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Product Spaces and Nelson's Inequality

by William G. Faris

Batteile Institute, Geneva, Switzerland1)

(1. VIII. 75)

Abstract. Certain inequalities for unbounded linear operators in L2 extend to product spaces.
This product space property is used to give a new proof that Gross's inequality for matrices implies
Nelson's inequality for ordinary differential operators, and that this in turn implies Nelson's
inequality for partial differential operators in infinitely many dimensions. A new proof of Gross's
inequality is given.

There is also a discussion of the physical meaning of Nelson's inequality in quantum field
theory. This article may serve as an introduction for non-specialists to some of the recent
mathematical work in this subject.

1. Introduction

This article is devoted to a discussion and proof of Nelson's inequality. This is an
inequality for partial differential operators which, unlike the Sobolev inequalities,
does not involve the dimension n of space. Thus the inequality is valid with the same
constants when n 1, n 1025, or even n oo. This is why it has played an important

role in constructive quantum field theory.
The method of proof follows an article by L. Gross [1]. He works directly with

unbounded operators; however, in order to pass to a product space he uses the
associated semigroups and a product space lemma of I. Segal [2]. In the present treatment

the product space property is proved directly for the unbounded operators, and
there is no need to carry out the reduction to semigroups.

Section 2 contains a statement of Nelson's inequality and a discussion of its
physical meaning. The product space property is proved in sufficient generality for
later applications. In Section 3 a new proof of Gross's inequality for matrices is given.
The rest of the section contains Gross's proof of Nelson's inequality from Gross's
inequality and the product space property.

Nelson's inequality for semigroups was proved in successively stronger forms by
Nelson, Glimm (see [3]), and Nelson [4]. Federbush [5] showed that such inequalities
can be written in a form involving the unbounded operators directly, and Gross [1]
showed that the unbounded operator and semigroup formulations are equivalent.

Recently Brascamp and Lieb [6] and Beckner [7] have found new proofs in the
semigroup context. The result is deduced from a generalization of Young's inequality.
Their proofs of this inequality resemble Gross's proof of Nelson's inequality in that
they are based on ideas related to the central limit theorem of probability.

») Permanent address: Department of Mathematics, University of Arizona, Tucson, Arizona
85721, U.S.A.
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Generalizations and applications of the inequality have been given by Gross [8],
Eckmann [9], Rosen [10], Wilde [11], and Simon [12]. The Orlicz spaces that occur in
the unbounded operator formulation are discussed in standard works, such as that of
Krasnosel'skii and Rotickii [13]. The notes by Faris [14] contain an elementary
discussion of the implications of the inequality for quantum field Hamiltonians.

This article is taken from lectures given to the participants at the Third
International Conference on Group Theory in Physics, held at the CNRS in Marseille in
June 1974.

2. The Product Space Property

If A is a positive measure, then for each real number p with 1 ^ p < co the space
L" consists of the complex functions t/r such that \\xli\\p (j \4>(x)\p dX(x))llp < co.

If A is Lebesgue measure on K" and if 4> and dipj8x} are in L2 for j 1,..., n, then if
n > 2 the classical Sobolev inequality implies that i/> is in U where 1/r i — 1/n,
and that \ip\2 < constai ||<¥/fo/||!. Notice that this inequality depends on the
dimension of space, and so is not very helpful in the limit n -*¦ oo. Nelson's inequality
was designed to get around this difficulty. This inequality involves the number operator,

so we begin with that.
Consider self-adjoint operators qx, q2,---, qn and px, p2,..., pn satisfying

Pflic — qicPi — iàjk- The number operator is defined by N 2"= i i(pf A q2 — 1).

(This operator is obviously closely related to the harmonic oscillator Hamiltonian.)
It is convenient to introduce operators at 2~ll2(qi + ipA and a*

2~ll2iqk — iPk). These satisfy ap* — a*at 8W The operator N is given in terms of
these operators by N 2y afa,.

We represent these operators on the Hilbert space consisting of all complex
functions i/> on Kn such that ||0|§ j \4>(x)\2 dv(x) is finite. Here v is the Gaussian

measure given by dv(x) -n""-12 exp(—x2) dx. Notice that because of the Gaussian
measure the adjoint of 8/8x, is — 8/dx, + 2xt. Thus — i(8/8Xj — xt) is self-adjoint.
The operators py and qk are represented by — i(8/8Xj — xA and multiplication by xk.

In this representation the operator

Nmt(-isk + x'w}
This may also be written as a sum of factors

« A ««, %}{-A *)l,-
From this is is not difficult to see that its eigenfunctions are products of Hermite
polynomials Hn(xA (-djdx, + 2xy)nl and its eigenvalues are n 0, 1, 2, 3,
For this reason N is called the number operator.

