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Stability of Linear Chains with Third-order Anharmonicity

by C. P. Enz, M. O. Hongler and C. V. Quach Thi

Département de Physique Théorique, Université de Genève, 1211 Genève 4

(11. VIII. 75)

Abstract. A «-particle chain with third-order coupling and periodic boundary condition is
analyzed with respect to orbital instability (critical energy Ec) and mechanical instability (threshold
Et). For Ec the bounds found for large n are l/4a2 =S Ec ^ l/<*2, a being the coupling constant. The
bound Et < 1/a2 is found for a configuration which in the continuum limit corresponds to a
supersonic (or tachyonic) solitons which, however, is physically not realizable.

In the computer analysis of integrals of galactic motion Henin and Heiles [l]1)
discovered that the classical orbits determined by the Hamiltonian

H UPÎ+ Pi +qì + qì) + q\q2 - \q\ (1)

are stochastically distributed above a critical energy Ec s 0.11 but ordered below.
Similar behaviour has been found by Bocchieri, Scotti, Bearzi and Loinger [2] and
others [3] in translation-invariant anharmonic linear chains defined by the Hamiltonian

H i 2 PÌ + U(q) (2)
i i

with
n

u(q) 2 "fa+i ~ 9i)> qi+n qi- (3)
f=l

Using a Lennard-Jones form for v, BSBL found a critical energy Ec proportional to
the number n of particles in the chain. These two results are connected, since (1) can
be shown [4] to be equivalent with (2) and (3) for n 3 and with the form'

v(x) ^ x2 - j x3, (4)

analyzed by Fermi, Pasta and Ulam [5] with fixed boundary conditions.
Recently, Toda [6] has interpreted the critical energy in the HH-model as energy

of exponential instability, defined by the condition that above Ec neighbouring orbits
diverge exponentially. In terms of the equations of motion

q,=-dU/dqt i l,...,n, (5)

») References [1], [2] and [5] are abbreviated throughout the article as HH, BSBL and FPU,
respectively.
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this means that the matrix

Wti 82\7j8q,8qj, (6)

which determines the motion of the variations S^ has negative eigenvalues. The limit
of this instability is thus given by the condition

II 1*1=0. (7)

Toda defines Ec as the energy contour I7(q) Ec which touches the surface (7), that
is by

-r- Xz—- i l,...,n, (8)
8q, 8qt

together with (7). He finds Ec rV in fair agreement with the numerical value of HH.
The question arises whether the BSBL-result Ec oc n, also follows, for large n,

with Toda's definition of Ec. Applied to the translation-invariant potential (3) a

complication arises from the identity

2 dUi8* ° w
«»i

since it implies

2^ 0 / 1,...,«, (10)
i l

and hence \W\ 0. In order to apply condition (7) it is necessary, therefore, to
eliminate one coordinate by a canonical transformation

q Aq; W=AWAT; ATA 1 (11)

such that all qi+i — q, are independent of qn (for n 3 this leads to (1), see Ref. [4]);
thus

Al„=n-1'2; qn=n-v2%qi. (12)
> i

Since W has all but zeros in the last line and column the stability limit (7) is given in
terms of the matrix

*« Wi, + M,,, -f^T (13)
8qt8qj

by
11*11 «11*11 =0- (14)

Here

V(q) 0(q) + iq2 (15)

and the minimum condition (8) now becomes

8V/8qt X?lß i=\,...,n. (16)
8qt
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Indeed, for i n this implies, according to (12),

2 ft - 0 (17)
i l

so that V 17. Equation (17) corresponds to the initial condition of a fixed center of
mass and also fixes the constant in the translation qi->qi + r such that 2« (<7« + T)x
(qi + l + r) is minimum for any /.

Applying the inverse of (11) to (13) one finds with (12)

Xit =Wij+l- (18)

and [7]

11*11 nMn-i. (19)

Here Mm (m 4 n — 1) is the determinant of the elements Wtj with i,j 1,..., m.
Since, according to (3) and (6), the only non-vanishing elements of W are on and
adjacent to the main diagonal,

Wu Wu + n aA< - bA*i., - bt-iS,-!., (20)

Mm can be calculated by successive annihilation of the elements below the main
diagonal [7]. The result is the continued fraction expression

n

Mm O Am
i l

Ai ai, At=ai- bf_x/At_x i > 2 (21)

from which the recursion relation

Mm amMm-i - bm-iMm-2 (22)

follows.
In the case of the FPU-model (4)

a, 2 - 2a(qi + 1 - qt_x),
b, 1 - 2a(qi + 1 - qt).

