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Time Decay for Fermion Systems with Persistent Vacuum

by E. B. Davies!) and J.-P. Eckmann

Département de Physique Théorique, Université de Genéve

(4. VIIL. 75)

Abstract. We consider the relaxation to equilibrium of a system coupled to an infinite fermion
reservoir at zero temperature. In the weak coupling limit, we obtain an exponential decay law for
the system. In contrast to earlier solutions of such problems, we allow for certain self-interactions

of the particles of the reservoir which do not polarise the vacuum but which may influence the
exponential decay law,

1. Introduction

We consider a system represented by a Hilbert space & coupled to an infinite
fermion reservoir at zero temperature represented by a Fermion Fock space & with
- single particle space 5 which may typically be L%(R®). For every g € 5 there is a
bounded field operator a(g) on & satisfying

a(ga(h) + a(h)a(g) = 0,
a(g)a*(h) + a*(ha(g) = <h, grx1, (1.1)
a(g)Q = 0, |

where Q is the Fock vacuum. The Hamiltonian of the combined system is defined on
& ® & and is taken to be '

Hi=Hs®1+1Q® HE + M\, - (12)

where Hg is the system Hamiltonian, Hg is the reservoir Hamiltonian and H; is the
interaction between the two. We study the time evolution under these dynamics. The
initial state is taken to be ¢y ® Q where 4 € Sis arbitrary. The state of the system & at
time ¢ = A~2r is given in the interaction picture by the density matrix '

pA(T) = trgletfot e~ 'Hit|y @ Q<P & Q| et é—iHot], (1.3)

where H, = H,|,-o. Obviously p,(7) is a non-negative operator on & with trg[p(7)]
equal to [|¢]>.

Our main theorems, 2.3 and 2.5, show that under certain conditions the limit of
weak coupling at long times, lim,_, p,(7), with the rescaled time = = A%t being fixed,
exists and is given by a closed expression. The proof consists of two parts, the main
one being the determination of a renormalised Hamiltonian HFEN of the same form

1)  Supported by the Fonds National Suisse.
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as H, but acting on a new Hilbert space & ® F*®N such that the reservoir Hamiltonian
on FPEN js quadratic (‘free’) and

lim {py(7) — pREN(m)} = 0. (1.4)
Using the results of an earlier paper [1] we are then able to show that

lim pREN() = €*¥°p(0), (1.5)
-0

where K* is an operator acting on the space of trace class operators on &, which in
principle can be explicitly computed from H,.
In contrast to earlier work the reservoir Hamiltonian is taken to be

H§ = Hg + oV, (1.6)

where Hg is the free reservoir Hamiltonian whose single particle restriction is called S,
o is a small (non-zero) constant and V is a polynomial in the field operators which
annihilates the vacuum. Our technique is to expand in powers of «, which necessitates
some regularity of ¥ such as a space cut-off, which we shall discuss in Section 3. We
leave as open problems the case with vacuum polarisation and the generalisation to
positive temperatures. These problems involve essentially the same difficulty, namely
that it is not clear how to combine the Gellman-Low formula with the trick of partial
contractions which is essential to our method.
We shall take the system-reservoir interaction term to be

H, = 0 ® {a(g") + a*(g)}, (1.7)

where g° is suitably smooth and Q is bounded, but our methods can be extended to
cover the case

H, = Q ® a*(f;) - - - a*(f,) + adjoint, (1.8)

where a* = g or a*, with only slight extra complications. The Lee type hypothesis of
[1] that £3, ..., f, have disjoint supports in momentum space is not necessary. If,
however,

a¥(f) - - - a¥(f)Q, Qdg # 0, (1.9)

then the operator A, of [1] is non-zero and one should use the modified form of the
theory of master equations in [2] to solve the renormalized problem.

2. The Main Estimates
The Hamiltonian of the system is taken to be

M
Hy,=Hs®1+1Q® Hg+ «l ® z V.. + 20 ® {a(g°) + a*(g°)}, (2.1)

r,s=1

where all terms except V,, have been defined in Section 1. We suppose V,, = V¥ and
that

Vo = |, dxat(ed) - a*(gatesr) - algi), 2.2)
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where g% is the translate of g" by a distance x in space multiplied by A(x), where 4 is a
space cut-off function of compact support. The vectors (g1,- .., g%°) may depend on
r, s. Because fermion field operators are bounded, V., are bounded operators and it is
easy to prove the self-adjointness of H,. The conditions r, s > 1 ensure that

V,,Q =0, V*Q =0. (2.3)

Our estimates are based on the main assumption that the test functions g% which occur
in the Hamiltonian satisfy inequalities of the type

[Ke'gk, giv| < G(x — y, 1), (2.4)
where G € L*(R*). Conditions under which (2.4) is satisfied are discussed in Section 3.

