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Product Spaces and Nelson’s Inequality

by William G. Faris

Battelle Institute, Geneva, Switzerland )

(1. VIIL 75)

Abstract. Certain inequalities for unbounded linear operators in L? extend to product spaces.
This product space property is used to give a new proof that Gross’s inequality for matrices implies
Nelson’s inequality for ordinary differential operators, and that this in turn implies Nelson’s
inequality for partial differential operators in infinitely many dimensions. A new proof of Gross’s
inequality is given.

There is also a discussion of the physical meaning of Nelson’s inequality in quantum field
theory. This article may serve as an introduction for non-specialists to some of the recent mathe-
matical work in this subject.

1. Introduction

This article is devoted to a discussion and proof of Nelson’s inequality. This is an
- inequality for partial differential operators which, unlike the Sobolev inequalities,
does not involve the dimension » of space. Thus the inequality is valid with the same
constants when n = 1, n = 10?5, or even n = co. This is why it has played an impor-
tant role in constructive quantum field theory.

The method of proof follows an article by L. Gross [1]. He works directly with
unbounded operators; however, in order to pass to a product space he uses the
associated semigroups and a product space lemma of I. Segal [2]. In the present treat-
ment the product space property is proved directly for the unbounded operators, and
there is no need to carry out the reduction to semigroups.

Section 2 contains a statement of Nelson’s inequality and a discussion of its
physical meaning. The product space property is proved in sufficient generality for
later applications. In Section 3 a new proof of Gross’s inequality for matrices is given.
The rest of the section contains Gross’s proof of Nelson’s inequality from Gross’s
inequality and the product space property.

Nelson’s inequality for semigroups was proved in successively stronger forms by
Nelson, Glimm (see [3]), and Nelson [4]. Federbush [5] showed that such inequalities
can be written in a form involving the unbounded operators directly, and Gross [1]
showed that the unbounded operator and semigroup formulations are equivalent.

Recently Brascamp and Lieb [6] and Beckner [7] have found new proofs in the
semigroup context. The result is deduced from a generalization of Young’s inequality.
Their proofs of this inequality resemble Gross’s proof of Nelson’s inequality in that
they are based on ideas related to the central limit theorem of probability.

1)  Permanent address: Department of Mathematics, University of Arizona, Tucson, Arizona
85721, U.S.A.
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Generalizations and applications of the inequality have been given by Gross [8],
Eckmann [9], Rosen [10], Wilde [11], and Simon [12]. The Orlicz spaces that occur in
the unbounded operator formulation are discussed in standard works, such as that of
Krasnosel’skii and Rotickii [13]. The notes by Faris [14] contain an elementary
discussion of the implications of the inequality for quantum field Hamiltonians.

This article is taken from lectures given to the participants at the Third Inter-
national Conference on Group Theory in Physics, held at the CNRS in Marseille in
June 1974.

2. The Product Space Property

If A is a positive measure, then for each real number p with 1 < p < oo the space
L? consists of the complex functions # such that ¢, = (] [#(x)|? dA(x))** < co.

If A is Lebesgue measure on R” and if 4 and dy/ox, are in L? for j = 1,..., n, then if
n > 2 the classical Sobolev inequality implies that ¢ is in L™ where 1/r = 4 — 1/n,
and that [|¢/|2 < const 37, |&y/ox,||3. Notice that this inequality depends on the
dimension of space, and so is not very helpful in the limit » — co. Nelson’s inequality
was designed to get around this difficulty. This inequality involves the number opera-
tor, so we begin with that.

Consider self-adjoint operators ¢, ¢s,..., ¢, and p,, ps,..., p, satisfying
Pidi — qupP; = —id;.. The number operator is defined by N = 37, ¥(p? + ¢? — 1).
(This operator is obviously closely related to the harmonic oscillator Hamiltonian.)

It is convenient to introduce operators a; = 2-Y%(q, + ip;) and af =
2-Y2%(q, — ip,). These satisfy a,af — aja, = 8, The operator N is given in terms of
these operators by N = 3, afa;.

We represent these operators on the Hilbert space consisting of all complex
functions ¢ on R" such that |2 =f [p(x)|? dv(x) is finite. Here v is the Gaussian

measure given by dv(x) = 7~ ™2 exp(—x?) dx. Notice that because of the Gaussian

measure the adjoint of 9/dx; is —d/ox; + 2x;. Thus —i(9/ox; — x;) is self-adjoint.

