. This
keeps our analysis reasonably short. Because of the non-polynomial sine-Gordon
action — A:cos(ep + 0):; — the application of the cluster expansion of [21] originally
designed for the P(¢),-models to sine-Gordon is however slightly more than an
exercise and requires some new estimates on Gaussian integrals and a more careful
combinatorial analysis.

In Section 3 we prove

Theorem 3: For given &*/4n < 1 and for |A/m}| sufficiently small (depending
on ¢) the energy-momentum spectrum of the sine-Gordon theory has an isolated one
particle shell of mass m > 0.

The proof of this result is based on a powerful expansion of Spencer’s [39] that
yields decay estimates for one particle irreducible Green’s functions. Again the non-
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polynomial character of :cos(ep + 0):, requires a number of somewhat involved
combinatorial arguments that form the technical core of Section 3.

In Section 4 we prove the nontriviality of the scattering matrix of the sine-Gordon
theory and investigate its dependence on the angle 0 (or, in QED,-language, the
dependence of scattering amplitudes of QED, on the charges at infinity). The proof
for S # I is based on results of [13]; see also [34]. One proves that perturbation
theory in 4 about 4 = 0 is asymptotic to the scattering amplitudes and then checks
that lowest order perturbation theory is nontrivial. The result that S # I can then
be extended to larger values of |A| by combining Theorems 2, 3 with [13] and applying
an edge of the wedge type argument.

Finally we suggest that certain kernels important for the analysis of elastic two

body scattering have actually a convergent perturbation expansion in A about
A =0.

Acknowledgement. We are grateful to Jean-Pierre Eckmann, Henri Epstein,
Lon Rosen, and Tom Spencer for useful discussions about different parts of this paper.
One of us (E.S.) wishes to thank Arthur Jaffe for the hospitality at Harvard.

Equivalence of QED, and Massive ‘sine-Gordon’ Theory ; (Theorem 1)

In this section we prove Theorem 1 of the introduction, (assuming existence and

Wightman axioms for the sine-Gordon theory). The strategy of our proof of Theorem
1 is as follows:

Step 1: Prove Theorem 1 for L = M = 0. In this case both models can be solved
explicitly, and the proof is quite straightforward.

Step 2: Prove that the perturbation expansions of the EGF’s (Schwinger func-
tions of the fields j*, N(Yy), ..., —(g/2n)e"” 0,p,:cos(ep + 0):4,..., respectively,
in M, A, respectively, about M = A = 0, are identical to all orders in M = A.

Step 3: For e* > 0 and small M the perturbation expansion of the EGF’s in
M converges. (This result was announced in [15]; in Section 2 we present a detailed
proof; see Theorem 2 of the Introduction.)

(a) Step I:Supposefirstthatg = e = M = 0. Then the theory with Lagrangian
ZLo(y) = £(Y) has two conserved currents

J*and j§ = N y"ysp). (1.1)
(When doing explicit calculations we may use the representation y, = o, y, = io,,
ys = —o,, where the ¢’s are the Pauli matrices.) In two space-time dimensions

Js = &%, (1.2)
and this combined with current conservation yields

" = 0. (1.3)
From (1.1) to (1.3) one can conclude that

= Ze" 0,0 (1.4a)

or

J=Zd (1.4b)
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where ¢ is a neutral scalar massless field. Direct computation shows

1
TV (Do = — &7 £7<8,0(x) 3,0(¥))0

and

T )T =0 foralln > 2

i=1

which rules out (1.4b) and shows that (1.4a) is correct with

1
F o= 1.5
7 (1.5)
(the sign is purely conventional). We define the fields
%) = 7:P(l + eps)y:, e = +1 (1.6)

We denote the EGF’s of the fields o, by S(x,, ey, . . ., X,, ¢,). Then a direct calculation
shows that

S(x,,€4,...,%,,e,) =0  unless Y e =0 (1.7)
i=1

1
Det( ,)

where we have set x = (x,f)and z = x + itre C.

It is shown in [44] that :e*™: (x) is a quantum field satisfying all Wightman
axioms [26, 42] if @ is a free, neutral, scalar field of mass 0. In [16, 17] we have calcu-
lated the EGF’s of the fields: e*@v*¢*8. These are Gaussian expectation values
of Euclidean fields [32, 37] denoted by y% , (or also :e**?v™¢*9: - in our notation
we do not distinguish between the relativistic and the Euclidean scalar field, and

< >0 denotes both the free v.e.v. and the free, Gaussian expectation value). The
result is:

(I1 25(x)> =0, unless ) e =0,
=1 i=1

(which follows also from chiral invariance), and
2

S(xl, 1,.. .9 x", 1, x’1, _1’.. .y x;’l’ "'—1) -

(1.8)

and
n n l_[ |‘xi - xj|2|x:' - x}|2
<l__[1 Xg(xi) Hl XB—1(x:-')>0 = ml(ﬁ,:, ’ (1.9)
! _Hl e, — x|
L, Jj=

see [3, 16]. By a lemma of Cauchy’s, see, e.g., [10], the r.h.s. of (1.9) is equal to

2

Det[ : }

Therefore

SCers 1oy X =1 = (TG 1600 (1.10)
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This equation tells us that S is the expectation value of a product of Euclidean fields,
denoted o, and we may identify o, with % ;. The choice of @ is irrelevant at this
point, due to chiral invariance. We define

c =305, +12) =30, +0.),

and

s =3 — 1) = 3oy — o) (1.1
Then

LG9, e = & 8,D(x — p)s(), (L.12)
and

[, SN = — e 0,D0x — Yey), 1.13)

where D is the commutator function of the field ¢. Equations (1.12) and (1.13) are a
straightforward computation which we leave to the reader.

Next we consider the case where e # 0, but g = M = 0. This model is the
Schwinger model [43]. It has been discussed extensively in the literature; see e.g.
[29, 43, 45], and references given there. Rather than giving independent arguments
at this point we just quote the main result about the Schwinger model on the charge
0-sector:

1
R )e = — & £7€0,0(x) 0,0(3)7e’ (1.14)

where now ¢ is a free, neutral, scalar field of mass m, =
v.e.v.’s in the Schwinger model. Moreover

e|, and {(——), denotes

IT j“(xp>s =0, forallm > 2.

ji=1
Therefore we can make the identification

W _ Lo

J \/n " o,0. (1.15)
It is known that in the Schwinger model (e # 0, g = M = 0) the currents j*, c and s
do not have anomalous dimensions and that the commutation relations (1.12) and
(1.13) remain unchanged when passing from e = 0 to e = +m,,.

We now note that the operators {¢°(/), "9} with fand g in & ,,,(IR!) generate
an irreducible algebra of bounded operators on the Fock space of the free field ¢.
Therefore, in principle, the commutation relations (1.12) and (1.13) ought to suffice
to determine the currents ¢, o_, and ¢, s (up to normalization and an orthogonal
transformation of the doublet (¢, 5)). The result of such reasoning is easily seen to be

c(x) = Z:cos (2\/np(x) + 0):,
s(x) = Z:sin 2/np(x) + 0):,,
for some arbitrary 6 € [0, 2n). Conventional normalization yields Z = 1.

Although (1.16) is, formally, the most general solution of the commutation
relations (1.12), (1.13) on the Fock space of ¢, in practice one encounters domain

(1.16)
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problems. Such problems are one of the reasons why the Schwinger model is not
entirely trivial. Fortunately the result (1.16) turns out to be correct.
From (1.16) we conclude:

o, (x) = et @Vre*o). (1.17)

It is no longer true that

I 60x)>. =0, unless Y e =0,
i=1 i=1

since for e # 0 chiral invariance is broken.

(Formally, all these results follow from equations (1.2) and (1.8) by inserting
j® = (=1/\/n) 0,0 into the interaction term me*/2:j°V xj°: and then doing two
integrations by part. Even though this argument is purely heuristic one can make
it precise: In [17] it is indicated how to construct massive QED,, i.e., a model with
a /m e/*4,-coupling, where A . is a neutral vector boson of bare mass m and j* is the
current of a Dirac two-spinor field. If the bare mass M of the Dirac field is 0 we know
from (1.4), (1.10) and (1.11) that j* = (1/\/n)¢"* 0,p, and ¢, = :e*"3V™*%):  For
M = 0 this model can be solved explicitly by integrating out the Euclidean vector
field associated with 4, in the EGF’s of the currents j*, ¢, and o_. We find that these
EGF’s are moments of a Gaussian measure duc (@) on &,.,,(IR?) with mean 0 and
covariance C,,, the momentum space representation of which is given by [k*(1 +
e2/(k? + m*))]™ 1, k # 0. It is easy to show that, as m \, 0, these EGF’s converge
in &', and their limits are moments of a Gaussian measure dp (¢) with mean 0 and
covariance Cy = (—A + e*)™'. In this limit A4, loses its dynamical degrees of
freedom. This proves (1.15)(1.16).)

Let us now comment on the meaning of the angle 6. The formal Lagrangian (1.1)
with M = g = 0 seems to be chirally invariant. But in fact, the different versions of
the explicit solution do not possess chiral invariance (see [29, 43, 45]). There is
always a one-parameter family of solutions connected by chiral transformations
which transform

N(@Jp) — cos 0 N(Jy) + sin 6 N(ihysy)
N(MVS‘/’) — —sin 0 N(Jy) + cos 0 N(ijrysy)

Specifying one particular solution fixes the angle 6 in the equivalence; if we require a
parity symmetric vacuum it can be seen that 0 has to be nn(n € Z), since this requires
(Q, Nys¥)Q) = 0 (cf. [29]). Coleman, Jackiw and Susskind [4] have given a
physical interpretation of the parameter 0: It corresponds to specifying charges at
infinity or equivalently a constant electric field. This can easily be read off the equiva-
lence (0.3): A chiral transformation corresponds to a shift of ¢ by a constant, and ¢
is linearly related to the electric field.