For any bounded operator B on & we define

(B) = (BQ, ©g, 2.5)

B, = et Be~1tH, (2.6)

while if B is an operator on @ ® & we define
B, = ¢MHg®l+10Hg) Bo—ittHg,®1+1@Hg) ‘ (2.7)

Lemma 2.1. There exists an expansion

a0

par) = D XWtreamp (1), (2.8)

m,Ng,Ne=0

with bounds

|PrngnB)]| < CmHma*regmenatne/(m + n, + n,)!, 2.9)
and

|Pmnand)| < C™*ma*etmofny!, (2.10)
where

ny = min(n,, n.). (2.11)

Proof. We start with the formula

eiHote—iHt — Z Z’ (— )™+ Pa e \a * Rogm

m,ng,ne=0 (M,ng,ne)

m+ng+ng
) 5 2.12
J\ostlg...stm*_na_‘_ncst E i t_f ( )
Here,
B =0V
where for m values of j, <

PRV =1Q Vigsn, 1 <r(j), s() <M,
and for n, values of j,

Qf ® Vj s Q ® a*(gO), ?
and for n, values of j,

OV =0 Qa(g. /

(2.13)
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The summation >’ is over the at most 4 = M2 + 2 possible choices for the B’.
Substituting (2.12) into (1.3), we get

P,\(‘T) = Z Z' Z’ (—I) o A1t o1t Magt g oMyt mg

m1,Nq1.0c120 (M1,n01,N001) (M2,Ng2,Nc2)
maz,ng2,Nc220

x| aya0n- - ohlw@lon - ot 214

0ty <" <tg; <t
0<s; <" <84, %t

d d,+d d 1
X<V811.‘. V8d12 2Kdi"' Vt1>'

where d; = ng; + n; + my, j =1, 2.

The coefficients pp, , (f) of equation (2.8) are defined to be the finite partial sums
in equation (2.14) with m, + my = m, Ny + Mg = Mg, ey + Neg = M.

The estimate equation (2.9) is then a consequence of the boundedness of all
operators @’ and ¥’ in equation (2.14). We use this bound only to establish that the
series (2.8) converges.

We now proceed to the bound equation (2.10) which is the first main estimate of
this paper. Since Q is bounded, we have

m+ng+n,e
”P;\(T)” < Z IA]"°+"°|a|mcm+na+nc Z Zn
m,ng,nc20 !
XL,E,M,.,,W_,G [KVe -+ Vinime ool (2.15)

where >” is the sum over all choices of the V7 subject to the conditions (2.13) and
AL, ={teRH O <SS B2 tyr 200 2 By 2 0L (2.16)

The main idea of the proof of equation (2.10) is a resummation of (2.15) based on an
indexing by the type of vertex occurring. We introduce some notation.

Let 7, 7" be two finite unordered collections of vertices V’. We define the
following functions of ¥, ¥"':

nq(n;) the number of V7 = a(g°)(V’! = a*(g°)) in theset ¥" U ¥”';
hy = inf(na’ nc),

2.17
v= |7, v =¥ L)
We rewrite equation (2.15) as
loa@l< > At D7 I, ), (2.18)

m,ng,nc20 v,V

where > is over those choices of ¥, ¥~ for which n,, n. take the values given by the
first summation, v + v' — n, — n, = m, and I(¥", ¥”'), is the corresponding integral
and summation of (2.15).

The proof of inequality (2.10) is then an immediate consequence of the following:

Lemma 2.2. With the notation (2.17), one has the bound
IV, 7)) < C**¥t™/n,!. (2.19)
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Indeed,

|Pmmamell < C™*1atme sup I(¥; ¥7), | (2.20)

where the sup is over ¥", ¥” with fixed n,,n. and m = v + v — n, — n,, and the
factor comes from arranging the M + 2 types of vertices into the sets ¥~, ¥™.

