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Stability of Linear Chains with Third-order Anharmonicity

by C. P. Enz, M. O. Hongler and C. V. Quach Thi
Département de Physique Théorique, Université de Genéve, 1211 Genéve 4

(11. VIIL. 75)

Abstract. A n-particle chain with third-order coupling and periodic boundary condition is
analyzed with respect to orbital instability (critical energy E,) and mechanical instability (threshold
E). For E, the bounds found for large #n are 1/4¢?> < E, < 1/¢?, « being the coupling constant. The
bound E; < 1/e? is found for a configuration which in the continuum limit corresponds to a
supersonic (or tachyonic) solitons which, however, is physically not realizable.

In the computer analysis of integrals of galactic motion Henin and Heiles [1]?)
discovered that the classical orbits determined by the Hamiltonian

H = 3(pt + p3 + qf + q3) + qi9. — 343 (1)

are stochastically distributed above a critical energy E, ~ 0.11 but ordered below.
Similar behaviour has been found by Bocchieri, Scotti, Bearzi and Loinger [2] and

others [3] in translation-invariant anharmonic linear chains defined by the Hamil-
tonian

H=1%> p}+ Uqg) )
with
U(g) = i WGis1 = G)5 Givn = G (3)

Using a Lennard-Jones form for v, BSBL found a critical energy E, proportional to
the number z of particles in the chain. These two results are connected, since (1) can
be shown [4] to be equivalent with (2) and (3) for » = 3 and with the form'
_ _1_ 2 _ % 3
v(x) = 5 X 3% 4)
analyzed by Fermi, Pasta and Ulam [5] with fixed boundary conditions.
Recently, Toda [6] has interpreted the critical energy in the HH-model as energy

of exponential instability, defined by the condition that above E, neighbouring orbits
diverge exponentially. In terms of the equations of motion

g, = —oUloq, i=1,...,n, (5)

1)  References [1], [2] and [5] are abbreviated throughout the article as HH, BSBL and FPU,
respectively.
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this means that the matrix
WiJ' = 32U/3q¢aqj, (6)

which determines the motion of the variations 8q; has negative eigenvalues. The limit
of this instability is thus given by the condition

Wi =o. (7

Toda defines E, as the energy contour U(q) = E, which touches the surface (7), that
is by

U _  o|w|

9q; 94,
together with (7). He finds E, = 4% in fair agreement with the numerical value of HH.

The question arises whether the BSBL-result E, oc n, also follows, for large n,
with Toda’s definition of E,. Applied to the translation-invariant potential (3) a
complication arises from the identity

i=1,..,n, )

> eujeq, = 0 ©)

i=1
since it implies

Z W,=0 i=1,..n, (10)

and hence |W| = 0. In order to apply condition (7) it is necessary, therefore to
eliminate one coordinate by a canonical transformation
q=AG; W =AWAT; AT4 =1 (11)

such that all ¢;,, — ¢, are independent of §, (for n = 3 this leads to (1), see Ref. [4]);
thus

A =n"Y2; G, =n"12 % g, (12)

Since W has all but zeros in the last line and column the stability limit (7) is given in
terms of the matrix

- oV
X, =W, + 8,8, = 13)
SR 7
by
| X] = |Xx| =o0. (14)
Here
g = 0@) + 142 (15)
and the minimum condition (8) now becomes
ovieg = A o1%| =1,...,n (16)

g



Vol. 48, 1975 Stability of Linear Chains with Third-order Anharmonicity 789

Indeed, for i = n this implies, according to (12),
> =0 (17)
i=1

so that ¥ = U. Equation (17) corresponds to the initial condition of a fixed center of
mass and also fixes the constant in the translation ¢, — ¢; + 7 such that >, (g; + 7)x
(¢i+: + 7) is minimum for any /.

Applying the inverse of (11) to (13) one finds with (12)

Xy =Wy, + ;11' (18)
and [7]
1X] = nM,_,. (19)

Here M,, (in < n — 1) is the determinant of the elements W,; with i,j = 1,..., m.
Since, according to (3) and (6), the only non-vanishing elements of W are on and
adjacent to the main diagonal,

WU' = I'Vi,j+n = aiSiJ' —_ b;SHLj - bi—lai—l,j (20)

M, can be calculated by successive annihilation of the elements below the main
diagonal [7]. The result is the continued fraction expression

My =T 4n
i=1

A, =a, Aj=a — b2 JA,., 22 (21)
from which the recursion relation

My = auMp_1 — b2_ 1M, _, (22)
follows.