These considerations also make clear that we are not dealing with a spon-
taneously broken symmetry in the standard sense: Adding a constant to ¢ does not
induce an automorphism of the algebra of observables which commutes with space-
time translations; the corresponding current j2 = (1/,/n) d,¢ is not conserved. We
could of course restrict our algebra of observables to the one generated by the chirally
Invariant current J,.» then we have such an automorphism, but it is the trivial one.

So there is no conflict with the general theorem asserting that a continuous
symmetry cannot be spontaneously broken in two dimensions, ([5]; D. Maison
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(private communication) gave a very short and elegant proof’; the result is also implicit
in the work of Ezawa and Swieca [14]).

Next we consider the case where e # 0, g > 0, M = 0, and here we present a
complete argument : We introduce an ultraviolet cutoff in the current j*:

(1.18)

l
Jelx) = %dehx(x — y)n(y),

where 7 is the momentum operator canonically conjugate to ¢ and {4, } is a sequence
of symmetric test functions converging in %’ to d, as k — oo. Obviously

: J e (0900 dx = J [:@xp)? 0 + m2:(0)]g(x) dx,

and the r.h.s. is quadratic in ¢ and =. Therefore the total Hamiltonian of the theory
withe # 0,9 > Oand M = 0is quadratic in ¢ and = and hence it can be diagonalized
by a Bogoliubov transformation. The EGF’s of the currents /# and o, can then be
calculated explicitly. One readily finds that they are the expectation values of products

of (1//m) 0,0, (i/\/T0) 0,0, € >V™* 0 with respect to the Gaussian measure dj¢, ,on
&!..(R?) with mean 0 and covariance

CK,g = (—A + Krc,g + mg)_l,

where K, , is the integral operator with kernel

1
- [6? j h(x — VgWh(y — z) dy + jﬁxhx(x — Y)9(y) 2,h(y — z) dy].

As k — o and g(x) — g (=const.)

j duc, (@) T1 w(xi)ﬁj duc(e) [] o(x),
& i=1 §7z i=1
where

C=(-(1+g/mnA + m})~ 1, in Z'(R?*™M).

This completes the discussion of the model for ¢ # 0, g > 0, and M = 0. Next we
must investigate the case where M # 0.

(b) Step 2 of the proof: From (1.6), (1.16) and (1.17) we have

MN@W)(x) = M:cos 2/ p(x) + 0):, (1.19)
From [16, 17] we know that the theory with Lagrangian density
L(@) = Py(p) — M:cos (27T @(x) + 0)1y, (1.20)

where & o(¢) = 3(1 + g/n): "¢ 0,0:(x) — tmj:¢?:(x) (that is the free Euclidean
field has the two point function C(x — y) = kernel of (—(1 + g/m)A + m3) ') hasa
well-defined perturbation theory in M, for all g > 0. (All terms in the perturbation
series of the EGF’s in powers of M are well-defined; [16, 17].) By a finite field strength
renormalization the theory obtained from (1.20) is seen to be equivalent to the one
with Langrangian density
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ZL(p) = Lo(@p) — M:cos (ep(x) + 0):4, (1.21)

where now Z, is the free Lagrangian of a neutral, canonical, scalar field ¢ of mass
mo//(1 + g/m), and &% = 4n/(1 + g/n) < 4n.

Convergence of perturbation theory for the EGF’s in M at M = 0 for small
|M| is proven in the next section. By other methods it has been proven in [16, 17] that
for all ¢* = 4n/(1 + g/n) < 4n and all real M the theory obtained from the
Lagrangian (1.21) exists in the infinite volume limit and satisfies all Wightman axioms
with the possible exception of uniqueness of the vacuum.

The proof of Theorem 1 is now complete.

Since isomorphisms of the type described by Theorem 1 have recently attracted
a great deal of attention, [3, 30, 31, 41] we want to add some comments about the
motivation for presenting our own proof: We feel that the use of Euclidean methods
to prove the isomorphism asserted in Theorem 1 is somewhat novel and yields simple
arguments. The observation that the commutation relations (1.12) and (1.13)
combined with (1.15) determine the currents ¢, and ¢_ uniquely, up to the choice of
8, (and modulo domain questions), and that the Schwinger model may quite easily
be obtained as the /imit of massive QED, (for which Theorem 1 is almost obvious),
as the mass of the vector boson tends to 0, appear to be new, too. This method seems
to be quite powerful. It can be used to prove many more isomorphisms of the type
asserted in Theorem 1. As two examples representative for many, we mention:
(a) The Gross-Neveu model® [23] can be reformulated as a pure Bose theory with
charged super-selection sectors. (b) Let y be a neutral, scalar Bose field ; the Yukawa
model with interaction A:yy:y + g/2: Jy: in two dimensions can be mapped
isomorphically onto a pure Bose theory with charged super-selection sectors. This
model is, for g > 0, a more regular version of the conventional Yukawa model
(g = 0). It is doubtful, however, whether this isomorphism is of any use in the
construction of this model.

2. Convergence of the Perturbation Series of the EGF’s in /A, for m3 > 0
(a) Introduction: The Main Result

From now on we formulate our results in the language of the massive sine-
Gordon theory formally defined by the Lagrangian (0.2). Theorem 1 can be used as
a dictionary to translate these results into the language of the massive Thirring-
Schwinger model. In this section we intend to prove that the perturbation expansion
of the Euclidean Green’s functions in A converges, provided |A/m}| is sufficiently
small. Our proof is based on the Glimm-Jaffe-Spencer cluster expansion [21] and a
result of Dimock’s [6] which says that for a scalar Bose field with Lagrangian self-
interaction for which the cluster expansion converges the n derivative of an EGF
in the coupling constant 4 at 1 = 0 is given by standard perturbation theory. (By the
results of [16, 17] all terms in the perturbation series of an arbitrary EGF in A are
well-defined.)

Convergence of the perturbation series of scattering amplitudes does not follow
from our present methods, though it does follow from the results of this paper and
of ref. [13] (cf. also [34]) that perturbation theory is asymptotic to the scattering

) For a suitable range of bare coupling constants.



898 Jiirg Frohlich and Erhard Seiler H.P.A.

amplitudes at A = 0. More information about scattering in the sine-Gordon theory
is contained in Sections 3, 4.
The main result of this section is

Theorem 2.1 (= Theorem 2 of the Introduction): Given m} > 0 and ¢* < 4n
there exists a Ao(¢) such that for |A| < A(e)m? the Feynman perturbation series in 4
for the EGF’s of the massive sine-Gordon theory converges. For real 4, the EGF’s
obtained by summation of the perturbation series uniquely determine a relativistic
quantum field theory satisfying a/l Wightman axioms, and the energy-momentum
spectrum has a positive mass gap.

Remarks. The basic ingredient for the proof of Theorem 2.1 is the cluster
expansion, [21]. It was originally developed for the well known P(¢),-models
discussed, e.g., in [11, 37]. Here we show that the estimates of [16, 17] permit us to
apply the cluster expansion to the massive sine-Gordon theory, as well. In the
following we briefly sketch the main strategy of the cluster expansion and then describe
the modifications relative to the P(¢), models allowing us to apply it to the massive
sine-Gordon theory. It is known (see e.g. [16, 17]) that the massive sine-Gordon
theory in the Euclidean region (for & = 0)is isomorphic to the classical, two component
Yukawa gas in the grand canonical ensemble. The perturbation expansion of EGF’s
in / is the same as the activity expansion of the correlation functions of this classical
gas. This suggests that it should be possible to find a (nontrivial!) modification of
Ruelle’s elegant fixed point methods, see, e.g., [35], to prove convergence of the
perturbation expansion in A. This is not attempted in the present paper.

Throughout the following we assume m, > 1 (this is no loss of generality
because we can always perform a scaling transformation).

Definition. The Euclidean action of the sine-Gordon theory in a bounded space-
time region A is defined by

Uu(p) = —j d*x:cos (e@(x) + 0):,,, (2.1)

A
The space-time cutoff EGF’s of this model are given by

(T olwe @,

<e— lUA (¢)>O

where ( »o denotes expectation with respect to the Gaussian measure duq(@)
on ¥ = &, ,(IR?) with mean 0 and covariance (— A + m2) ™. From [16, 17] we infer
that these definitions are meaningful, if A is a bounded, open set in R? (e.g., a rect-
angle) and A is real. Convergence of the cluster expansion for some (real or complex) A
leads to the existence of the infinite volume limit (independent of boundary conditions)

lim S%(xy,...,x,) = S*x,...,x,) (2.3)

A R2

Sh(Xgs .o X,) =

(2.2)

(e.g., in the sense of complex measures on R*"; see [21] Theorem 2.2.2 and below).
Furthermore the convergence of the cluster expansion transfers analyticity properties
of the finite volume Schwinger functions to the infinite volume objects. It is here that
the basic difference between P(¢), and sine-Gordon interaction comes in: In the
sine-Gordon model numerator and denominator of (2.2) are entire in A; the quotient
is analytic in a disc around the origin; in P(¢@),, on the other hand, numerator and
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denominator of (2.2) only exist as they stand for Re A = 0; (2.2) is not analytic at
A = 0. In fact perturbation theory is known to diverge [25]

One essential ingredient for the convergence of the cluster expansion is an
inequality of the form

1< |Z4n) <3 (24)
where

ZHA) = (e U@y (2.5)
(A is a unit square in R?). For sufficiently large m, (2.4) is sufficient to prove

e N g |Z*H(A)| < &M (2.6)

for some positive constants a, b (|A| is the volume of A).
In the sine-Gordon model (2.4) holds for all A with |}L| < A4(e),forsome A,(e) > 0,
uniformly in m, for m, > 1. We only have to choose 4,(¢) such that

i ,11(3)"

n=1

CUN@)Do < 3, formy =1, 2.7)
which is possible since (e~ *Y>, is entire in A as shown in [16, Section 3] and [17,

Section IV]. For m, > 1 (2.7) is a consequence of conditioning (see [24], also
[16, 17]).

(b) The Cluster Expansion: Basic Ideas

First we introduce a new set of Euclidean fields in terms of which the cluster
expansion can be formulated more conveniently and the EGF’s of which determine
the sine-Gordon theory completely: We define

cg(x) = :cos (ep(x) + 9):p,, 9 €[0, 27). (2.8)

From the point of view of the massive Thirring-Schwinger model these fields are
actually much more natural than the field ¢.

