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Nonlinear O(#z + 1)-Symmetric Field Theories,
Symmetry Breaking and Finite Energy Solutions

by A. O. Barut, L. Girardello') and W. Wyss
Department of Physics and Astrophysics, University of Colorado, Boulder, Colorado 80309

(23. I1. 1976)

Abstract. We introduce a class of 0(n + 1)-symmetric, nonlinear field theories, containing
the standard chiral models as special cases. Our class is parametrized by a function « and we give
explicit transformations between any two theories corresponding to different choices of the
function «. We then exhibit classical ‘ plane wave’ and static solutions of the equations of motions
of these theories. However we have to introduce symmetry breaking potentials to find solutions
leading to a finite total energy.

Introduction

As recently stressed [1], the study of classical solutions of nonlinear field equations
i1s essential for a method of quantizing interacting fields based on semiclassical
approximations. We also recall that other approaches to quantization rely on the
knowledge of all classical solutions of the nonlinear field equations [2]. Furthermore,
in the relativistic theory of extended particles, the classical solutions of its governing
nonlinear partial differential equations describe simple excitations or modes, which
can be quantized [3].

The purpose of this paper is to discuss a class of O(n + 1)-symmetric nonlinear
field theories from a group theoretical and differential geometric point of view. We
are also interested in breaking the symmetry to get models with finite total energy.

I. A Class of O(n + 1)-Symmetric Nonlinear Field Theories
Consider a set {¥2,..., ¥"*1} of (n + 1) real scalar fields on the Minkowski
space, satisfying the equation
1
k’
These fields can be looked upon as coordinates of the sphere S, embedded in R**?.
We now parametrize the upper hemisphere of S, by new coordinates ¢ (fields)

W12 o PR grnl® k> 0. (1

V=), i=1,...,n, (2)
gns1 _ (,lc _ mz)” >0, 3)
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where

¢ = (@ +- -+ )2 4
From the metric on S,

ds? = dV1d¥Y! + .- + dV"dY" + ¥+ JPH? (5)

we get the induced metric on the upper hemisphere of S,,:
ds? = gy, di* A" = () df* + -+ " )

+ B(p)P dp + - - - + ¢" dp"), (6)
where
B = T | 5 + @0 + ke, )

and o' = dafdd.
Equation (7) can also be written as
(1 — ke®$?)(o® + B$?) = (¢'¢p + ). ®)

Each function «(¢) labels an O(n + 1)-symmetric theory. Two parametrizations

oy and «, imply the following nonlinear transformation between the corresponding
fields ¢f;, and ¢fs)

b = 52 4t ©)
where

b = (2 @F) k=12 (10)
and

?5(1)“(?5(1)) = ¢(2)“(95<2))- (11)

The group O(n + 1) acts transitively on S, and the nonlinear transformations (9)
follow from equation (2). The subgroup 0(n) of O(n + 1) acts linearly on the fields
{#1, ..., ¢"}, thus the class given by the parametrization (2) is best suited to treat
theories with O(n)-symmetric potentials.

Equations (1) and (2) can be generalized to other manifolds embedded in R***
and different symmetry breaking; these problems will be the subject of a subsequent
report.

The action density corresponding to the metric (6) with notation (4) is

Zo = 3e*($)0,9'0 b + B(P)D'Oub)($'E" ;)] (12)

The equations of motion are

0.0 =~ @op)ed + Lo

'
(2404

< [@es)(% - 6) + @asawos) Lo ], (13
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with o® + B¢? #= 0. Note that «® + B2 = const corresponds to normal coordinates.
The case o + B¢$2 = 0 is a singular model for which we obtain « = ¢/¢, B = c?/¢*
and ¢ # 1/4/x. The energy-momentum tensor for (12) is

T = BO§Th + BEPHNGOh) — 1% (14)

Some special cases of (6), used in the literature [4] are shown below

« B

1 1——kk$2 (15)
- 0 (16)
sin(\ijck¢¢+ o) q% [1 3 sinz(x;:; $ + C)] (18)

Geometrically, different choices of the function « correspond to different parametriza-
tions of the upper hemisphere of S,. The corresponding Lagrangians look quite
differently, but the transformation between two parametrizations connects the
solutions of the associated field equations. Note that the case (18) is the model in
normal coordinates, i.e. a® + Bé? = 1.

II. Classical Solutions
I1.1. ‘Plane wave’ solutions
We first look at solutions of the form

¢i = ¢{(S)s s =q"x,, q“q, = qz # 0.

For this type of solutions the equation of motion (13) reduces to the equations for a
geodesic on §,,

b=y + B L gy

o
oo — B ..
+ 3 T B (¢4’ (19)

Here the dot denotes the derivative with respect to s. The energy density (14) for the
solutions of (19) becomes

T = lqdgud'd*, g = q3 + §* (20)

and is a constant since {¢'} constitutes a geodesic. Hence the ‘plane wave’ solutions
lead to a constant kinetic energy density.