Proof. We suppose for definiteness that n, > n., the opposite case being obtained
by a left-right annihilation-creation symmetry. Since Hg is a free Hamiltonian

af(g) = a*(e''g). (2.21)

Therefore the vacuum expectation values can be expanded in terms of two-point
functions in the usual way [3]. We shall use the language of Hepp freely but our
estimates depend on doing only some of the contractions in the calculation of vacuum
expectation values. We ‘draw’ creators to the left and annihilators to the right.

Definitions. For every type of vertex (V,s or a(g°) or a*(g®) which has at least
one annihilation leg we pick one of them and call it the selected annihilation leg of
that vertex. A graph is a linear arrangement of vertices of specified type labelled by
times indexed in increasing order from left to right; each selected annihilation leg is
contracted to some creation leg in such a way that there are no loops. A diagram is a

diagram

Figure 1

graph in which the condition of absence of loops is replaced by the stronger condition
that each selected annihilation leg is contracted to.a creation leg on its right. Each
connected component of a graph contains exactly one a*(g°) and therefore there are
exactly n, connected components in a graph.

By contracting the selected annihilation legs and by Wick’s theorem, we obtain

;7 < e S J; dt f AXF,(x, 1), (2.22)
de D

where 2 is the set of all diagrams, X = x,,..., Xy, and t = #5,.. ., f,4,. The con-
stant term arises by estimating the uncontracted legs using the norm boundedness of
fermi field operators,

la¥(egD] < llg*[2]A] (2.23)



736 E. B. Davies and J.-P. Eckmann H. P. A.

It also accounts for the number of orderings of the vertices in ¥~ and #”. For each
contraction in a diagram d there is a factor

[<etSt=tgk, gi>l, (2.24)

where we adopt the convention g2 = g°-8(x). Finally F, is the product of the bounds
(2.4) on the factors (2.24) for all contractions occurring in d.

We now define & with v, v', n,;, n.; fixed to be the set of all graphs and £ to be the
set of all permutations of 1,...,v,and of v + 1,..., v + v'. We define a one-one map
(m,d)—>(m, g) of # x @ — P x G by permuting the time indices of d with = and
then rearranging the vertices and links simultaneously so that the time indices are
again in increasing order from left to right, to obtain the graph g. (See Fig. 1 where

— (123456789
a4 = 134829567)~)

For each = € Z we consider the region

An = {0 \<, tu(l) g e S ltJt(v) S ta 0 g\ t:z(v+v’) g ¥ #x s rn(v+1) ‘<~ t} (2‘25)
to be a subset of the hypercube

€ = [0, t]**.

Finally we associate a function F, to each graph g in the same way as for diagrams, so
that

Ln dtjdde(x, t:) = Ln dt jdng(x, t). (2.26)
Then

7)) < Cmn D> > (o) Ln dtfdde(x,t,,)

de? neP

SCmr > > (lo)? L dtjdng(x, t)

9e® neP
=Ccmr Y (o) j dtjdxpg(x,t) (2.27)
ge® ¢

< Cm Ml v')"tsup | dt jdng(x, t)
ge® ¢

< cm +n(v! v !)—'lcm+ntnc,

by the integrability of G, equation (2.4); integration over each of the n, components of
g € 6 contributes one time factor ¢ but no space factor because each component con-
tains a contraction to a*(g°).

Now

6] < (M2 + 2)°*"(mM + n)YmM + n, — 1)---(mM +n, —m—n, + 1)

<
< C**(m + ny)! (2.28)
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The factors M2 + 2 count the number of choices of vertices, the remaining factors
the number of possible contractions. Therefore

I(7,77) < C™* (! o)X (m + n,)! t"
£ CP™Eiglp | (2.29)

This completes the proof of Lemma 2.2.

Returning to equation (2.14) we see that by completely contracting the vacuum
expectation value we obtain

Prmng.n(t) = Z P ng.ne(t) (2.30)
k
where p, is the sum of all terms whose completely contracted graphs have k connected
components. Our first main theorem is then as follows:
Theorem 2.3. There is an «, > 0 such that for |¢| < «, and = < o0,

lim p,(r) = ;

m,

lim A%"ampl,, (A~21). (2.31)
-0

0

Proof. The proof is in two steps. By equation (2.10)

