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A General Theory of Relativistic Gravitational
Energy-Momentum Localization

by Jean Chevalier?)

University of Geneva, Department of Theoretical Physics

(21. IIL. 1976)

Abstract. In the framework of Scherrer’s linear (tetradic) formalism, field equations are
derived from a general variational principle (with the constraints g,, = e.g*,.£%.,). By elimination
of the Lagrange multipliers, we obtain six antisymmetric equations. With the ten constraints
quoted above, these ‘supplementary conditions’ constitute a system of sixteen equations for the
‘tetrads’ g* .(x). This system, with appropriate boundary conditions, should determine the g’ ,
unambiguously. It is then possible to express the gravitational energy-momentum (GEM) density
at each point of space-time (localization). The study of the weak fields then allows us to give a
physical justification of our theory, in contrast to other formalisms, which are more founded on
considerations of a mathematical nature. This paper is thus a generalization of [PA 38 481 (1976)]
where we gave a physical argument in favour of GEM-localizability in the static case.

1. Introduction

The actual state of research, in the problem of relativistic gravitational energy-
momentum (GEM) localization, is as follows. Some physicists (for example: Landau/
Lifshitz, Wheeler/Misner/Thorne) think that GEM is not localizable. On the other
hand, tetradic formalisms have been developed and have allowed one to solve the
problem in favour of localizability, at least from a formal point of view (for example:
Scherrer, Moller, Rodichev/Zadonskii). But all these theories have a major defect:
they contain specific conditions for the tetrads, which are not physically justified.
According to Meller [1] (and we agree with him), only a good physical argument in
favour of these ‘supplementary conditions’ would permit the claim: GEM is
localizable.

In a recent paper [2], we showed that such an argument exists for the static case.
By analogy with the Newtonian case, we postulated that the total gravitational energy
of the system is an extremum: & (total gravitational energy) = 0. This physically
natural requirement leads to field equations that are necessary for a precise determina-
tion of the ‘tetrads’. But these equations are covariant only under the group of
coordinate transformations consistent with the static character of the problem, namely
the purely spatial coordinate transformations. To obtain covariant equations in the
most general case, it is obviously necessary to start with a Lagrangian, the form of
which is a scalar density. The present paper is devoted to the development of this idea.

1)  Supported by the Swiss National Research Fund.
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2. Construction of the Lagrangian

We construct our theory in the general framework of Scherrer’s linear (tetradic)
formalism [3]. Because of this, we briefly recall its outlines.

The ‘tetrads’ g™ ,(x) are connected with the Einsteinian metric tensor g,,(x) by
the formulas:

guv(x) = eaga',.u(x)ga',v(x)- (21)

We can consider the g , as covariant (coordinate) vectors. Under a coordinate
transformation x — X, the g, change as follows:

v
oxX* .,

8 =558 (2.2

Let us differentiate with respect to x":

g, PF . 0% %8 agh,
o oxrax S ¢ T Txk Bx’ o0xP

2.3)

Thus the g™ ,/0x” do not constitute a tensor. Interchanging the indices p and v,
and subtracting (2.3) from the obtained equality, we have:

l agh’,v _ agh',u _— _ai?_a ox’ |1 ag?\’,ﬂ _ ag_)\’,o: (2 4)
2 ox+ ox' ) — ox*ax' |2\ ox® ox* '
which proves that the quantities:
1 agl\. ag)\,
b s B o g

form a 2-covariant tensor (for each value of A). It is the simplest tensor that depends
on the first derivatives of the g ,. We can of course form the tensor D,g" ,, where D,
is the usual covariant derivative. But these expressions can be written as follows:

Dygh y =" + 8%a(fu® + 13%) (2.6)

with 2, = g, "M% (8., "g" ., = 8)), namely a linear combination of the f* ,,. The
symmetric part of the og" ,/ox*:

1 a A, 8 As
=g (G + ) @
is not a tensor. Nevertheless, the expressions:
Y = 8a, " 0y (2.8)

play an important role in this formalism, analogous to that of the I'*, of the quadratic
theory. Indeed it can be proved that the expressions:

3 ok = o A (2.9)
B = oxc + ¥ ¥ .

are the components of a 1-contravariant and 1-covariant tensor. It is the covariant
derivative (in the linear theory) of the vector v'*. In particular:

08" 4 = e (2.10)
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Our purpose is now to form all the elementary invariants that depend only on the
g"., and their first derivatives. One can easily verify that there are only three
possibilities:

?Efasmﬂv IjEfaﬁmaa iIEf‘ff‘a (2.11)
with the definitions:

fhuv = gu,’agv,'ﬁfl\',aﬂ f?\ = fa?\a
S = phegVBfA = ebe'f?,, etc.

/1'\, /\, /\ being three arbitrary real numbers, we construct the Lagrangian density:
2 3
H=AD+ A+ A9 (2.13)
11 22 33
where? = in{, g = det(g" ,). Scherrer showed [4]that with A =3, A = 1, A = -2,
1 2 3
the variational principle:

@12

8 f 9d*x = 0 (2.14)

leads to the ten Einstein equations for the exterior case. Obviously, these do not allow
us to determine the 16 g* , unambiguously. We derive the six necessary supplementary
conditions in Section 4.

3. Curvature Tensors of the Linear Formalism

By analogy with the quadratic formalism, one can construct a ‘curvature tensor’
from the y:*,, and their first derivatives:

P SA o »A
r:Aoat = g}cfo - g),c;r + Y:Aw')’:apa - V:Aaa')’:am- (31)

By contraction, we get successively:
oo = % (# r ., in general!) (3.2)
r=rf,=r,t (3.3)

r is the curvature scalar of the linear theory, invariant under the regular coordinate
transformations and the (global) Lorentz transformations. But r is not in general
invariant under tetrad transformations consistent with (2.1). This scalar plays an
important role in our theory (see Section 5).

On the other hand, r = gr can be written (see Appendix A):

7,
r = E'Fr(gf'a) + g(H == 2H). (3'4)
2 3
This form will be useful in what follows.

4. The Field Equations for the Tetrads

At the end of Section 2, we mentioned the variational principle that leads to
Einstein’s equations for the exterior case. The corresponding Lagrangian density is
obtained by putting /1\ =L A=1A=-2in(2.13).

2 3
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The expression (2.13) being the most general scalar density that depends only on
the g* , and their first derivatives?), we postulate that the field equations for the g*: , be
derived from a variational principle analogous to (2.14), but with constants /i\ whose

ratio is different from (4:1: —2). On the other hand, we have to take into consideration
the conditions (2.1), so that we treat in fact a variational principle with constraints
(exterior case):

8f$d4x=0 AAA # $:1:-2) (4.1)
and ’

Guv = guv — €8 ,,8%,» = 0. 4.1)
(4.1) and (4.1") lead to the following field equations:

* *

o S~ g = ad
with:

9% = 9§ + XP(x)Gop(x) (4.3)

where the A*#(x) are ten symmetric Lagrange multipliers (tensor density of rank 2).
The sixteen equations (4.2) and the ten constraints (4.1"), together with adequate boundary
conditions, should determine the sixteen tetradic components g* ,(x) and the ten Lagrange
multipliers A*'(x). Furthermore it is obviously necessary to know the ratio of the
coefficients ( /1\ f /2\ : /3\). We shall return to this point in the next section.

One can in fact considerably simplify this procedure. The characteristic indices
A, o of the equations (4.2) are ordered according to the scheme (, ). After multiplica-
tion of these relations by e,g" ,, the two characteristic indices are below and on the
left of the comma: (,, ). By symmetrization, the sixteen field equations can then be
replaced by an equivalent system of ten symmetric equations containing the A*¥(x) and
six antisymmetric equations not containing the Lagrange multipliers (indeed one can
easily verify that the A*’-contribution of the Lagrangian (4.3) to the equations (4.2) is
purely symmetric). To obtain the latter, it is thus sufficient to compute the purely
antisymmetric part of the field equations. The antisymmetric contributions of the S? are

given by the following expressions (see Appendix B):
513—>‘ \1/mu] = (O + 2% — [N
9= Vona = 30 + 2)(i% — /%) + @ + 2 (4.4)
9~ \B/mal = —3(0nfu — Ouf3)

where 0, = g,.'%9 , (see (2.9)). On the other hand, one can prove the identity:

(aa + zfa)fahu = —(ahﬂl - aﬂ.ﬁ\)' (45)
9= /1\2_;) + /2\2‘2) + /;5 thus gives the following antisymmetric equations:
3
/I\V[Au] + AVouw + AV = 0. (4.6)
1 2 2 3 3

1) Of course we don’t consider more complicated invariants such as IJELZH, €I 2 etc.
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If we bear in mind the formulas (4.4) and (4.5), this becomes:

(A = BN + YD = fi5) = (A + 3N @Sy — S = 0. @7

Notice that the choice A =4, A = 1, A = —2 makes (4.7) identically zero.
1 2 3

This corresponds to Einstein’s equations. Discarding this possibility, we can write
quite generally the six supplementary conditions for the tetrads as follows:

A@a + 23" — [u") + B@rf — 8ufs) = 0. (4.8)

A and B are two real numbers, whose ratio we shall determine by studying the
case of the weak fields. With this reservation, we can claim that the equations (4.8)
constitute a very satisfactory mathematical ‘solution’ of the problem of determining
the tetrads. Indeed, we started from the most general Lagrangian which depends only on
the g™, and their first derivatives.

At this point of the development, it is natural to compare the supplementary
conditions (4.8) to those of Mgller [5]. Simple but tedious calculations give the result
that both the systems are equivalent if we put:

A+ B A+ B
7 r=—4 9=——

(for the meaning of the coefficients «, B, y, 8, see [5]). The role of this remark is
important in the case of the weak field (see Section 5).

a=A B=-— 4.9)

5. The Case of the Weak Field

In [5], Moller discusses exhaustively the case of the weak field. In particular, he
proves that the solutions of his equations are independent of the coefficients «, 8, y, 8.
It then results from the final remark of Section 4 that the solution obtained by Meller
is also valid for the equations (4.8) in the case of the weak field. In this section we shall
simply repeat the essentials.

We say that the gravitational field of an insular system is weak if a coordinate
system exists in which the g,, have the form:

guw(x) = nuy + hyuy(x) (|Auy < 1). (5.1)
The relations (2.1) then allow us to write the tetrads as follows:
gh’.u(x) = Shu <5 qh’,u(x) (lqh',u| < 1). (5.2)

Space-time being asymptotically flat, we introduce a coordinate system, Lorentzian
at infinity, in which the g , have to satisfy the following boundary conditions:

A. gt (x) —> &, for r — c0.

B. g .(x) — &, shows the same asymptotic behaviour as the metric quantities
guv — My for an insular system. This means that, if $(x) is any of these quantities,
iy must satisfy the condition of outward radiation:

(o) | 1)
hm(a_r +E""at_) =

for r — co and for all values of t, = ¢t + r/c in an arbitrary fixed interval. Moreover,
P(x) and its first-order derivatives y/éx* must be everywhere bounded and must go
to zero at least as 1/r for r — 0.
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If in addition we choose to work in a harmonic coordinate system, characterized
by de Donder’s conditions:

5% (h,% — 38,%h) = 0. (5.3)

Moller’s supplementary conditions then lead to the unique solution:
g u(x) = & + I(x). (5.4

The tetradic components g* ,(x) are thus expressed very simply as functions of
the metric tensor g,,(x) = 7,, + A,(X).

Now let us return to the equations (4.8). Is it possible that A4 is zero ? No, for our
supplementary conditions would then be reduced to é,f, — 9,f, = 0, or, in the case
of the weak field, f,/éx* — df,/éx* = 0. Thus it would be sufficient that the vector f,
be the gradient of an arbitrary potential function (compatible with the boundary
conditions) for these relations to be automatically satisfied. These equations would not
be restrictive enough. It follows that 4 cannot be zero (by similar considerations,
Moller showed that « # 0). On the other hand, suppose quite generally B # 0 and
B # A (see (4.9) and [5]) and let g* ,(x) be the solution of the equations (4.8) and (2.1)
(weak field). The remark at the end of Section 4 allows us to assert that these g* ,(x)
are also a solution of the equations (¢, + 2f,)(/,%. — f.%) = 0. It follows that our
g™ ,(x) are also a solution of d,f, — 9,f, = 0.