A standard application of tntegration by parts on function space, see, e.g., [9],
shows that the EGF’s S} of the field ¢ can be expressed in terms of EGF’s of the
fields cg and that, as a consequence, the convergence asserted in (2.3) follows from the
convergence of

<n cs(x;) e ~HA,
Si({x, }y) = = (e~ Onlry

: (2.9)

as A /" R?, (in the sense of complex measures on R?V). Indeed (2.9) is more general
than (2.3): It would suffice to set §; = 0, or 6 + n/2, for all je N.

For the proof of convergence of (2.9),as A /" R?, the cluster expansion proposes
the following procedure:

Cover IR? with a cubic lattice .# with lattice constant 1. Let £ denote the set of
all bonds of .#. Let C, be the operator (—Agz + m3)~ ', where A, is the Laplacian
with 0-Dirichlet data on 4. The Gaussian measure on.¥’with mean 0 and covariance
Cg is denoted duc, and Yc, 15 expectation with respect to duc, . The measure
dyc,, decouples regions that are separated by the bonds of # completely. We set
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(T s, Cepe™En@y,

A __ JjeN
SA,C@({X, S}N) = - <€v AUA(¢)>C‘@

Obviously S} c,is independent of A as soon as A contains the smallest union of lattice
squares of ¢ containing {x},, and taking the limit A " R* is therefore trivial.

The cluster expansion removes the 0-Dirichlet data on the bonds of # step by
step and estimates, after a partial resummation, the terms in the final series.

Removing 0-Dirichlet data on some bond be % introduces a convergence
factor proportional to my"(n > 0) or, in a term localized near x, a convergence
factor proportional to exp (—m, dist (b, x)). These factors yield convergence of the
expansion.

, (2.10)

Notations. A collection of bonds b in 4 is denoted by I'; I' = #\I" (complement
of T in 4). Let w({x}y) be a function of compact support in LP(R?*"!) with
(p/p — 1)&* < 4n. We set X, = supp w. Let X range over finite unions of closed
lattice squares and let I range over the set of finite collections of bonds in # such that

(1) each connected component of X\I"* meets X, 2.11)

)T < IntX '

To each bond b € &4 attach a real number s, € [0, 1], and define a covariance

C({s}a) = z l—[ Sp 1—[ (1 = 5,)Cr,

IF'c®Bbell belc

where Cr. is the operator (—Ar. + m3) ™', and Ar. is the Laplacian with 0-Dirichlet
data at I'*. (Clearly C(1, 1,...) = (—=A + m3)~ ') Let

S(T) = {s(D)y} pey  with

s,,bel, 0<s, <)
1—~ — b b
s(I), {O,bQEF

Expectations with respect to the Gaussian measure on .’ with mean 0 and covariance
C(-) are denoted < ey and

ZHA) = (e WD),

The cluster expansion is summarized in the equation

Siw, {9}) = ¥ j j l—[dsbéi—<j]—[ ¢y (x;) d’x,

X, r Jo 0 bell jeN

(asin (2.11)) (2.12)
X W({X}N)e_ AU “x(¢)>C(s(r))Zax(A\X) Z(A)™!

This expansion is derived in [21, Section 3, Eq. (3.15)]. It is model-independent.*)
The basic result of [21] is

Theorem, [21, Section 4]: The convergence of the cluster expansion (2.12) yields
convergence of (2.9) and exponential cluster properties.

For a proof of this theorem in the case of the P(¢),-models we refer the reader
to [21]. Fortunately the main reasons why this theorem is true are largely model-

%) Throughout this paper Wickordering is always matched to the covariance C(s(I')) ; in contradistinction
to [21].
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independent. We sketch them here briefly for the example of the two-point function
of an even interaction: Apply the cluster expansion (2.12) to the difference

slror i) - sl - o

We let X, = supp w'. It is quite easy to see that all terms in the cluster expansion of
(2.13) vanish, unless there exists at least one path joining X, and X that has the
property that each bond hit by the path belongs to I'. If [I'| denotes the number of
bonds in I" we conclude that for all such terms # 0

IT| > const. dist (X, X{). (2.14)

The number of differentiations in [ [,. 9/ds, on the r.h.s. of (2.13) is equal to |T].

Each differentiation introduces a convergence factor < 1, (provided m, is large
enough and under the assumption that some combinatoric estimates on certain path
integrals with measure dp, ), Which we prove below for the massive sine-Gordon
theory are true). Therefore such a term is bounded by

O(e "), uniformly in A; (2.15)

the number of terms with given |I'| satisfying (2.11) is bounded by O(e!'), and b < a,
provided m, is sufficiently large. Therefore inequality (2.14) yields exponential
clustering. .

To prove convergence of (2.9) as A " IR? we notice that for A > A

Si(w, {81n) — Si(w, 9w)
is precisely of the form (2.13) with X, = A\A. As a consequence it is bounded by
0(8_ const. dist. (Xo, 7\\/\))

which proves convergence, as A /" R? ([21, part 1, Theorem 2.2.2).

Next we prove the input estimates for the proof of convergence of the cluster
expansion (2.12) and of the bound (2.15). Up to combinatoric estimates only depending
on the number of space-time dimensions and estimates on the covariances C(s(I"))
which are of course independent of the choice of the action U,(¢) the only basic
estimate is

Proposition 2.2 [21; Proposition 5.3]. Given any positive constant K there
exists a positive number g > 1 such that for any A and A with |4| < 4,(¢)

<J}31‘ J H Csi(xi)e_w’\((m Ay ds(), wy| < e_KerK’WIWI (2.16)%)

i=1

for all m, > u, some constant K’, independent of m, and A and some norm ||
continuous on &(IR?) independent of m, and A.

%)  Our notations are as in [21]:

<J‘ar J ﬁ cg,(x;) e” A0 l9) dpcisry ds(I),w

=1

1 1 5 n
= J e I [T ds, = <J IT ol d?xpiloy, « . oy 2 ) 40808
b i=1

0 0 bel



902 Jiirg Frohlich and Erhard Seiler H.P.A.

If w has compact support and ||w|, < oo with r > (1 — ®)™ !, a = &*/4n, we
can replace |w| in (2.16) by K, |w||, for some finite constant K, .

Proof of Proposition 2.2. Without loss of generality let us assume

w=w ] gax) 2.17)
i=1

where A, are unit lattice squares. In this case we choose some fixed r, > (1 + a)/(1 — @)
and replace |w| by |wl|,,. (A choice for |-| follows by summing over all possible
localizations of a general w). Let 2(I") be the set of all partitions = of I". By Leibniz’
rule we obtain

i< Jar f 1—[ cg(x;))e” iy docary ds(I), w)
e £

= Z {1 ds(I) Jd(PC(s(r))[H % ayc(s(r)).Aq)] ﬁ Csf(xi)e_ M, w) (2.18)

ne AT yET i=1

We define

aAC(j‘y) = XAj'P. 1 ayC(S(r))XAJy, 2
where j, = (j, 1,/,,2) € Z* is a localization index. Then
IC(s(I) = Y C(,) (2.19)
iz
We substitute (2.19) into (2.18) and expand: each term in the resulting sum is then

indexed by me 2(I') and {j,, y € n}. After applying A, and using Leibniz’ rule we
obtain a sum of terms of the form | Re™*%A do ), Where

R= j d? xjeg (X W (X1, . .0y Xy) (2.20)
i=1 |
and
W:wjﬂ&dMé @21)
YET

(where the integration is over the contracted variables in the é-functions).
The following two lemmas, combined with Schwarz’s inequality, are sufficient
to estimate the individual terms:

Lemma 2.3.
(e~ ad >C(3(F)) < eFolhl
where the constant K, depends only on |4| and ¢.
Lemma 2.4. (analogue of Theorem 9.4 of [21])
Let w: R*" — € be a function in LP(IR?")(p = (1 + a)/(1 — «)) with support in a

product A; x --- x A, of lattice squares of #. Let R be of the form (2.20) and let
N(A) be the number of indices i € {1, ..., m} with A, = A. Then

<R>C(s(r)) < HW’HP l—[ (N(A) !)20!/(1 +a)K11\T(A)
A



Vol. 49, 1976 The Massive Thirring-Schwinger Model (QED,) 903

Corollary 2.5.
CRe™ >y < W, LT VA 20 ro Ry @AM (222)

From (2.21) we see that by Holder’s inequality

J [18°CGi,)s

YET

1Wll2p < [1wll g

r

with
rit+pet=3p7 =31 - /1 + o)

For ||| [],ex €7C(j,) 6|, we will give an estimate only depending on (x, {j,}), (not on
the way the variables are contracted by the J-functions, that is, not on the way the
¢@-derivatives in (2.18) are distributed among the different factors according to
Leibniz’ rule). Of course we need an estimate on the total number of terms arising
from the @-differentiations; let us call it M = M(=n, {j,}); furthermore we need an
estimate on [ [,N(A)!. This is supplied by

Lemma 2.6 (replacing Lemma 10.1 of [21]). Let M(A) be the number of j, ,
orj,,suchthat A, = AorA; , = A Then there is a constant K, such that

M < n" &N [T M(A)! (2.23)
A

[TN@A)! < n" X [T M(A)! (2.24)

A A

Our estimate on the differentiated covariance has the following form
Lemma 2.7.

(1) H J [1dCG)Bl, < KM ] e mlkastin- K (r, 3)

YEM YER

where d(j,, y) = max{dist(A;, b) + dist(A;,, b)}, and K — co, as my — 0.