The operators p; and g, are represented by —i(6/dx; — x;) and multiplication by x;.
In this representation the operator

2
N = Z( 26x2+x’3x)

This may also be written as a sum of factors

N=i ala; = zn: l(—i-i~2xj)-9—-
T L2\ ox ox;
From this is is not difficult to see that its eigenfunctions are products of Hermite
polynomials H,(x;) = (—9/0x; + 2x,;)"]1 and its eigenvalues are n =0,1,2,3,....
For this reason N is called the number operator.

One point to emphasize is that this type of representation continues to work even
when n = co. In this case the measure » on R is the product of infinitely many
Gaussian measures. (Since these all have total probability one the product measure
is defined.) The operator N continues to make sense as a partial differential operator
in infinitely many variables. This is because the constants have been chosen so that in
each summand there is no constant term. The points of R® may be thought of as
(multiples of) the Fourier coefficients of a field.



Vol. 48, 1975  Product Spaces and Nelson’s Inequality 723

In dealing with unbounded operators such as N there is often some question
about their exact domain of definition. However we will always be dealing with
numbers of the form (¢, N>, where ¢ is a vector in the Hilbert space. Since N > 0
we may interpret this as (¢, N> = (NV2), N2y = | NV%p|2. (The square root of
N is defined by taking square roots of eigenvalues.) Thus {, Ny is finite if N2} is
in the Hilbert space, and {¢), Ny> = + oo otherwise.

There is a different way to write (¥, Niy> which explicitly exhibits its positivity. In

—2 —]j‘. ';J
i=

n 1 n
Wy N> = 2 llagll =5 2,
i=1 ji=1
In this form it looks quite similar to the expression occurring in Sobolev’s inequality;
the only difference is the Gaussian measure.

o ||* 2
el = av(x).

ille

Nelson’s inequality

Let v be Gaussian measure on R" (with variance ). Define the inner product
g, b = f Y*¢ dv and norm |¢||3 = f ||2 dv. Let V be a real function on R*. Then

Gy VI < <y NY) + log|lexp(V)|a]l ¥ 113

The proof will be postponed to the next section. This section will be devoted to
the implications of the inequality.

The inequality may be thought of either in terms of partial differential equations
or in terms of quantum mechanics. In the partial differential equation setting it is
natural to try to write it in a form similar to Sobolev’s inequality. Look at the special
case V = log|y|. The inequality becomes

112 gl @v < <, N> + 1913 108l

Thus it says that if ¢ is in L? and {i, Ny is finite, then ¢ is in L? log L. In Sobolev’s
inequality the conclusion is that ¢ is in L™ with 1/r = 4 — 1/n. In some sense this
logarithmic Sobolev inequality is what remains of the ordinary Sobolev inequality
when n — 0. (Of course it also helps that Lebesgue measure is replaced by Gaussian
measure.)

In quantum mechanical terms the inequality says that in any state {V(q))> <
(N> + % loglexp(2V(g))>o, where {¢(q)>, is the expectation of #(q) in the zero particle
state. In order to give a physical interpretation of the inequality we consider a special
case. Let E be a subset of R" and let »(E) be the probability of E with respect to the
Gaussian measure v, that is, the probability that g is in E when the system is in the no
particle state. Then we have the following corollary.

Particle number principle

Prob{g in E} < (1/log(1/W(E)))(2{N> + 1).

Proof. Let #(E) be the probability that ¢ is in E. Let ¢ be a positive real number
and set ¥(x) = ¢ for x in E, V(x) = 0 otherwise. Then the inequality gives

tm(E) < (N> + % log[e*(E) + ¢°(1 — w(E))].
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Now choose 2t = —log v(E). Then

—4(log W(E))m(E) < {(N) + %log[l + 1 — w(E)]
SNY> + $log2
S N+ %

Hence =(E) < (1/(—log v(E))2(N) + 1).

This particle number principle has the interpretation that if E is a set of con-
figurations that is highly improbable in the no particle state, and if the expected
number of particles in the state of interest is small, then E is somewhat improbable in
the state of interest. In other words, when the expected number of particles is small,
the field configurations resemble those of the no particle state.