Let us summarize. In the case of the weak field, in harmonic coordinates which
are Lorentzian at infinity, the solution of equations (4.8) and (2.1) is simultaneously a
solution of the systems:

O + 2% — .50 =0 (5.5)
nhfy — =0 (5.5)

with the boundary conditions A4, B. It is essential to understand that a solution of (5.5)
is necessarily a solution of (5.5), whereas the converse is not true in general. For that
reason, in the case of the weak field, we can consider the equations (5.5) as the desired
supplementary conditions.

Starting from these considerations, we simply postulate that the supplementary
conditions (5.5) are still valid in the general case:

Oc + )% — fu") = 0. (5.6)

Thus, there are no more undetermined constant coefficients in the desired conditions.

Our conviction that (5.6) are really the ‘good’ equations is corroborated by the
following fact. In Einstein’s theory, the field equations for the g,,(x) can be derived
from the variational principle (exterior case):

5 f Rdtx = 0 .7)
where R is the scalar curvature density. But we saw in Section 3 that it is possible to

define a curvature scalar of the linear formalism (formulas (3.1)-(3.3)). By analogy
with (5.7), let us write the variational principle:

5 f tdx = 0 (5.8)
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taking into consideration the constraints (2.1). Because of the formula (3.4)
((2/0x*)(gf~®) is an ordinary divergence), the Lagrangian density r of (5.8) is equivalent
to g(I2{ - 2I31 ). (5.8) then leads us to the supplementary conditions for the tetrads:

Yous = 2You = 0 (59)

(see (4.4)). If we take into account the identity (4.5), one easily sees that the equations
(3.9) are precisely the conditions (5.6). From a purely aesthetic point of view, it seems
very satisfactory to us that the latter derive from a variational principle formally
analogous to Einstein’s one.

The Schwarzschild—Scherrer solution mentioned in [2] is in fact a solution of (5.6)
and (2.1). But the diagonal Schwarzschild-Scherrer solution quoted in the same paper
does not satisfy the conditions (5.6). Here one could of course object that the relations
(5.6) were established with the help of purely mathematical considerations. Neverthe-
less we think that they are justified by sound physical arguments.

(a) We obtained our supplementary conditions from a variational principle. The
importance of such principles is well known in physics.

(b) In the case of the sratic weak field (Newton), one easily verifies that the
solution obtained from (5.6) also satisfies the extremum principle of gravitational
energy developed in [2], which is a quite natural physical requirement.

(c) In the same Newtonian case, the spatial part of the vector 2c¢2f, constitutes
the gravitational field [6]. The relations (5.5") (which result from (5.5)) then give
rot G = 0. It is interesting to remark that, in this approximation, our conditions are
precisely reduced to one of the classical equations that determine the gravitational
field. The equations (5.6) are, so to speak, the relativistic generalization of rot G = 0..

6. Conclusion

Schematically, one can present the solution of the problem of relativistic GEM-
localization as follows:

(1) Solve Einstein’s equations for the g,,(x):
R,y — %guvR = —«glyy (6.1)

where «xz = 8nG/c*, T,, = matter tensor (T, being symmetric and the supplementary
conditions (5.6) antisymmetric, the latter are also valid in the interior case).
(2) Taking into account the constraints:

Zuv(X) = €,8% ,(X)g™ (%) (6.2)
and the boundary conditions A4, B of Section 5, solve the equations for the g ,(x):
(O + 2)x% — fu5) =0 (6.3)

where 6, = g, '#0 ; (see Section 2).
(3) Compute the f* ,, and introduce them into the expression of the GEM-
density:

St =38, 0 + St — 28, (6.4
1 2 3
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where

%A,’“ = g[— eS8y + gh,'“{l]

Tt = g2 — PN fega” + 82" H] (6.5)
%A,’“ = g[2f*(f*re8s." — fige,) + gA,'“f;I]-

Gravitational energy-momentum is thus localized.