J1° J2°

) ;;m [T Ks(r, 7) < exp(K,(r)|T])

Lemmas 2.3 to 2.6 are sufficient to estimate each term in the sum over (=, {}.}).
This final sum is controlled by Lemma 10.2 of [21] which we just quote without
repeating the proof:

Lemma 2.8 (=Lemma 10.2 of [21]). Given = € (I') and ' > 0, there exists a
constant Kg (independent of m,) such that

Z H e~ (mo/Ks)d(j,, v) H(M(A) " < eKslll,

Uy} ven A

Proposition 2.2 follows from Corollary 2.5 and Lemmas 2.6 through 2.8 in a
straightforward way (see [21]: Let us denote the left hand side of (2.16) by X. Then
by Corollary 2.5 and the remarks made thereafter

X< ) Y Wi, [TV 0+ KF@. 5N Mz, {j,})
ne2 () (i) A - (2.25)

< Wl S 3| j [T oG8 [T Q)0 K3 M, )

neP() (i} yem lir A
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Using Lemma 2.7, (1) we obtain
X < Z Z ||w||p0 eKslAl—K|r| H(N(A)!)Z“/(l +a) KIZV(A) H e~ mo/Ks)d(jy.7) Ky(r, y)
A

ne2(I) () yen

< M, () < Wl eKﬂ*A'-K'”[ S T Kl w]

ne?() yen

(2.26)
x ¥, max [M(n, Ub I exp[— 2 s ,,)] [T (vayy+= K?(A’}
{y} me2 ) yem 5 A
Now we use Lemma 2.7, (2) and Lemma 2.6, together with the fact
Y NA) € n+ [T (2.27)
A
to obtain

X < ”w“p ng |A|—K11‘|+K7|I‘1+2K4|1"|+|F|an2(n2K2)n
0 )

(2.28)

{jy} me?[) Lyen 5 A
Using now Lemma 2.8 to bound the remaining sum and redefining K (and setting
K, = K’), Proposition 2.2 follows. Q.E.D.

Next let us turn to the proofs of Lemmas 2.3 through 2.7.

Proof of Lemma 2.3. On the quadratic form domain of (—A + 1)7' (the Sobolev
space # _ )

Cis() < (=A + )71, forallm, > 1

and for all s(I'), (0 < s, < 1). Therefore we obtain from ‘conditioning’ [24]; see
also [16], Theorem 2.4 or [17], Lemma IV.3):

|<€# wA>C(s(r))\ < (e ReMth >C(s(r)) < <€—Rew">06) (2.29)
It was shown in [16], Cor. 3.5 (see also [17], Theorem IV.8) that

(e Reny < 4 eBrIReal"[A| (2.30)
where A4,, B, are finite constants independent of 4 and |A|, provided r > a/(1 Q—Eoe)I.)

Proof of Lemma 2.4. Let C = C(s(I')). We first discuss instead of R

k m
R = j]_[ e®ic(xy) [ e ™ il (xy, ..., x)dPxy - dPx,, (2.31)
j=1

ji=k+1

By explicit computation

-~ 82
JR d(pC = J‘exp[_ ?Uc(xl, i % .,xk;xk+1, ¥ @ .,xm)}

M WMy sas i, ) dP%, 150 d%%

(2.32)

m?>

®)  We recall that Wick ordering is matched to the covariance of the underlying Gaussian measure.
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where
Ulhs v s us Bl jaen s B = 3, CH.E)+ F CF.%)
i#j i#Ej
1€i, j<k k+1<i, j<m
2 Y )
1 <i<k v (2.33)
k+1€j<m

(2.32) can be estimated by Holder’s inequality, using the fact that

m
W,(xlﬁ ces X)) = l—[ XAi(xi)Wf(xla SRR
i=1

We obtain
153 F = 8 ’
‘ JR dpcl < |w Hp|:J\ n %A,-(xi) exp(— EP Ll « o s HpaFipsi i m o xm))
i=1
(2.34)

1/p’ k » m . 1/p’
X d*xy .- dzxm] = HW’Hp[ Jd¢c I1 e (s, [1 :e—w(p:C(XAj)]

j=1 j=k+1

2

where ¢ = &\/p’; p' = p/(p — 1); (note that ap’ = (1 + «)/2 < 1 because p = (1 + )/
(I — «)). We now apply the Schwarz inequality to the do integral thus obtaining an
integrand of the form |u|>. Then by a conditioning inequality (see [24], [17]) we can
replace do. by dop,. We first get

2]1/21;'

jﬁ doc| < ?\W’}I,,[Jd(pol_[ |:e%:(xa,)
i=1

This integral can then be controlled by the so-called checkerboard estimate of [24],
and we obtain.

Jﬁ doc

for some s > 4.
Now it has been shown in [16] that

< “W,“p l_[ “I : eiS"P :(XA)IZN(A)”:/ZP’ (2.35)
A

J‘d(po‘:eia"”:(xA)F < CI,T(g + 1), (2.36)
for B > &2/4n; if we pick B = 1 we get from (2.35) and (2.36)

Jﬁ do,

It is trivial to obtain the same bound for | [ R do|. Q.E.D.
Corollary 2.5 follows from Lemmas 2.3 and 2.4 and Schwarz’s inequality.

Proof of Lemma 2.6. M(A) differentiations of [[I-, ¢s,(x;) e”*Ys produce no
more than

(s + (s + 2)- - (ny + M(A)) < (ny + M(A))!, ny = [{i:x; € A
terms. If we use the inequality (@ + b)! < (¢ + b)*b!, we obtain
M <[] (ny + M(A)! < [](ny + M(A))"> M(A)! (2.38)
A # A

< Iwll, TT V@D KY® = wll, TT (V@) KY® - (2.37)
A A
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Using

b a
(@ + b)° = a“(l - E) < a%’ (2.39)
and the fact that |
Y. M(A) = 2T (2.40)
we obtain
M < []n" eMOMA)! < w2 T M(A)!. (2.41)
A A

Furthermore
N(A) < n, + M(A)

and therefore
[TN)! < T (ny + M(AYM(A)! < n" XTI T M(A)! Q.E.D.
A A A

as above.

Proof of Lemma 2.7. This proof is somewhat technical, although not difficult;
we divide it into several steps.

Definition 2.1. Given y € 7, let L(y) be the set of all possible linear orderings of
the bonds in y. Given / € L(y) let b, b,, . .. be the bonds of y ordered as prescribed
by L

Set b} = by, let b}, be the first element of {b,, b, . ..} not touching b}, b} the first
element of {b), ...} not touching b, etc. We then set a; = dist(bj, , bj), 1 < j <
m(l) < |y|, and define |/| = 374 a..

Lemma 2.9.

(1) inf min ]l\ =0
{r:lv|€7}leL(y)

(ii) For |y| > 7,1m28) 1] = 4yl.

The proof is obvious.

Definition 2.2,

n,=Dlrenly <7}

ns = {ylyen |y > 7}

Definition 2.3.

77:(7) = {Yh" € Ty, des ‘P) = 0}

TC; = {y‘ye 1[7, d(jyﬂ '))) 2 1}

Lemma 2.10. Forye n§ U n3
: . m Mg my|/|

16”CGIl,, < Kllex [— dj,, )—°:| ex [— . } exp[— e
Mo < Klexp| = U D |70~ Tak,y 7 |, 2,71 2ks0

Proof. The proof is essentially contained in [21, 38].
First consider n5. Based on the Wiener representation of the covariance it is
shown in [21, 38] that for |y| > 7
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dadj,,
Ul < 5 Ky exp| - 2o | expl - m, A .42)
leL(y) KIO K]O
Since |I| = 4|y|, we can bound (2.42) by
> Ky exp[— molll _ moly]- _ mo ”)} @43
le L(y) 2K10 14K10 KIO

In the second case we have y € n7, that is |y| < 7, but d(j,, y) = 1. The primary
estimate from the Wiener representation is in this case
mg

167CUN . < K eXP[ z Wy 7’)] (2.44)
11

Since |y| < 7d(j,, y) and |/| < 7d(j,, y) we obtain again an estimate of the form
(2.43) Q.E.D.
To prove Lemma 2.7 we have to estimate

e,
| YET lir

This is done by Holder’s inequality (see Lemma 9.2 of [21]) and the following
trivial observation: Given a localization index j € Z*, there are at most g(= 31) sets
of bonds y in 79 such that j, = j. This leads to

Lemma 2.11.

' ‘ me|l
[T CGYO| < Kl mglirakss % exp| — s (2.45)
vend r le L(y) 2K10

Proof. First we use Lemma 9.2 of [21] (repeated use of Holder’s inequality)
to bound the left hand side of (2.45) by

[T 16°CU g

vend
Now from Proposition 7.2 of [21] (scaling) we get

107CU g < Kygmg 2 (2.46)
On the other hand we still have the bound

10°CGl < Y KY exp[— M} (2.47)

le L(y) Kl 0

(Eq.(8.8) of [21]). Taking geometric means of (2.46) and (2.47) and using |y| < 7
for y € n9 proves Lemma 2.11 Q.E.D.

Finally we can now estimate || [[[ ¢”C(j) d|l, by using the oc-norm (Lemma
yER

2.10) wherever possible and the rg-norm (Lemma 2.11) wherever necessary:

jl"[ FC()s |, < l“[ Z mp W/K1srg K'fé exp[— %9 dj,, y) + |l|):| (2.48)
5

YETW I vem le L(y)

for some constant K.

With the definition
[
K(r,y) = Z Kll”g exp [-— mKLH} (2.49)
leL(y) 5
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and using Y, || = [T, for all = e 2(I'), we get assertion (1) of Lemma 2.7; the
assertion (2) is just Proposition 8.2 and equ. (8.5) of [21] (up to a trivial change
3 — K). This completes the proof of Lemma 2.7. Q.E.D.

We have now completed the proof of the convergence of the cluster expansion
and therefore we have established analyticity of the Schwinger functions in 4 in a
circle around the origin.”)

To identify the expansion coefficients with the usual expressions of Feynman
perturbation theory we appeal to a result of Dimock’s [6] which states that if the
cluster expansion converges the n'* derivative of a Schwinger function with respect
to A at A = 0 is given by the n'* order term of the Feynman perturbation series.

This completes the proof of Theorem 2.1.

Let us conclude with some comments on the physical importance of this result:
Since the theory has a unique vacuum, there is no way to construct charged super-
selection sectors, as it was done for the massless sine-Gordon model (the massive
Thirring model) in [18]. This is an expression of the confinement of charges which
results from the extreme long range character of the two-dimensional Coulomb force.