In one version or another the inequality is the basis for the construction of
relativistic boson quantum field models. The idea is to prove the consistency of
relativistic quantum field theory by constructing a non-trivial mathematical model.
This is simplest in a world of one space (and one time) dimension. A preliminary step
is to construct the model for a finite interval of space (a sort of quantum mechanical
vibrating string). Then methods from statistical mechanics are employed to take the
limit.

The Hamiltonian for this vibrating string problem may be written as H =
H, + V(q), where H, is a partial differential operator (in infinitely many dimensions)
and V(g) is a multiplication operator. The free Hamiltonian H, measures the rela-
tivistic energies of particles of mass m. Hence H, > mN, where N is the number of
particles. The interaction term F(q) is a function of the fields g which is unbounded
above and below, but which is almost bounded below in the sense that exp(—¥) is in
L? with respect to Gaussian measure for every p < oo.

If m > 0 we may apply Nelson’s inequality to —(1/m)V to obtain

exp (— % V)

1 m
€Xp (— E V)

— <, V(gy < m(p, Ny> + mlog

2

S <¢'s H0¢> + IOg

2

This gives

<, Hiy = —logllexp(— )| 2/m.

Thus the total Hamiltonian is bounded below.
In the rest of this lecture we examine a basic property of this type of inequality
which will be fundamental to the proof. First we need a general definition.

Definition. Let v be a finite positive measure in the space M. Consider the Hilbert
space L? consisting of complex functions ¢ on M with ||)|Z = f [¢|2dv < 0. Let N

be a positive self-adjoint operator acting in this Hilbert space. Then N is said to be a
Gross operator if for all ¢ in L2 with (¢, Ny finite and for all real ¥ with exp(¥V) in L2

& Vi < g, N + log|lexp(V)|2]|3.

Thus Nelson’s inequality asserts that the number operator is a Gross operator.
The following lemma is the basic fact about Gross operators.
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Product space property

Let N, be a Gross operator in L?(M,, v;) and N, be a Gross operator in L%(M,, v,).
Let M = M, x M, and v = v; X v,. Interpret N, and N, as operators in L3(M, v).
Then N = N, + N, is a Gross operator.

Proof. Since N, is a Gross operator

[ Ve xlpn, )l dat)
< [ 901, X N1, 32) dor(o) + W) [ o, 30)? i),

where W(x;) = % log [ exp(2V/(s, x5)) dvi(s).
If we do the second integration we obtain

W Vb < N> + [ W) [ s, %12 din) dbotxa

= Ny + [ | [ WOl 3l o | i)
Now use the fact that N, is a Gross operator. This gives
G V> < <y Nut +
| U W, x2)* N, 32 doasa) + e [ e, xa)P? )| a0

where

¢ =1log f exp(2 (1)) dvs(t) = % log ” exp(2V(s, 1)) dvi(s) dvs(t).

In other words,

& VP> < g Nughy + (g Nap> + logllexp Va3

A consequence of the product space property is that once we have Nelson’s
inequality for n = 1 we immediately have it for arbitrary finite ». (If we want it for
n = 10%%, we just have to apply the product space property 10%® times.) Also the
inequality for n = o0 may be proved by approximating with large finite n. So every-
thing reduces to the case n = 1.

We conclude this section with a remark on the relation between the logarithmic
Sobolev inequality and Nelson’s inequality.

There is an inequality relating L log L to e~. In one version it states that

[17tg b < | 171108111 v ~ 171y Yogl sl | + 171 Togllexp(@)ls

The proof follows from the observation that if y > 0, then g(x) = exp(x) — yx
has its minimum at x = logy. Hence g(x) > g(logy). In other words yx <
ylogy — y + exp(x). (This is a special case of Young’s inequality for convex func-
tions.)
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Insert y = |f| and x = g and integrate. This gives

[ 1ntgd < [ 171108101 & = 111 + lexp@)l

Now multiply f by a constant to arrange that ||f|, = |exp(g)];. This gives
J |flgdv < f | f|log| f| dv, which is the inequality in this special case. But since both
sides of the inequality are homogeneous in f, it must hold in general.