One point to emphasize is that this type of representation continues to work even
when n oo. In this case the measure v on R" is the product of infinitely many
Gaussian measures. (Since these all have total probability one the product measure
is defined.) The operator N continues to make sense as a partial differential operator
in infinitely many variables. This is because the constants have been chosen so that in
each summand there is no constant term. The points of W° may be thought of as

(multiples of) the Fourier coefficients of a field.
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In dealing with unbounded operators such as N there is often some question
about their exact domain of definition. However we will always be dealing with
numbers of the form <</i, Nipy, where ^ is a vector in the Hilbert space. Since N ^ 0

we may interpret this as (if), Nf> (Nll2<p, Nll2if7y \\Nll2i/i\\2. (The square root of
N is defined by taking square roots of eigenvalues.) Thus (if), Nifiy is finite if Nll2ifi is
in the Hilbert space, and (tfi, Nipy + oo otherwise.

There is a different way to write (if), Nipy which explicitly exhibits its positivity. In
fact

In this form it looks quite similar to the expression occurring in Sobolev's inequality;
the only difference is the Gaussian measure.

Nelson's inequality

Let v be Gaussian measure on Un (with variance i). Define the inner product
(if,, <£> J ip*<p dv and norm ||^||| j \ip\2 dv. Let F be a real function on Un. Then

<*, V+y < (if,, Nipy + log||exp(F)|a||0||l.

The proof will be postponed to the next section. This section will be devoted to
the implications of the inequality.

The inequality may be thought of either in terms of partial differential equations
or in terms of quantum mechanics. In the partial differential equation setting it is
natural to try to write it in a form similar to Sobolev's inequality. Look at the special
case V log|i/r|. The inequality becomes

\\ip\2\og\*\dv^<A,,Nii,y+ \\m \og\ip\n.

Thus it says that if ip is in L2 and (iji, Nipy is finite, then ip is in L2 log L. In Sobolev's
inequality the conclusion is that if) is in L7 with 1/r i — 1/n. In some sense this
logarithmic Sobolev inequality is what remains of the ordinary Sobolev inequality
when n -*¦ oo. (Of course it also helps that Lebesgue measure is replaced by Gaussian
measure.)

In quantum mechanical terms the inequality says that in any state <A(q)y <
<Ar> + i log<exp(2J/(^))>o, where <jcf>(q)y0 is the expectation of <f>(q) in the zero particle
state. In order to give a physical interpretation of the inequality we consider a special
case. Let E he a subset of R" and let v(E) be the probability of E with respect to the
Gaussian measure v, that is, the probability that q is in E when the system is in the no
particle state. Then we have the following corollary.

Particle number principle

Probi«? in £} < (l/log(l/v(£)))(2<A'> + 1).

Proof Let tt(E) be the probability that q is in E. Let t be a positive real number
and set V(x) t for x in E, V(x) 0 otherwise. Then the inequality gives

trr(E) *k <Ny + i log[<?2'v(£) + e°(l - v(E))].
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Now choose 2t -log v(E). Then

--Klog v(E))rr(E) < <7V> + \ log[l + 1 - v(E)]
< (Ny + ilog2
< <JV> + i.

Hence tt(E) < (l/(-logv(E)))(2{Ny + 1).
This particle number principle has the interpretation that if E is a set of

configurations that is highly improbable in the no particle state, and if the expected
number of particles in the state of interest is small, then E is somewhat improbable in
the state of interest. In other words, when the expected number of particles is small,
the field configurations resemble those of the no particle state.

In one version or another the inequality is the basis for the construction of
relativistic boson quantum field models. The idea is to prove the consistency of
relativistic quantum field theory by constructing a non-trivial mathematical model.
This is simplest in a world of one space (and one time) dimension. A preliminary step
is to construct the model for a finite interval of space (a sort of quantum mechanical
vibrating string). Then methods from statistical mechanics are employed to take the
limit.

The Hamiltonian for this vibrating string problem may be written as if
H0 + V(q), where H0 is a partial differential operator (in infinitely many dimensions)
and V(q) is a multiplication operator. The free Hamiltonian H0 measures the
relativistic energies of particles of mass m. Hence H0 ^ mN, where N is the number of
particles. The interaction term V(q) is a function of the fields q which is unbounded
above and below, but which is almost bounded below in the sense that exp(— V) is in
LP with respect to Gaussian measure for every p < co.

If m > 0 we may apply Nelson's inequality to — (1 /m) V to obtain

-<<!», V(q)if7y < m<ji/i, Nipy + m log ¦A-A)
{-A)^ <Aj, Hntpy + log exp

This gives

i^Hipy >-log||exp(-F)||a;m.