”p?\(T)” S z |/\[na*'"cla""Hpm,nmnc(t)”
2> 2 [Aretre|a|mCm et notne/n, ! (2.32)

m=0 0€n,<Ng<®

/AN

2 S (clClahrcryn!

m,n,p=0

Therefore the series (2.30) converges uniformly in A in regions |A|, |«| < 1/2C,
0 < 7 € 7y, where 7, < o0 is arbitrary. Therefore

[eo]

lim py(r) = > lim Aetreamp,,  (A-27), (2.33)

m,ng,ne=0 A=0

It remains to prove that for each fixed m, n,, n.,

lim Am*mep, .\ (A=%7) = 8, lim Amp,. . (A~27), (2.34)
A0 @

A=0

or equivalently, if 2k < n, + n,, then

lim Ata*?epf . (A727) = 0. (2.35)

A—=0

By repeating the arguments of Lemma 2.2 but with fully contracted graphs and with-
out trying to control the dependence of the constants on m, n,, 7, one obtains

| Pk nene(2)| < Ct¥. (2.36)

Therefore [Ame*mepk . (A=27)| < C|A|"e*"~2k7* which converges to zero unless
2k = n, + n,, and this proves the theorem.
We now claim that there is a renormalized problem which produces exactly the
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terms on the right hand side of (2.31). The renormalised reservoir Hamiltonian is
quadratic. The renormalised problem is therefore exactly soluble by the techniques of
Davies [1, 2]. In general the Hamiltonian is slightly complicated to write down so we
consider just a few simple but typical cases.

The simplest case is described in the following corollary, where we explicitly
exhibit the dependence of p,(7) on «, which has previously been suppressed.

Corollary 24. If V,;, = O unless r > 2 and s > 2 then
i ¢(7) = li g 237
lim pj(r) = lim p3(=). (2.37)
In other words the reservoir self-interaction has no effect on the system in the weak
coupling limit.

Proof. If m > 0 then every completely contracted graph has fewer than n,
components. Therefore the only contributing terms are those with m = 0, in other
words the same as the terms for the Hamiltonian obtained by putting & = 0.

In the next case a new phenomenon, that of a mass renormalisation, is introduced.
We take

Vi = Var = [ dxa*(gha*(eated (2.38)
and all the other V,, = 0. We also make an assumption of Lee type, that g*, g2 have

supports in momentum space which are disjoint from the support of g° and g3.

Theorem 2.5. There exists a renormalised Hamiltonian
H™ = Hg @1+ 1 ® Hggpen + «l @ WEREN 4+ AQ{b(g° ® 0) + b*(g° @ 0)}
(2.39)

such that WREN js quadratic in the field operators and

lim p,(7) = lim pREN(7), (2.40)

A-0 A—=0

Proof. The renormalised Fock space is defined as the fermion Fock space whose
single particle space is

HREN — D H# Q K, (2.41)

anti

which is a subspace of the original Fock space. Then Hygy is the free Hamiltonian on
FREN whose restriction to SFREN js

SEEN = SP(I RS + S I). (2.42)

If g € #*"Y we denote the corresponding field operator on F*EN by b(g). Defining
g € TN by

gx = 0 @ a*(g;)a*(gi)gv (243)

the operator W is defined as

W= j dxb*(g.)b(g2) + adjoint. (2.44)
R3
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The Hamiltonian HY™ is of the general type to which Theorem 2.3 applies. The only
observation needed to prove the theorem is that ‘

p;rll,n.n(t) = p:l,n.n(t)REN: (245)

because the corresponding completely contracted graphs are those for which each
component is a chain of the form

TN :/ > TN
Figure 2
We stress that the value of the above reductions depends upon the fact that the renor-
malised problem is exactly soluble by the methods of [1]. This is seen by writing
HY™ = He ® 1 + 1 @ HF™(«) + A0 @ {b(g° D 0) + b*(g° © 0)},

where Hy™(«) is a free Hamiltonian on F*=N determined by its restriction to F#REN,

SFN-SOERI+1®S) +a j , dxh(x)|g2)<g.| + adjoint.
R

The existence and form of
l]m REN
e P ()

is given in [1] in terms of Q, Hg, g° and SEEN under certain conditions which may be
verified without too much difficulty in our case.