3. Particle Structure

In this section we propose to prove the existence of isolated one-particle shells
in the energy-momentum spectrum of the sine-Gordon theory for small |2/m}|.

The main tool of our analysis is a very efficient expansion devised by Spencer
[39] that yields decay estimates for r-particle irreducible Euclidean Green'’s functions.
Spencer has developed this expansion in the context of the P(¢), models. For the
convenience of the reader we shall outline the basic ideas of Spencer’s techniques
and then present the necessary modifications of some of his estimates that permit
us to apply the expansion to the sine-Gordon theory. These modifications consist
mainly of combinatorial refinements that are required by the non-polynomial nature
of the sine-Gordon action.

We now present some definitions and then explain the connections between
decay estimates of one particle irreducible Green’s functions and the existence of
one-particle states. In the following expectation values are taken with respect to a
physical measure on %, (e.g. the sine-Gordon measure constructed in Section 2).

Definitions.
3.1 Lety denote any one of the fields ¢, cg; 9 € [0, 27). Let Q, and Q, be polynomials
in Y. We define the ‘channel-connected’ expectation (Q,;Q,>° by

013020 = £0105) — Q)<
3.2 The ‘channel-one particle irreducible’ expectation of Q,, @, is defined by
Q1:0:0" =<04:0,)° — J<Q1;(P(Z1)>CF(ZD 2,9(2,);Q, > d?z; d?z,,

where I' is the Euclidean two point vertex function, i.e. the kernel of the inverse of
the integral operator whose kernel is the connected two point EGF.

7y It is a standard result that, for real A with |A| so small that the cluster expansion converges, the
Schwinger functions are the moments of a unique probability measure on %’ (defining an infinite
volume expectation {——)).
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3.3 The self energy part (one particle irreducible kernel [20, 397) is given by

kC(xa y) = (F — G 1)(xa y),

where C is the free, connected two point EGF, i.c. the (kernel of the) covariance of
the free, Gaussian measure on %'.

3.4. A polynomial Q in ¥ is localized if it is a polynomial in fields smeared with
functions of compact support. (Technically a polynomial is said to be localized if it
is measurable with respect to the o-algebra associated with a bounded region of
space-time.)

The main technical result of this section is

Theorem 3.1. Let > denote the expectation with respect to the infinite
volume sine-Gordon measure constructed in Section 2, and let Q,, Q, be localized
polynomials in y; let QT denote the translate of Q by the vector (0, 7).

Then, given an & with ¢ < 4z and any § > 0, there exist positive numbers
Ao and M, such that

(A) l(Qu Q§>1[ < Ki(Q1, @, mp) exp (—2my(1 — 8)T)
and, for |x — y| > 1

(B) |kc(x, J’)| < K, exp (—2my(1 — 6)|x - yl)a

for all coupling constants 4 € [ — 4,, 4,] and bare masses m, > M,.

The proof of Theorem 3.1 is the (technical) core of this section.

Next we interpret the decay estimates (A) and (B) in terms of the particle structure
of the sine-Gordon theory:

(1) Let Q, and Q, be arbitrary polynomials in ¢ localized at strictly positive
times, and let Qf denote the complex conjugate of the reflection of Q, at t = 0, [33].
Let P"’ denote the selfadjoint projection (with respect to the Osterwalder-Schrader
scalar product, [33]) onto the orthogonal complement of all states in the physical
Hilbert space spanned by

{Q o(f)Q:supp f < {t > 0}};  (see [20,33])

Let m denote the physical mass (mass gap). Suppose now that for all such Q, and
Q, the exponential decay rate of (Q7P{’Q3) in T is at least m(1 + A), for some
A > 0. Then the space of all vectors in the physical Hilbert space of energy between
m and m(1 + A/2) is contained in the span of

{o(Q:supp f < {t = 0}}.

(2) It then follows from regularity properties of the EGF’s, an exponential
decay rate of k. of at least m(1 + A) and the spectral representations of the two point
EGF S35 and of I that the spectrum of the mass operator in the interval [m, m(1 + A/2)]
consists of the single eigenvalue m.

(3) The irreducibility of the polynomial algebra generated by ¢ then proves
that there is only one species of particles of mass m.

(4) It now suffices to notice that

(i) if k(x,y)decayslikee ™1 *Ax=¥ and (0% ; 01> likee ™1 *AT the exponential
decay rate of
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CQIPY 03> — <Q%: 00!
in 7 is at least m(1 + A); see [20, Theorem 5.4].

(ii) Assuming Theorem 3.1, the results of Section 2, and choosing |A/m}| so small
that § <

0 <m < my(l + 0) < 2my(1 — 9)

which proves that the exponential decay rate of (0{;07>! in T and of k(x, ) in
|x — y|isatleast m(1 + A), for some A > 0, and, using (i), yields the required decay
of (O PY0L).

This completes our (intuitive) argument. We supplement it by the following
nice, rigorous result recently proven by C. Burnap [ 1] which we state in a form adapted
to the context of this paper.

Theorem 3.2. Consider a relativistic quantum field theory fulfilling the following
additional conditions on the EGF’s:

(a) Existence of Euclidean fields (i.e. Nelson-Symanzik positivity)®), and e.g.
i dp(a) | dp(a) . .
S3(p) = — :

5(p) Jpz p with j p finite

(b) There exists a positive mass gap, i.e. for some m > 0 and arbitrary localized
polynomials Q, and Q,

01:0) < K(Q4, Qy)e™""

(c) There exists an upper (mass) gap, i.e. there is some A > 0 such that,
with m, = m(1 + A),

(Cl)  |k(x,p)| < K e™™ Y for |x — y| > 1
(C2)  [KQ1;:00Y < K'(Qy, Q) e ™7

e 1
(C3) m; = — lim ——ySg(x, y) < m,

[x=y|— o |x - |

Then the spectrum of the mass operator M = (H? — P?)'/? in the interval [0, m,)
consists only of the two isolated eigenvalues 0 and m,, (and m = m,).

Remarks.

(i) For the proof of Theorem 3.2 we refer to [1]. Unexpected multiplicity of the
eigenvalue m of the mass operator is ruled out in Remark (3) above.

(i1) Assuming Theorems 3.1 and 3.2 we can now prove Theorem 3 of the Intro-
duction, (i.e., the existence of an isolated one particle shell in the energy-momentum
spectrum of the sine-Gordon theory): We simply verify hypotheses (a)—(c) of Theorem
Az

Clearly the sine-Gordon theory is Nelson-Symanzik positive, and the EGF’s
of ¢ are locally integrable, by Section 2. From Section 2 we also infer that the con-
nected two point EGF S5(0, x) is integrable. Therefore, and since all Wightman
axioms are satisfied in the sine-Gordon theory, S5 has a spectral representation, and

szng_(O, X) = jdp g’) is finite.

&) This condition is not essential, but it is convenient.
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(Asamatter of fact | dp(a) = 1, since the field ¢ is a canonical field in the sine-Gordon
theory). The proof of (b) is the main result of Section 2, and the physical mass m
satisfies m < my(1 + 6), for & < 3, provided |4/m§| is sufficiently small. Hypotheses
(C1) and (C2) follow from Theorem 3.1 and Remark (4) (ii) above, by choosing
8 < 4. Finally (C3) follows from Section 2 and Remark (4) (ii), by choosing é < 3.
This completes the proof.

We now turn to the technical part of this section: the proof of Theorem 3.1.
We follow closely Spencer’s analysis [39]. Without loss of generality our considera-
tions may be limited to channel one particle irreducible expectations of the form
{Q:;0,>" with Q, localized in {t > T/2}, since the self energy part k. can be ex-
pressed in terms of expectations of this form, see [39].

Following Spencer [39] we introduce a family of ‘horizontal’ (lattice) lines

Lh={x0eR*:t =k, kelZ}, (3.1)
and corresponding interpolating parameters ¢, € [0, 1] (just as we did in Section 2
for the bonds of Z2).

The general expression for the covariances of the Gaussian measures we are
using is

C@t s;x,9) = X Z n Sp n (1 — s) n Ik 1_[ L = fk)CI*C,Lc(xa y) (3.2)

T'cZ2 LcZbel b¢l keL k¢ L

where Cr. ;. is the kernel of (— A ;. + m3)~", and Ar. ;. is the Laplacian with
0-Dirichlet data on T U L*.

In the following (——>¢ (1), (——>!(¢) and k(z,-) are defined as previously
¢ >, < >, k,, respectively, but with the covariance C(x — y) replaced by
C(t, 1;x, y) (later by C(t, s;x, v)). In our analysis Wick ordering is always matched
to C(t, s;-).

Spencer’s analysis is inspired by the fact that in the perturbation expansion of
{Q;Q,>" each line /, that separates the supports of Q, and Q, is crossed by at least
two internal lines of each non-vanishing Feynman diagram contributingto<Q, ; 9,>".
Therefore one expects that {Q,;Q,>! has two particle decay. In spite of the conver-
gence of perturbation theory proven in Section 2 for the sine-Gordon theory such an
argument 1s of course not rigorous. An analytical, non-perturbative approach
towards proving two particle decay of {Q,;Q,>" is based on the following

Lemma 3.3. (Spencer [39])

ar

}i‘;k(t;x’ W,=0 =0, forr=0,1, (3.3)
if /; separates x from y. If /; separates the supports of @, and Q,

al‘

b? <Q1§Q2>1(3)|n=0 =0, forr=0,1. (3.4)

Proof. We only prove (3.4), since a detailed proof of (3.3) is contamed in [39].
The case r = 01s of course tr1v1al Forr=1

E[-<Q1;Q2>1(t) t=0 = EI<Q1’ Q2>C(t)

t,'=0

ti=0

0
=B J<Q1 (2O (t;2, 2)(2);0,)(0) d*z d*2
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The first term gives (see [39])

- J(Ql ;02> (CN) ™!z, 2K @(2);0201) d*z d*2,=

(where the dot denotes 0/0¢,). If we now use

0 .
a7 @i ;@2 (D=0 = j(Ql»;fp(X)YC(t)_ ', YK@(0);9(2))4(0) d°x 2|~ 0

and the fact that by (3.3)

r‘(t)‘tl =0 = C(t)_ ! |ti =0
the assertion follows immediately. Q.E.D.