In the case of the FPU-model (4)
a =2 — 2a(q .y — qi-1),
by=1 - 20(q; 41 — q1)-

Because of the linearity of these functions an explicit expression for | X| up to
second order in the g; can be obtained [7]. Indeed, because of symmetry and of (17)

|X|| = n* + Hy(g) + Hs(g) +- - (24)

where H, is a homogeneous symmetric polynomial of degree /. By one iteration of (22)
it is straightforward to calculate M, _,/dq, _, making use of (23). Then [7]

(23)

_ns oM,
Hiq) =5 2, 52| 4
= —4a’n’(n — 2)7%(1 - §) (25)
where
1 _ 1
=224 PE==2 4 (26)
i i
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Now the condition (14) becomes

2= D G — gF =31 — &)

1 1
= 4o®(n — 2_) {1 i ] Hy(q) + - - } (27)

Since £ < 1 for g # O this shows that § decreases as n~*2 for n — oo and hence
justifies the development (24).

E, is now obtained by minimizing U(g) under the conditions (27) and (17). Going
over to variables x; (i = 0,. .., n) defined by

i—-1
qi=le i=1,...,n+1
. (28)
D, (r—Dx;=0, > x=0
I=0 =1

we obtain a lower bound to E, by leaving out the two restrictions in (28). In this
form the extremal conditions are

1 -=2Dx;, —ext =0 I=1,...,n, (29)
A being the Lagrange multiplier for condition (27) which, by insertion of (29), yields

ax, =1 —Xx=1/V2(n — 2) (30)
and hence [7]

Ec>4a—2(nf:—2—)(1 —%A/Z)=4iz+o(;:—2)- (31)

An upper bound to E, is obtained from any particular point on the surface (14).
Now from (20) and (23) follows

n-1
D Wy=a—b_1—-b=0 i=2..,n-2 (32)
i=1

If we require in addition
n—-1 n-1
Z Wy =a — b =0; Z Wy 1;=01 —bp_3=0 (33)
i=1 i=1

then M, _; = 0. But (33) has the particular solutiong, = q,-, = }«, all other g; = 0,
which inserted into U(q) yields [7]

1
be < 3
This bound is independent of n, in apparent contradiction with the numerical result
of BSBL. However, the property (32) is a direct consequence of the linearity of the
functions (23); in other words, it holds for the FPU-model (4) but not for the Lennard-
Jones potential used by BSBL. It is interesting also that in the case n = 3 of the HH-

(34)
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model the bound (34) is actually reached. Indeed, this value corresponds, in the units
of HH, to Toda’s result E, = ;.

The fact that the leading power in the FPU-potential (4) is odd makes. this model
mechanically unstable above a threshold E,. An upper bound to E, is obtained for the
particular configuration

9 = —q1-1 = X k=1,,l,2>2[>n—1 35
all other ¢, =0 (35)

which satisfies (17). In this case U(gq) = x2(3 — 2«x) which has a maximum 1/«? at
x = 1/a. For larger x the potential energy becomes negative and unbounded so that
the chain must break between particles #» and 1. This maximum leads to E; < 1/e?
which might indicate a connection with E..

It is interesting that in the limit » — oo, / — oo the configuration (35) becomes a
step function reminiscent of the soliton solution

gs(x, 1) = qo tanh[(x — vr)/x,] (36)

of -certain one-dimensional continuum models [8-10]. The continuum limit of (3) is
simplest in the form

Ulg) = [ £ ogtx + o) — g) 37)

which has to be understood as an expansion in powers of ¢, the inter-particle distance.
With (4) the equations of motion (5) become [7]

G(x) = —8UI[ql/8q(x)

(38)
= c%q" — 2ac®q'q" + {#5ctq™ + 0(cd).
This has indeed a solution (36) with
= — l' — £' = 2/c2 — 39
o 5as o= 5 ¥ V3?2 — 1) > 0. (39)

Since (38) is invariant under ¢ — —gq, & — — o the opposite sign of g, is also a solution.
The potential energy (37) corresponding to these two solutions can be calculated by
elementary integrations, it is

U0) = & {1 - Lt + e} (40)

This shows that the positive step, g, > 0, which is the continuum limit of the con-
figuration (35), leads to a negative and unbounded U,(y). Of course, the relations (39)
are quite different from the Lorentz-covariance relations of normal solitons [8, 9]:
They describe supersonic (or tachyonic) solitons in the sense that the soliton velocity
v > c. This fact seems to indicate that the mechanical instability of the configuration
(35) is dynamically irrelevant since the supersonic solitons are physically not realizable.
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