This inequality may be applied to show the logarithmic Sobolev inequality implies
Nelson’s inequality in the form we are using it. In fact, if we set f = ¢2 and g = 2V
and divide by 2, we obtain

7> < [ [ Wi toulgl b — Wiz loghta) + 141 loglexp(V)l

and the logarithmic Sobolev inequality says that the term in brackets is bounded by

<, Ni».

3. Gross’s Inequality

Recall that a Gross operator is an operator for which an inequality like Nelson’s
inequality is satisfied. There would not be much point in giving a general definition
of Gross operator if the harmonic oscillator Hamiltonian were the only example.
However there is at least one other interesting example.

Consider a space M consisting of two points. Let o be the measure which assigns
measure 4 to each point. The Hilbert space of the example will be 5 = L*(M, o).
This is a two dimensional space. It will be convenient to use the basis consisting of

the vectors 1 = (}) and x = ( _}) These will play a role analogous to Hermite

polynomials.

There will be operators acting in 5# which are analogous to the operators g and p
of the representation of the commutation relations. Let Q be multiplication by x, so
that Q = ((1) _(1)) Let P = %((1) - (1)) Then P and Q satisfy the Clifford algebra
relations P2 = 1, Q%2 = 1, and PQ + QP = 0.

We write A = 3(Q + iP) and A* = 4(Q — iP). Then 42 = 0, (4*)?> = 0, and
AA* + A*A4 = 1. The operator we are interested inis B = A*4 = 4(1 + iQP). The

only thing we really need to know about B is its explicit form: B = %(_i B i)

Gross’s inequality
The operator B is a Gross operator.

5 U ) we have
0 v,

{$, Vd> < {¢, Bd> + log|exp V||;|#|2 for all ¢ in the Hilbert space. In other words
we must show that <{¢, (V' — B)¢)> < log|exp V| for all ¢ with |¢||z = 1. But since
V — Bis Hermitian, this is the same as showing that the eigenvalues of ¥ — B are less
than log|lexp V| 5.

Proof. We must show that for any multiplication operator V' = (
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The largest eigenvalue of ¥V — B is (v, + vz — 1 + ((v; — v2)® + 1)3). On
the other hand, logllexp V|, = log(3e®": + }e?2)2. If we set x = v; + v, and
y = v, — v, the inequality we have to prove is thus

3(x — 1 + (»* + 1)'?) < ¥(x + logcosh y).
The proof is completed by the following lemma.
Lemma. (1 + y*)*2 < 1 + log cosh y.

Proof. Let f(y) = (1 + log cosh y)2 — (1 + y?). Check that f(0) = 0, f'(0) = 0,
and f"(y) = 0. It follows that f(y) = O.

Now we come to the analogy between B and a second order differential operator.
Since Bx = x and Bl = 0, B is the orthogonal projection onto x. Let ¢4 be a complex
function on the real line. Then ¢(x) is a function on M. We compute B(y)(x)). This is

B((x)) = <{x,§(x)> x
= (1) — H-D)x
= 3¥(x + 2)(x — 1) + 24(x) — $(x — 2)(x + 1)]
= —}¥(x + 2) — 29(x) + $(x — 2)] + x[(x + 2) — $(x — 2)].

Notice that in order to check that this holds, it is sufficient to check the cases x = 1
and x = — 1. To be sure, the expressions $(3) and ¥(— 3) will occur, but always with
coefficient zero.

Finally, we come to the proof of Nelson’s inequality. The following elegant proof
is due to Leonard Gross.

Proof. Let M™ be the space consisting of all sequences of n points selected from
M. Let o™ be the measure which assigns weight (1/2") to each such sequence. Let
Xy, Xa,. - ., X, be the coordinate functions on M™ (so that x; is +1 or —1 depending
on whether x is +1 or —1 on the jth term of the sequence). Finally, let B;, Bs,. .., B,
be operators acting in L2(M ™, o") such that B, acts on functions of the x, coordinate in
the same way that B acts on functions of x. '

Let C, =B, + By, +---+ B,. Let y, = (x; +---+ x,)/(2n)*2. Let ¢ be a
complex function on the reals. Then ¥(y,) is a complex function on M™. We compute
Cr((yn))-