(23)

Because of the linearity of these functions an explicit expression for ||X|| up to
second order in the q, can be obtained [7]. Indeed, because of symmetry and of (17)

\\X\\ n2 + H2(q) + H3(q) + ¦ ¦ ¦ (24)

where Ht is a homogeneous symmetric polynomial of degree /. By one iteration of (22)
it is straightforward to calculate 8Mn_xj8qn_x making use of (23). Then [7]

qt
« 02f %

-4a2n2(n - 2)q2(l - f) (25)

where

92 ^2ft2; ^=\2ii<it+i. (26)
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Now the condition (14) becomes

i 2 fo+i - ««y - «i -o2n
1 (l+é2Hs(q)+--} (27)

4a2(n - 2)

Since è < 1 for q -A 0 this shows that q decreases as n~1/2 for n-^-oo and hence
justifies the development (24).

Ec is now obtained by minimizing U(q) under the conditions (27) and (17). Going
over to variables x, (i 0 ri) defined by

ft 2 x' i l,--.,n + I
1 0

n-l n

2 (« - i)xi o, 2 *i o

(28)

we obtain a lower bound to Ec by leaving out the two restrictions in (28). In this
form the extremal conditions are

(1 - X)xt - ax2 0 l=l,...,n, (29)

A being the Lagrange multiplier for condition (27) which, by insertion of (29), yields

axt 1 - A 1/V2(« - 2) (30)

and hence [7]

e< > 4^2i i1 - iys)=«?+°(i)- (3i)

An upper bound to Ec is obtained from any particular point on the surface (14).
Now from (20) and (23) follows

2 Wt, at - bt-i - bt 0 i 2,...,n- 2. (32)
; l

If we require in addition

2 Wu =ai-bi=0; 2 Wn-u fln-i - K-2 0 (33)
1=1 ;=l

then Mn_i 0. But (33) has the particular solution q± qn-i i<*, all other qt 0,
which inserted into U(q) yields [7]

E, ^ ±y (34)

This bound is independent of n, in apparent contradiction with the numerical result
of BSBL. However, the property (32) is a direct consequence of the linearity of the
functions (23) ; in other words, it holds for the FPU-model (4) but not for the Lennard-
Jones potential used by BSBL. It is interesting also that in the case n 3 of the HH-
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model the bound (34) is actually reached. Indeed, this value corresponds, in the units
of HH, to Toda's result Ec yV

The fact that the leading power in the FPU-potential (4) is odd makes this model
mechanically unstable above a threshold Et. An upper bound to Et is obtained for the
particular configuration

qic =-qi-k x k 1 /;2>2/ >n - 1

all other q, 0 ^
which satisfies (17). In this case U(q) x2(3 - 2ax) which has a maximum 1/a2 at
x 1/a. For larger x the potential energy becomes negative and unbounded so that
the chain must break between particles n and 1. This maximum leads to Et 4 I/o.2
which might indicate a connection with Ec.

It is interesting that in the limit n -> oo, / -> oo the configuration (35) becomes a
step function reminiscent of the soliton solution

qs(x, t) q0 tanh[(x - vt)/x0] (36)

of certain one-dimensional continuum models [8-10]. The continuum limit of (3) is
simplest in the form

U(q]=\
dx- v(q(x + c)- q(x)) (37)

which has to be understood as an expansion in powers of c, the inter-particle distance.
With (4) the equations of motion (5) become [7]

q(x)=-8U(q]ISq(x)
c2q" - 2cxc3q'q" + tVcVv + 0(c5).

This has indeed a solution (36) with

<7o - ;f ; *o £; 7 V3(v2/c2 - 1) > 0. (39)
Zee y

Since (38) is invariant under q->—q,a -> — a the opposite sign of q0 is also a solution.
The potential energy (37) corresponding to these two solutions can be calculated by
elementary integrations, it is

uh) ^2 {i - Ljs±y2 + o(c5)} (40)

This shows that the positive step, q0 > 0, which is the continuum limit of the
configuration (35), leads to a negative and unbounded U5(y). Of course, the relations (39)
are quite different from the Lorentz-covariance relations of normal solitons [8, 9] :

They describe supersonic (or tachyonic) solitons in the sense that the soliton velocity
v > c. This fact seems to indicate that the mechanical instability of the configuration
(35) is dynamically irrelevant since the supersonic solitons are physically not realizable.
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