Remark. An alternate proof of (3.3) and (3.4) follows from the convergence of
the perturbation expansions of k(¢; x, y) and {Q,;0,>(¢) in 1 about 4 = 0 which
follows from a straightforward extension of our results in Section 2.

Let Q, belocalizedin {t < —T/2}and Q,in{t > T/2}. Let I(=1Q,,0,)) c Z
be the set of all integers i such that /; separates the supports of O, and Q, and let
I¢ = Z\I. If fis some function of {¢,: k € Z} we simply write f(¢) for f({t},, {1};). We
set

Fi) = €01:00'() (3.5)
Then, by (3.4) and Taylor’s theorem,
1 1 2
F(1) = J J []dt(1 — tf);?F(r) (3.6)
0 0iel i

Theorem 3.1 follows from a careful estimate on the r.h.s. of (3.6).%)

Spencer uses a modified version of the cluster expansion [21] to derive such an
estimate. We briefly review his procedure : First we evaluate the r.h.s. of (3.6) by using
Leibniz’ rule and integration by parts on function space (see Section 2 and [39]).
The final expression then involves derivatives of the covariance C(¢) of the form

. 0
= :'le—! ory
where r; € {0, 1, 2} and « stands for the family {r,},.;, i.e. « is a function on I (or the
set of horizontal lines separating the supports of Q, and Q,) with values in {0, 1, 2}.
The set of all such functions is denoted 1.

Second we express the r-derivatives of F(7) in terms of derivatives of expectations
with respect to a collection of auxiliary variables {h(x):a € I’’’} on which these
expectations depend holomorphically. We then apply the Cauchy estimate to derive
bounds on the {h(x)}-derivatives. (This is a key trick of Spencer’s analysis, [39].)

Let us first consider an unnormalized expectation of the form

J e” Q0 do(1), (3.8)

¥

ri

c(), (3.7)

?) The intuition behind estimating (3.6) is that each derivative /9t introduces a decay factor oc e™™,
whence two-particle decay.
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where U is a space-time cutoff sine-Gordon action and de(?) is the Gaussian measure
on & with mean 0 and covariance C(¢).
For f € I?, let 2(B) be defined to be

{Bise-vsBps-..:peIP VI, i B, = B} (3.9)

Moreover, given j = (j,, j,) € Z*, we define

Cit;%, y) =y, ()C(E;%, Y)xa, (),

with y, the characteristic function of A; (such localizations are familiar from Section
2). Finally we define
o o

CA, = jca % 9) 50 e

Then the ¢-derivatives of (3.8) are glven by

of Je‘*”Q do(t) = Y. (

ne P(p)
x & "Q dp(t)}y-o

Following [39] we define an h-dependent expectation:

J[] Z (1 + A(x) 6;*CjA¢,) e*’“’Q do(?)
OX(t, ) = J' (3.11)

d%x d*y.

e | L X, +HD&C0A) (.10

[T S A+ h@dxCA,) e do(r)

aen jeZ?

(and, similarly, k(z, ) by using the series expansion of &£ in terms of expressions like

(3.11)).

The following identity is basic for our analysis:

Lemma 3 4.

6‘tB<Q>(I’ h)h=0 = Z n ah( )<Q>(t h)h 0

neP(f) aen

The proof of this lemma is given in [39].

An important, and model independent, part of Spencer’s analysis is that, by
means of Lemmas 3.3 and 3.4, the proof of Theorem 3.1 reduces to the following
two estimates; (we recommend that the reader consult [39] for these arguments):

Theorem 3.5. Let 6 > 0 and I = Z be given. Then there exist finite positive
numbers M (6) and 1,(d, &, M) such that form, > Myand — 1, < 4 < J,

JW(X)<H W(x;)> (1, h) dx = {Qu (1, h)

is analytic in h, for h in the region
Ps = {ha)s|ha)] & ¢mol “DARFLL, 5 2 JEN (3.12)
where ¥ stands for ¢ or ¢y, 3 € [0, 27), and
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0,

o =1
62
d(o) =1 o0, if (i) = 2 for some i; (note that e C(t;-) = 0, for all i!)
max{|i — j|:i, j € supp a}, otherwise.
Furthermore, if W = W,-W, and
T = dist(supp W, supp W,), he P
then there are positive constants a and ¢ such that

[<Qw,; Ow,>(t, h)| < e™T e™=PPQ M(|| W], deg Q) (3.13)
for some p € (1, o0), depending on «.

mop?

Remark. Whereas Spencer has a 4/3-norm on the r.h.s. of (3.13) we shall in
general have a p-norm with p large, depending on the choice of the parameter ¢ in
the sine-Gordon action; (p /" o0, as 2/ 4n).

Corollary 3.5'. Let {{;} ;. z> be a continuous partition of unity; {;(x) = {(x — j)
with { supported in {x:|x| < 1}. Furthermore let f(x) be a continuous function.
Under the hypotheses of Theorem 3.5

_[k(t’ h;0, x) f(x)¢ (x) d*x

isanalyticin h € P, and bounded by C|| /(] ,,, for some finite constant C independent
of j.

Remarks.

(A) Corollary 3.5 is a consequence of an expansion of k(z, 4: 0, f{;) in terms of
expectation values of the form {Qy (¢, h); see [39], and of Theorem 3.5. Given
Theorem 3.5, the proof is essentially the same as in the case of the P(¢),-models
which is given in [39].

(B) Given Theorem 3.5 and Corollary 3.5, Theorem 3.1 follows by model-
independent arguments (depending only on the estimates of Theorem 3.5 and
Corollary-3.5', properties of covariances and the Cauchy estimate on the derivatives
in h). We note however that we only get two-particle decay for k. rather than three
particle decay (as in [39] where an even P(¢p), interaction is considered), because for
0 # 0, n the sine-Gordon interaction is not even in ¢, and therefore only the first
t,-derivatives of k(z;-) vanish at ¢, = 0.

(C) The proof of Theorem 3.5 follows by applying a variant of the cluster
expansion of Section 2. In a similar way as the convergence of the cluster expansion
of Section 2 may be reduced to one basic, model-dependent estimate (Proposition 2.2),
the convergence of the cluster expansion for ~-dependent expectations can be reduced
to such an estimate: Lemma 3.6 below. This follows from the general (model-inde-
pendent) theory of the cluster expansion; see [39].

We now turn to the proof of this input estimate.

Definition 3.5. We denote by f a pair (a, j) with a € I'® and j = (j,, j,) € Z*.
We then define

d(B) = max{d(j, li(ac)): |J1 - j2|}’
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where i(x) is the smallest integer in the support of « and /
zontal line.

Lemma 3.6. For my > M,, || < 1o, and M, sufficiently large, 1, = O(e™ %),
for some finite g, h(a) € P, ,

‘fj [T (@) 07C{DA)Qy e > do(t, s)| < D [] 711247, (3.14)

p=(a,j)eB peB
where B < By(X) = I'Y x (Z* n X)*?, X is some bounded rectangle in R?,

supp W < x A, (the A’s are unit squares in R?), and do(t, s) is the Gaussian
measure on &’ with covariance C(z, s;-). Furthermore

D = &KWle™XI | ] Ky(Q)emo w7, Ky(Q) < (deg Q)45 (3.15)

Here again K — o0 as M, — oo whereas all the other constants can be chosen
independently of M.

, the corresponding hori-

i(x

Remark. Spencer’s proof of Lemma 3.6 for P(¢), depends in two places on the
fact that the interaction is given by a polynomial:

(1) In the use of Holder’s inequality for an expression of the form ||] | 0t a:C;|, -
This can be cured in a similar way as in Section 2 (proof of Lemma 2.7), using co-norms
wherever possible. Note that there are at most two #,-derivatives for each i € Z and
at most one s,-derivative for each b e Z2.

(2) In the argument that each differentiation A, produces a factor 1*# (p is the
degree of the interaction polynomial). In our case this is obviously not true in this
form: the interaction density can be differentiated an arbitrary number of times
without giving zero. Since each differentiation produces a factor ¢ we could require ¢
to be small to obtain an upper mass gap; this would permit us to take over Spencer’s
analysis essentially unchanged and thus yield a ‘simple’ proof. But as it turns out
we do not need a restriction on ¢. By taking into account a bound on the number of
@-derivatives in a given square we get the upper mass gap for ¢ < 4n and i/m}
sufficiently small.

Now let us turn to the proof of Lemma 3.6. We apply the Leibniz rule to compute
the left hand side of (3.14) and obtain

Y { Y Y Jh(oc) [] 8% 8:C;-A, [] 01C-A,Ow e~ 2% dot, s)},

Ir'1+I'>=r uyﬁ=r1 ne P(l3) peB yER
(3.16)

(see [39]).