3. Discussion and Extensions of the Model

All our calculations have been based heavily on the estimate (2.4) where G € L1(R?%),
which is unfortunately too strong for most applications. If the single particle space
is o# = L*(R®) and S = —A, and if g(y) = g'(x + ») then in momentum space
variables

Cegk, 8% = | dkg*(08°(K) exp ifkP1+ ), (3.1)

which cannot lie in L'(R*) because it is the Fourier transform of a distribution on R*
supported on the surface

{(k, E):k* = E}. (3.2)
We now give a few examples of how the necessary regularisation can be achieved.

Example 1. We show that the conditionn G € L}(R*) can be satisfied if one includes
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a space cut-off function 4 of compact support as assumed so far. A direct computation
shows that if S = —A and all g" € L' N L2 then

|CeStgr, g*)| < Ch(x)(1 + 12)~%*
= G(x, 1) 33)
so G € LY(R).

Example 2. Another method of circumventing the infinite volume difficulties
consists of attaching a second reservoir independently to each point in space [4]. In
the crudest possible form this amounts to choosing the single particle space to be
L?(R*), the fourth variable representing the degrees of freedom of the second reservoir.
The Hamiltonian is

(SW05 E) == 3 22 Wx, B) + BUx, E), (3.4)

and each of the g7, defining the Hamiltonian H, is taken to be
gy, E) = f'(y + x)W'(E). (3.5)

where f7 and A" lie in Schwartz space. Then

(e'S'gl, g% = J F)f2(RNEYRXE) exp itk? + k-x + Et} dk dt

(3.6)
= u(t)v:(x),

where u lies in Schwartz space and

duk) = f1(k)f2(k)e™™. (3.7)
Now

loels < (1 = A)ie]2 < CA + ¢£2), (3.8)
since f! and /2 lie in Schwartz space. Therefore

dx dt|{e'Stgl, g?>| < Cfdt u()|(1 + ¢2
| ax drice, g2 I+ 1) 59

< 0.

Therefore our theory applies to this model even in the case without space cut-off but
it is clear that the dissipation is caused by the second reservoir.

Example 3. To illustrate the difficulties of the infinite volume problem without
regularisation, we consider a simple exactly soluble case. We put 5# = L%(R?),
S = — A and suppose the only non-zero V,, is

u = | a*(enatel) ax, (3.10)

where g lies in Schwartz space. Then formally

Vir = | | 16000 (R)ak) dik @3.11)
R
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where g is the Fourier transform of g.
One may take G**N = & and

HEN@) = (2 + alg)[}a*(k)atk) dk, (3.12)
so that the renormalised single particle Hamiltonian is

(SFN)k) = {k* + «|g(k)|2}h(k). - (13
A prerequisite for decay is that the two-point function

Golt) = &5, > | (3.19)

converges to zero as t — 0. In this connection the following lemma, which may be
proved by integration by parts, is relevant,

Lemma 3.1. If f, g € & and f vanishes in some neighbourhood of zero in momen-
tum space then for sufficiently small real «,

lim G,(¢) = 0. (3.16)
t-0
The existence of an infra-red problem is however revealed by the fact that the above
lemma may fail without the condition on f. By careful choice of g, in Schwartz space,
one may in fact arrange that S®EN has non-empty point spectrum for a set of real «
with an accumulation point at zero.
An entirely different example suggests that it may be impossible to construct a
successful infinite volume theory which does not make serious use of the reality of the
coupling constant .

Indeed suppose that f, g are spherically symmetric, and write all expressions in
terms of the radial variable. Then one has the

Lemma 3.2. Suppose that f, g are C® with compact support in (0, c0) and that
g(k) = k on supp(f) # @. Then there exist arbitrarily small complex o such that
G.(t) does not lie in L}(R).

Proof. Suppose on the contrary that for all |«| < §, G,(¢) lies in L*(R). Then
o« — G, is an analytic L*(R)-valued function. If ~ is the Fourier transform it follows
that « — G, is an analytic function with values in the space of continuous functions
on R, so for all y € R, « — G,(») is an analytic function.

Now if « is real,

Gul(t) = f: 4rk?| ()2 explitk®(1 + )} dk

[ 4my pL2 2 &
B Jo l + « f((k + OC)1.{2) e 2y1/2(k + a)1/2’ (317)
SO
A B yli L2 9
Got(y) - (1 + a)g[g f((l + (1)1/2 " (3.18)
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Taking y*# to be the smallest number in supp f, one has G.(y) = 0 for small « > 0
but G,(y) # 0 for small « < 0, so G,(y) cannot be analytic around « = 0.
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