Notice that (x; + x5 + -+ x, + 2)/2n)*2 = y, + h, where h = 2[n)'2. It
follows that

n

Cob(yn) = > B{(H(yn)
i=1

= 3 —HHa + B) — 260) + (3 — )]
i=1

+ 35, [(7n + B) — $(7a — H)]

— 2 W + 1) = 206(3) + $(ya — W]

+ 0 @0 3 + ) — $ — M)
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In other words, C,(¥(1,)) = (D.¥)(y,), where D, is the difference operator defined by

(Dabe) = = iz BHE + B) = 20(0) + 0 = )] + 35 e + B) = it = B,

Notice that as n — co (4 — 0) the operator D, approaches —4(d?/dt?) + t(d/dt).
Let v, be the measure defined on subsets E of the reals by v,(E) = o™y, in E).
This measure may be evaluated as follows. The number of sequences in M™ such that

exactly k of the numbers x,, x,,. .., x, are + 1 is the binomial coefficient (Z) There-
fore the o™ measure of this subset of M" is % (Z) The value of x; + x5 +-- -+ X,

on this subset is 2k — », and so the value of y, is (2k — n)/(2n)*'2. Hence v, assigns the
weight-z-l; (Z) to the points (2k — n)/(2m)"".

Thus v, is given by a binomial distribution. It is known from experience with
coin tossing that the sequence of measures v, approaches the Gaussian measure
dv(t) = 7~ Y2 exp(—1t?) dt. (In fact fu(t) dv, (1) — f u(t) dv(t) for every bounded
continuous function u. We will save the proof of this fact for later.)

The crucial observation now is that by the product space property, the operator
C, is a Gross operator. Hence if V is a real function on the reals

(ya)s V) ¥(ya)> < (pn), Cali(yn))> + log|exp(V(pa)) 2l (ra)]13:

The integrals may be written over the reals instead of over M™. This gives an
inequality involving v, and D,:

[ viluor an) < [ pey gy i
+ tog | [ exp@r ) dnt0)| [ HOF (0,

We wish to show that we may take the limit n — co to get an inequality involving v
and N.

It is not necessary to prove Nelson’s inequality directly for all ¢ such that {¢, N>
is finite. It is sufficient that these can be approximated by ¢ for which the inequality
holds. In particular, it is sufficient to prove it for ¢ which are linear combinations of
Hermite polynomials, that is, for 4 which are polynomials.

It is even sufficient (in the case n < oo, at least) to prove it for ¢ which are smooth
and have compact support. In fact polynomials may be approximated by such
functions. (To see this, let # be a smooth function with compact support which is 1
near the origin. Let u,(x) = u(x/n). If ¢ is a polynomial, then u, is smooth and has
compact support. But

& ., 1éou o o

B, U = ox, Ui ooty o,
in L? as n — o0.)

Similarly, it is enough to prove the inequality for ¥ which are, say, continuous
and bounded. Thus we take ¢ smooth with compact support and ¥V continuous and
bounded and let n — co in the inequality involving v, and D,. Since all the integrands
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are bounded continuous functions, the terms in the inequality converge to the corre-
sponding terms in Nelson’s inequality for the case n = 1. This proves the inequality
for n = 1, and hence for the general case.

For completeness we give a proof of the central limit theorem for coin tossing.
This says that the sequence of measures v, approaches the Gaussian measure ».

The trick is to compute Fourier transforms. The Fourier transform of the
Gaussian measure is

(k) = j exp(ikt) d(t) = exp(—k?/4).
On the other hand, the Fourier transform of v, is
v (k) = f exp(ikt) dv,(t) = f exp(iky,) do,.
Since y, = (x; +-- -+ x,)/(2n)*"3, this factors to give

5200 = [ [T exnlitki2n)2)x;) do,
i=1

=TT [ explikiany=yx) do
i=1

— (cos(k/(2n)12))".

Hence ?,(k) = (1 — k%/4n + - - -)* — exp(—k?[4) = ¥(k) as n — o0.
Now let # be a smooth rapidly decreasing function. Then its Fourier transform
is also such a function and u(f) = [ exp(itk)i(k) dk. Hence

ju(r) dv (t) = j k)P, (k) dik — j (k) (k) dik = j u(k) dv(k).

The result f u(t) dv,(t) — f u(t) dv(t) may be extended to all # which are continuous and
bounded by an approximation argument.
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