We note that there are at most 2/'! terms in the sum over 'y, I',. For fixed
I'y, I'; we substitute again C = ¥, z. C;,: we then obtain a sum over n € 2(I',),
{Js}yen> {V8}uys=r,- The procedure is now similar as in Section 2: we apply the dif-
ferentiations A, and estimate each resulting term using Corollary 2.5: this gives a
bound

AIw|l, eMIXTT NAY 12O +2 i@ (3.17)
! A

for each térm, where g = ¢g(B) will be estimated later;
w = W-v-[] () (3.18)

BeB
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where

b= j T1 & o:c; T1 a1C, [ 1s (3.19)

BeB YETW
(the integration is again over the variables contracted by é-functions). By Holder’s
inequality we have

Iwly < W00, TT A (3.20)

PeB
withg™' = p~! + r~'. For ||v|, we prove an estimate analogous to Lemma 2.7:

Lemma 3.7.
(1) oll, < exp[—K(T| + |BD1 [T Ms(, vp)

BeB

exp | 12 Q) + Gy |

exp[—my(l — 0)d(w)] [] exp [—;nl—i d(j,, v)] M(r, 7) (3.21)

yET
where K — o0, as my — o0;
@ Y ] My 9) < exp[Mi[T,[] < exp[M|X|1; (3.22)

reP(l'3) yen

() 2 1 My, vp)

vyp=T1 PeB

exp [—ﬂ— @(B) + Uy, y,;))} < exp [M,]] (3.23)

We postpone the proof and turn to estimating g(B):

Lemma 3.8. For C > 0, B given, let f.(B) be the number of f € Bwith d(f) < C.
Then there is a finite constant g, such that

qc(g(B) + supp Qw) = fc(B) (3.24)

Proof. We produce a factor 4 each time we apply a ¢-differentiation to e~ *V*,
Thus g(B) > number of different localizations j (€ Z*) in B outside supp Q) = number
of different localizations j € Z* in B ~ supp Q. Now for each localization j € Z*
there is only a finite number ¢. of & B with d(f) < C and j=j, or j = J,
(P = (%, /1, J,)). Therefore

Jc(B) < qclg(B) + supp Q). Q.E.D.
Let us combine what we have:

Lemma 3.9.
221w, < IW 1, exp[—K(|T'| + |B|)] exp [am, supp Qw1 [ Ms(r, vp)

foeB (3.25)
X exp [— TJ—Z dp) + dj,;, V,’g))] ﬂr exp [ —TJ—Z ay,, Y):| My(r, y)

(with the same constants M5, M, as in Lemma 3.7).
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Proof. Recall that £ is in the region P, defined by (3.12). Thus, using (3.21) and
(3.12), we get

IAI”ﬂHB h(@)| o], < exp[—K(T| + [BD] [T Ms(r, v5)

peB

BXP[ _Tl_i dpB) + diy;, v,’g))} [1 (3.26)
CXP[——:% d(j, v)] M(r, y) (BHB exp [mo - —A’% d(ﬁ)]) |47

We estimate the last factors using Lemma 3.8:
¢ TT explmo(1 — My " dB)] < |Af ] exp(mp)

" i (3.27)
= Mlg exp(fu o) < ii eXp (qM4m0)|5' exp (Moqyr, Supp Qw) .

If we choose |4| < exp(—myoqy,,), Lemma 3.9 follows from (3.27) and (3.26);
(@ = qy,) Q.E.D.

To obtain Lemma 3.6, we have to control the remaining sum over = € 2(I',), {/,},ex>
{78} 0y =1, This is done by two simple estimates similar to bounds proven in Section 2.

Lemma 3.10. (analogue of Lemma 2.6; Lemma 5.2 of [39]). Let M =
M(z, {j}, {y}) be the number of terms arising from the differentiations A,
M(A) = card {fe B|A;, = A,i=1or2} + card {yen|A,,

¥

=A,i=1or2}
Then there is a constant M5 such that
M < MUTIHIBD yn T Af(A)! (3.28)
A
[T N(A)! < eMsUTIHIBD i TT M(A)!, (3.29)
A A

where n = degree Q.
We omit the proof which is similar to the proof of Lemma 2.6.

Lemma 3.11. (analogue of Lemma 2.8; Lemma 5.3 of [39]). There is a constant
M (r) such that

[ ew| -~ | $ Tlew| ~2 i | Ty <

BeB {ylyen ven

exp (M(r)| X|)
for any r > 0.

The proof can be found in [39].

Clearly Lemmas 3.7-3.11 yield Lemma 3.6, with K;(Q) < (deg Q)?9°99¢; see
Sect. 2.

Let us now turn to the proof of Lemma 3.7. The idea is again, as in Section 2, to
use the co-norm for as many factors as possible and then to use Holder’s inequality
in the form of Proposition 9.2 of [21] for the remaining factors. We use the follow-
ing estimates on the differentiated covariances:

©(3.30)
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Lemma 3.12. For d(j, o) = 1,d(j,y) = 1
167 0;Cjlle, < Mg, y) exp™ ™ol =M@

exp[—~%n4—0(2d(j, a) + d(j, y))] exp[—%(M + 1)} (3.31)

where the M;(q, 7) are the same as in Lemma 3.7 and also fulfill (3.22) and (3.23);
g € [1, o0) is here arbitrary, (but see Section 2, Lemma 2.10).

Lemma 3.13.
167 07C;ll, < Ms(q, y) exp[—mq d(@)(1 — 5)] (3.32)

mg

exp[—ﬂ";—j 2d(j, @) + . y))] exp[——q a bl + 1)}

again with the M;(q, y) of Lemma 3.7.
The proofs of these two lemmas are easy exercises if one uses the technique of
the Wiener integral representation developed in [21, 38]; cf. also Section 2. We use

o1 o:c| < |2c)|  and  |010:C)| < |0:

and multiply bounds on |0}C;|" and |0;C;|' ""(0 < n < 1). Lemma 3.13 is essentially
contained in [39], except for the extra factor e ™a7(MI*1) which can be obtained
easily (see the proof of Lemma 2.7). As in [39] we obtain M;(q, y) = K4(g, y)",
where K¢(q, y) is defined in eq. (2.49). Equations (3.22) and (3.23) are proven in
Spencer’s paper [39]. Q.E.D.

Lemma 3.7 can now be proven similar to Lemma 2.7 if we note that for a given
localization i € Z? there is only a finite maximal number ¢, of a € I® or y € n such
that d(j, ) = Oord(j, y) = O and j; = iorj, = i; so we never need a Holder index
bigger than g, to bound |||, .

This completes the proof of Lemma 3.7.

Thus Lemma 3.6, hence Theorem 3.5, Cor. 3.5, hence Theorem 3.1 —see [39] —
are proven.

This concludes the proof of the upper mass gap. Let us remark that Spencer’s
method to study the Bethe—Salpeter kernel can also be applied to the massive sine-
Gordon model; it gives four particle decay of the Bethe—Salpeter kernel in the case
0 = 0 or « (even theory) for sufficiently weak coupling.

i

4, Scattering in QED,

In this section we discuss the scattering theory of QED, or, in other words, of
the massive sine-Gordon model. We propose to prove the existence and non-triviality
of an isometric scattering matrix and we investigate the dependence of scattering
amplitudes on the charges at infinity, i.e., on the angle  in the sine-Gordon action.

First we note that Theorem 2.1 (existence of the theory and Wightman axioms)
and Theorem 3.2 (existence of one-particle states; see also Theorem 3 of the Intro-
duction) guarantee the existence of a Haag—Ruelle scattering theory and of an iso-
metric scattering matrix [26].

Next we want to show that the scattering matrix is non-trivial. For this purpose
we prove that perturbation theory in A about 4 = 0 is asymptotic to the scattering
amplitudes of the sine-Gordon model. This result is a rather straightforward conse-
quence of ref. [13]; see also [34].
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In order to be able to apply the general (axiomatic) results of [13] we must only
verify two basic properties of the Euclidean Green’s functions of the sine-Gordon
theory that go slightly beyond what we have already proven in Sections 2 and 3
(Lemmas 4.1 and 4.2).

Let y = (my, 4, ¢, 0) denote the four bare parameters and {— )7 the truncated
(connected) expectation defined by the infinite volume interacting measure of the
massive sine-Gordon model; (see Section 2). Throughout the following Wick
ordering is always done with respect to a fixed bare mass, set, e.g., =1. We have to
consider the following Euclidean fields:

Vi = o, Y, = 3:9%,
Y3 = :icos(ep + 0):,, W, = :sin (ep + 0):,, (4.1)
Ys = :@sin(ep + 0):,, We = > cos(ep + 0):4,...

The first lemma we need in order to apply the results of [13] is

Lemma 4.1. Let |A/mj| be so small that the cluster expansion of Section 2 con-
verges. Let Q({x, v}) denote [[i_,{¥,(x;);} where v, =1,2,...,5,.... Then (in
the sense of distributions)

(1) %(Q({x, il = = J d*x'CQ({x, v}); ¥a(x))5
Q) 5 <OUx VDY = —f a3 < Q({x, V) ()
3) % (O, VDS = a—i)Q({x, v})>; + A f d*x'CQ({x, v})); Ya(x))5

@ 2O s = <a—‘1 o(ix, v})>;‘ + i f < Q({x, V)3 ¥s(x)5:

Similar equations can be derived for

arl +ra+ritrg
oA ama 00" o'

Proof. For suitably space-time cutoff sine-Gordon expectations and all
¢ € (—2/m, 2\/n), my > 0 the proof of Lemma 4.1 is an easy exercise in applying
Corollary 2.5 (see also [16, 17] and [13, Appendix]) which we leave to the reader.

We then apply integration by parts on function space, [9], in order to reduce
the r.h.s. of the space-time cutoff versions of equations (1) — (5) to (partially) trun-
cated expectations of polynomials in the fields ¥/, , 5, and y,. (Some of the factors
in these polynomials are smeared out with functions of the form ]_[P__ ,C,, where
ol y) Cpo(x — ) is the kernel of ( A + m3)~?', and these functions are 'admis-
sible in the estimates of Section 2, since C,, (x — ) is exponentially decreasing in
Ix — y[ and has only a logarithmic smgularlty at x = p!). Using the fact that

Vi(x) = é(x — y)(),

)

{Q({x, v})>, for arbitrary, finite r,,..., ry.

()

o V50 =~ ) 8 — .
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it is now straightforward to check that the cluster expansion of Section 2 applies to
such expectations (after they have been smeared out with some test function). Using
the convergence of the cluster expansion and some geometric arguments due to
Dimock [6] one verifies that these expectations converge as the space-time cutoffs
are removed.

Since in this way convergence of the space-time cutoff version of the r.h.s. of (5),
as the cutoffs are removed, is proven for arbitrary, finite r;, +---+ r,, Lemma 4.1
follows. Information on the parameter intervals on which Equations (1) — (5) hold
follows of course by inspecting the conditions for the convergence of the cluster
expansion derived in Section 2. Note that 0 is an interior point of the corresponding
A- and e-intervals. Differentiability in 8 holds on the whole interval [0, 2n]. Given
4 and e, differentiability in m3 holds on (M}, o) for some finite M, = My(4, ¢).
Also note that the various derivatives of the EGF’s at A = 0 are free field EGF’s and
therefore correspond to standard perturbation theory, (a fact already used in Sec-
tion 2 to identify the derivatives in A at A = 0). Q.E.D.