Appendix A

We give the proof of the relation (3.4).
The covariant derivatives of the linear theory (see (2.9)) do not commute. The
commutation relations are formally analogous to those of the quadratic theory:

(0,0, — a.pa,a)T:Au = Fped Hy = P %ol e (A.1)
Let us apply this formula to the covariant vectors gt ,:
(a,aa,p - a,pa,a)gh’,u = _r:wupcgh’,a = _r?\',upa- (AZ)

On the other hand, one can prove:

ogh
0,,8" v = 3xu’v — Vg = axu’ — Y

_ogh, 1 (agh-.v 8gh',u) 1 (3g"’.v 3g“’,u)

ox* 2\ %t ox’ 2\ ox+ ox’
namely:
9,u8" v =S - (A.3)
Taking into account (A.3), (A.2) can be rewritten:
0,0/ ou + 0,0f™ up = 1™ 4ps (A.4)
and, by cyclic permutation of p, o, p:
0,0 ou + Q0™ up + 0uf™ 06 =0 (A.5)

because of the cyclic character of r* ,,,. Comparing with (A.4), we can write (A.5) as
follows:

PR op = =8 ™ o ‘ (A.6)

We then get successively:

o = g)\,'agu,’ﬁgv,'yrx’,aﬂy = "g)\,’agu,'ﬁgv,'ya,afx',ﬁr
= "'gh,'a[a,a(gu.’ﬁgv,'.‘ffn',ﬁy) - a,a(gu,'ﬁgv,ﬂ)'f’c’.ﬁv]

namely, if we use the simple relation:

0,.80" = &0 au (A.7)
and after some simple calculations:

rm}\uv = —8)\fmuv + fxva'fa)\u - f’cuafa?w- (AS)
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Contracting successively x = p and A = v, we obtain:

[ = aafa: L 12{ (IZI Efaﬁtfvﬁa)' (A9)

On the other hand, one can easily prove the following equality:

0
e (881) =28/ (g = det(gh ). (A.10)
Let us multiply (A.9) by g:
t=gr=go.f* + gH = g8,,"0,,f" + gH

« 2
= 88,* af + gH a—ﬂ(gga,"*f“) — axg (g8.,%).f* + gH

and, using (A.10):

£= o2 (gf) + g —2H (H=ffY qed. (A.11)

Appendix B

The Lagrangian $* of the formula (4.3) leads to the field equations (4.2). It is
rather tedious to calculate the symmetric (U,,,,) and antisymmetric (¥,;) contribu-
tions of 9 to the field equations. We theirefore give only an exan;ple of such a
calculatioim, say %A,'“ = ag/ag%,u. We start from:

% = 312{ = &f**"fr5e = 8€°f 5y f " pa- (B.1)
Let us calculate:
F7j .
3g£ = min g* , = gg, " (B.2)
B
On the other hand:
(74 a ¢
[ = gﬂ.'pgr.'ofa'.na - 3;‘::
agﬁ o ag? =
’ a + - @ a*
ag » &y’ f P 8s,’ ag)\,,uf 0
Let us recall:
a o0 a (1 4
6?;’: = =887 (from g, 7g>,; = &) *éxfl
N N
- —gpobpy Mg oBPE . — B0 i e (B.3)
namely:

afaﬂ'? o e
ag)\ P = 8’ f a8 — &8s, uf Are (B'4)
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We then have:
6% 5
— Bofo Y
3g“’,“ ag"’,,, [e®gf%srf 5]

g rq of® . Of
= ef 3g"',uf srf 7pa + €°g gaﬁy e+ e’gf By agi\,ﬂa
and after some calculations:
33
= g = 2SS = [P g8 + g8 M. (B.5)
2 g M 2

The other contributions are computed in the same way. In particular, the anti-
symmetric V},,; are given by the formulas (4.4).
i
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