The group O(n + 1) maps geodesics into geodesics, because it is the isometry
group of S,, and hence it is sufficient to solve equation (19) for ¢! = 814!, and then



810 A. O. Barut, L. Girardello and W. Wyss H.P. A.

use the nonlinear action of O(n + 1) to recover all other geodesics. Thus we get the
equation

¢t = 29512 d¢1l n(e® + Bg*). @21)

Generally, the ‘plane wave’ solutions are stable in the geodesic sense [5]. In
normal coordinates the geodesics are straight lines. For o« = (1 + ké'*)~1/2,
B=—k(1+ k¢,2)_2 we find from (21)

951(3) *\/k tan[\/k (CIS a4 02)]

11.2. Static solutions

We will now look for static spherically symmetric solutions through the equation

$' = Af(r), A'4=1, r=[x|. | (22)
From (13) the equation of motion then reads
R MNE PP R 2

where [ = df/dr.
For normal coordinates o2 + Bf% = 1, one gets

T
rr=-2L. (24)

The energy density for the fields (22) is
© = (@ + ) el

and hence one sees that the solutions of (24) again do not lead to a finite total energy.
To achieve this we have to break the symmetry.

III. Symmetry Breaking

Even though solutions of field equations with locally finite energy have recently
been advocated [6] we want to introduce a symmetry breaking potential so that we
still retain linear O(n)-symmetry but find a finite total energy.

With the lagrangian %, from (12) let us look at, with eq. (4),

L =% + V(). (26)
The equations of motion become

¢i

auaﬂ.¢i = H¢i 3 m

< e - 8) + wasawony 2]+ T

(27)
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The ‘plane wave’ solutions then have to satisfy the following equation:

g —2a s 4Ba" — off’ 1 Line
V= g @+ T s Y
ow’ — B i AN 28
+ (ﬁ(az + B¢2) (¢’ ‘ﬁi)?sj + q2¢(a2 + quz) ( )
The equation for static spherically symmetric solutions are
w2 1 @ § . v’
== P e + B - G (2)

For the special case of 0(4)-symmetric field theories with a symmetry breaking potential
one can look for static solutions of the Skyrme type [7]

k
# = 4Tf0), Adi=8, =]z (30)

Our equations of motion then read

II_2f 2f, 1 x> 0 2 2 zfz(aa'_lgf)__ v’ .
f'= 2T T i(f) 'a'}-ln(‘x + Bf?) + (@ + Bf?)r2 o2 + Bf? (31)

The expressions for the energy density for the ‘plane wave’, static spherically sym-
metric, and Skyrme type solutions are, respectively

) T = ~gg" B — V&) (32)
@) T% =3 + B — V() e
i) T = 3 + B + L — v(p) (34

We now want to discuss two examples, both in normal coordinates, i.e. «® +
B¢p? = 1. This means

o(g) = Svke _ 1 [ _sinvk )] 35
=T gy - 5 [1 - T (9)

(a) Static spherically symmetric case with ¢® symmetry breaking [8]
The equation of motion (29) becomes

fr==-2l v (36)
where
V(f) = Af® (37)
yielding the one parameter family of solutions
b , a2\ 1/4

For a%/A = const, and both A and a going to zero, we observe a free point source
behaviour for f, i.e. f(r) ~ r~1.
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The energy density has the form (33)

T = E(r) = 3" = V()
and the total energy is finite and is given by

® 2
M=4f rrdrE(r) = ——.
"1 ") =7

(b) Skyrme type case with symmetry breaking
We want to look for potentials that decompose equation (31) as follows

==V of =1+ (e - BN

with integration constants B, C, V, these equations lead to

f(r) = (/v/k) tan~Y(Br) + C, V(r) = —%f"* + Vo
The energy density (34) becomes

T = E(r) = f2 + &L

s
r2
or

EC) =210 + B 4 (14 B - T

Hence the total energy M = 4x [° r® drE(r) does not exist [9].
Finally we want to translate example (35-37) into the model a(¢) = 2/(1

H.P. A.

(39)

(40)

(41)

(42)

(43)

+ k),

B(¢) = 0. The transformation from normal coordinates to this model follows from

(9), (11) and results in

i 1 —cos(v/k¢) ,,
* _\/k¢sin(\/k¢)¢’ 0 Vkd <m

with
X = Agl), ¢ = AYC), A4 =1
we get

1 — cos(v/kf)
80) = kst S)

The equation of motion in the new model is

rr____g 2kg fz_ld__l/ 2)\2
g = r 1+kg2‘g 4dg(1+kg)
with
6
Vig) = f\k‘3(sin‘1(12:_/l;€§2)) .

The solution of these equations is

_ 1 — cos{Blk/(«* + r*)]'"?}
80) = ks Blkf(a® + O

(44)

(45)

(46)

47)

(48)

(49)



Vol. 49, 1976 Nonlinear 0(n + 1)-Symmetric Field Theories 813

Note that the point transformation between fields (i.e. different parametrizations)
should be regular. For the case (44) the condition \/k f < =, is

(&) e < 0

Hence a should be so chosen that 4V'k2/2Aa® < . This is precisely the condition for
the Beltrami metric g;, to be regular, for in this case

_sinWkf) s | kf? —sin®(Wkf)
8ir = ka Slk & k2f4 ﬁblqsk- (51)
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