We remark that the results of Section 2 not only yield analyticity of the EGF’s
in A near 4 = 0 but also analyticity of the EGF’s in 6, (which strengthens Lemma 4.1,
(3)-

The next property of the EGF’s we must establish in order to apply the results
of [13] is a regularity property.

Lemma 4.2. Suppose that ¢ < 2n. Let f},. . ., f, be test functions in #(IR), and
X, < X, <---< X,. Then

(1) the EGF’s < ITv.(f® 5;'.)>Y are locally integrable functions of
i=1

X15-..,%,,and

<n b

Proof. 1t suffices to prove this lemma for the case where supp f; = [J;,j; + 1]
some integers j;, i = 1,..., n, with bounds that are uniform in j;. The general case
then follows by summing over all possible localizations, using a C® partition of
unity. We now prove (2): By Holder’s inequality

|< I1 v/ ]_[ o (f; ® 32)>3™ 4.2)

From Corollary 2.5 we know that

o (f ® 0217 5" (4.3)

is finite if ¢* < 2mand fe L' withr > (1 — &*/2n)”~ !, supp fcompact (v = 1, 2, .. .).

We may therefore apply the technique of [36] for proving bounds on Schwinger
functions (which extends the ‘Glimm-Jaffe ¢-bounds’; see [36, Section 8] and [19])
to conclude that

W (S @ 82D, < K| (f; ® 82|75/ (4.4)

for some p € (2, ) only depending on the bare mass m, (for all y for which (-},
exists as a limit of cutoff expectations with free boundary conditions). Here

K(y) < <eP* 57,

o
Xi

,| < n! TT I £ill,, for some Schwartz norms | - |, .

xt
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where U, is the sine-Gordon action integrated over a unit square. The second factor
on the r.h.s. of (4.4) can be estimated as follows:

o (S @ 8|78 < npal™| £ill, (4.5)
with o* finite, for all r < o0, if v = 1, 2, and «¥ finite, for all r > (1 — &2/2m) "1, if
v = 3,4,....Bycomplex interpolation it suffices to prove (4.5) for the case where pn

is an even integer. The bound (4.5) for v = 1, 2 is standard; (a simple proof follows
from hypercontractivity). For v = 3, 4 the bound (4.5) is contained in [16, 17], and
for v=15,... it follows from the one for v = 3,4 by using analyticity of
Y (f® )" in ¢ in a complex neighbourhood of (0, \/2%) and the Cauchy
* estimate. Estimates (4.4) and (4.5) yield Lemma 4.2, (2) from which (1) follows
immediately. Q.E.D.

Remarks. The reader may wonder why we have assumed that ¢ < 27 in Lemma
4.2: If &* > 2r estimates (4.3) — (4.5) break down, since {Y,(f ® 5;)%), is infinite,
forallv > 3,9 = 2,and ¥ ,(f ® d;) is not a well-defined random variable. Neverthe-
less Lemma 4.2, (1) and a generalized version of Lemma 4.2, (2) (see [13, Theorem 3];
this is all that is needed in order for the methods of [13] to be applicable) still seem
to be true in the region of convergence of the cluster expansion. A complete proof
of this statement would however require some substantial refinements of some of the
technical estimates in the cluster expansion and is therefore not attempted here. Let
us finally emphasize that for v, = 1 or 2,alli = 1, ..., n, Lemma 4.2 holds without
change, for all ¢ < 4n. Combining Lemma 4.1, (1) and (2) and Lemma 4.2 with
[13, Theorem 8] we conclude that given a physical mass m > 0 there exists a positive
Ao(e, m) such that the equation m(A, m,) = m has a unique solution m, = my(m, 1),
for all 1 € (— Ay, Ag). We may therefore fix the physical mass throughout most of the
following.

Corollary 4.3. For ¢ < 2n Feynman perturbation theory in A about 4 = 0 is
asymptotic to the scattering amplitudes of the massive sine-Gordon model, and the
scattering matrix is non-trivial, provided A is small enough. The scattering amplitudes
are C* in 0 and ¢.

Proof. The assertion about Feynman perturbation theory follows from Theorem
2.1, the existence of one particle states established in Section 3 and Lemmas 4.1 and
4.2, by Theorems 10 and 12 of [13]. From these results it moreover follows that the
scattering amplitudes are C*® in 6 and ¢. To show that the scattering matrix is non-
trivial for small enough A it now suffices to compute, e.g., first order contributions
to the scattering amplitudes: To first order in A the 2 — 2 amplitude is given by
4

€
iA Y cos 0 6(p; + p» — P3 — Pa), (4.6)

where p = ((p* + m?)!/2, p). (We note that in two space-time dimensions formula
(4.6) alone does not imply non-triviality of the scattering matrix: (4.6) is consistent
with S = exp i4 (¢*/4!) cos 6.) The 2 — 4 amplitude is given by

6

I -
— 14, 6 cos 0 6(p; + p» — P3s — Pa — Ps — De)s 4.7)

and the 2 — 3 amplitude by

5

L
—ik 3] sin 0 6(p; + p; — ps — pa — Ps)- (4.8)
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Formulas (4.6) — (4.8) not only prove that scattering is non-trivial for small A but
also show that it depends non-trivially on the angle 0, or, in QED, language, on the
charges at infinity; [4]. Q.E.D.

Apart from the scattering amplitudes of the fundamental (lightest) particles
of the theory the bound state spectrum of the sine-Gordon theory depends on 0, as
well:

Combining Lemmas 4.1 and 4.2 and Theorems 2.1, 3.1, and 3.2 with Theorems 7
and 10 and (I.11), (I.12) of [13] one concludes that for fixed m, perturbation theory
in A about A = 01is asymptotic to m>(1, m,). This and the results of [40] and [22, §3.4]
prove that for 6 = = and small enough 4 > 0 there exists a two particle bound state
with a mass in the interval [m, 2m]. This is because the interaction between two
particles is attractive for 6 = © and very small A > 0 (see (4.6)). However for § = 0
and very small 4 > 0 there is no such bound state! (See [40]; 0 = 0 and 4 > Ois of
course the same as § = mand 1 < 0).

Next we briefly discuss scattering for small, but not necessarily very small
coupling constants A and ¢ < 4r:

(1) Applying Equations (I.11) — (I.13) of [13] and combining them with Theorem
2.1 and the Malgrange-Zerner [12, 28] theorem we conclude that there exist positive
numbers 4,(¢, m) and J,(e, m) such that for |Re 4| < 4,, [Im A| < 8, the equation

m(4, my) = m

has a unique solution m% = m3(im, /) € € that is analytic in A for |[Re 4| < 14,
[Im A| < é,.

The cluster expansion of Section 2 yields joint analyticity of the EGF’s in A
and m3, for |A| < i, and m, in some complex neighborhood of (M, c); see [21].
Thus, as functions of A and m, the EGF’s are analytic in 4, for |[Re 4| < 1, and
< &,, for some positive 4, < 4; (£ 4¢) and §, < ;.

Using now results of [13] and refs. given there and combining them with the
Malgrange-Zerner theorem one shows that real analyticity in A, for fixed, real m
holds for the restrictions of the amputated, generalized Green’s (H-) functions to
the whole complex mass shell, for all real A at which the EGF’s are analytic. The
scattering amplitudes on (sub-) regions of the physical points can be obtained as
various boundary values of the generalized Green’s functions; see [2].

Applying now the edge of the wedge theorem we conclude that the scattering
amplitudes as functions of A cannot vanish in any interval contained in the domain
of holomorphy of the EGF’s (which contains in particular the interval (—4,, 1,)).

(2) Similar arguments imply that the scattering amplitudes of the massive
sine-Gordon model that are non-trivial for small ¢ and some given, real A cannot
vanish in any e-interval contalned in (—2,/m, 2,/n). The outline of the proof 1s as
follows: For v = 1, 2 and all ¢ < 4x both Lemmas 4.1 and 4.2 hold. It is easy to
check (by inspection of the explicit expressions derived in [16, 17]) that for bounded

functions 4, ..., &, of compact support and v; = 3 or4,i = 1,.. ., n, the expecta-
tions
(T ¥ (h)o
i=1

are analytic in ¢ in some complex neighborhood of (0, 2,/x). The same is then true

for {e*’s}, and § < [{e*¥s}[,<3/2 for such ¢, provided 1| is small enough. Esti-
mates on such expectauons are uniform in ¢ in compact subsets of some complex
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neighborhood of (0, 2,/n). Therefore we obtain convergence of the expansions of
Sections 2 and 3 for all ¢ in some complex neighborhood of (0, 2,/x) and small 4.
This combined with Lemma 4.2 (for v; = 1 or 2) and formulas (I.11) — (1.13) of [13]
proves that for fixed bare mass m, > M, the physical mass m is jointly analytic in 4
and ¢ in some complex domain in €2. Restricting the amputated, generalized Green’s
functions to the complex m-mass shell, applying analytic completion in the complex
mass shell variables, A and ¢ and repeating then the arguments outlined in (1) (but
this time with m,, rather than m fixed) proves our assertion.

Theorems 2.1, 3.1 and 3.2 combined with the strong results of [40] concerning
the properties of the energy-momentum spectrum (for small energies, in models
with a Bethe—Salpeter kernel that has four-particle decay) and with the Malgrange-
Zerner theorem suggest that for energies between 2m + 6 and 4m — 6 (with é > 0
arbitrarily small) the Feynman perturbation series for the two-particle scattering
amplitude in A about A = 0 has a finite, positive radius of convergence (that presumably
will depend on & — perturbation theory can of course not be expected to converge at
the thresholds).

The results we have proven are not strong enough, however, to draw this con-
clusion. Since complete results concerning these questions have not been worked out
yet we omit further details.
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