Thus the total Hamiltonian is bounded below.
In the rest of this lecture we examine a basic property of this type of inequality

which will be fundamental to the proof. First we need a general definition.

Definition. Let v be a finite positive measure in the space M. Consider the Hilbert
space L2 consisting of complex functions ifi on M with ||^||! j \if)\2 dv < oo. Let N
be a positive self-adjoint operator acting in this Hilbert space. Then N is said to be a
Gross operator if for all if) in L2 with (tp, NifTy finite and for all real F with exp(F) in L2

(tp, VifTy <<&Aty> + log||exp(I%

Thus Nelson's inequality asserts that the number operator is a Gross operator.
The following lemma is the basic fact about Gross operators.
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Product space property

Let Nx be a Gross operator in L2(Mx, vx) and N2 be a Gross operator in L2(M2, v2).
Let M Mx x M2 and v vx x v2. Interpret Nx and N2 as operators in L2(M, v).
Then N Nx + N2 is a Gross operator.

.Proof. Since /Vi is a Gross operator

j V(xi, x2)\ip(xi, x2)\2 dvi(xi)

< J ip(xi, x2)*Ni>l>(xi, x2) dvi(xi) + W(x2) j \ip(xu x2)\2 dvx(xx),

where W(x2) i log j exp(2V(s, x2)) dvx(s).

If we do the second integration we obtain

(if), Vipy < <</., NiifTy + j" W(x2) j \ip(xx, x2)\2 dvi(xi) dv2(x2)

<«/., Niipy + J [J rFfe)!^!, X2)|2 Û?V2(X2) rfViCCr).

Now use the fact that N2 is a Gross operator. This gives

(4,, vipy ^ (t, Niipy +

[ \ >l>(xi, x2)*N2ip(xi, x2) dv2(x2) + c f \ip(xi, x2)\2 dvn(x2)

where

c i log f exp(2W(t)) dv2(t) i log \\ exp(2PXs, 0) dvx(s) dv2(t).

In other words,

<>/., F^> < <«/., JV^> + (if), N2ipy + log || exp V

dvi(Xi)

UHI
A consequence of the product space property is that once we have Nelson's

inequality for n 1 we immediately have it for arbitrary finite n. (If we want it for
n 1025, we just have to apply the product space property 1025 times.) Also the
inequality for n oo may be proved by approximating with large finite n. So everything

reduces to the case n 1.

We conclude this section with a remark on the relation between the logarithmic
Sobolev inequality and Nelson's inequality.

There is an inequality relating L log L to eL. In one version it states that

\\f\gdv*k\[\f\\og\f\dv- ll/Ix logli/»! \i logHexpGDIIi.

The proof follows from the observation that if y ^ 0, then g(x) exp(x) — yx
has its minimum at x log y. Hence g(x) 3* g(log y). In other words yx <
y log y — y + exp(x). (This is a special case of Young's inequality for convex
functions.)
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Insert y |/| and x g and integrate. This gives

j \f\gdv < J l/l log|/| dv - \\f\\x + \\exp(g)\\x.

Now multiply / by a constant to arrange that \\f\\x ||exp(g)||1. This gives

J \f\gdv < j |/|log|/| dv, which is the inequality in this special case. But since both
sides of the inequality are homogeneous in/, it must hold in general.

This inequality may be applied to show the logarithmic Sobolev inequality implies
Nelson's inequality in the form we are using it. In fact, if we set/ i/A and g 2V
and divide by 2, we obtain

<<!>, Vipy < [J M2logM dv - IMIlloglWu] + M! log||exp(K)||2,

and the logarithmic Sobolev inequality says that the term in brackets is bounded by

3. Gross's Inequality

Recall that a Gross operator is an operator for which an inequality like Nelson's
inequality is satisfied. There would not be much point in giving a general definition
of Gross operator if the harmonic oscillator Hamiltonian were the only example.
However there is at least one other interesting example.

Consider a space M consisting of two points. Let a be the measure which assigns
measure i to each point. The Hilbert space of the example will be =*f L2(M, a).
This is a two dimensional space. It will be convenient to use the basis consisting of
the vectors 1 I, I and x I J. These will play a role analogous to Hermite

polynomials.
There will be operators acting in AF which are analogous to the operators q and p

of the representation of the commutation relations. Let Q be multiplication by jc, so

that Q L
_

A. Let P - ~
J. Then P and Q satisfy the Clifford algebra

relations P2 1, Q2 1, and PQ + QP 0.
We write A i(Q + iP) and A* i(Q - iP). Then A2 0, (A*)2 0, and

AA* + A*A 1. The operator we are interested in is B A*A i(l + iQP). The

only thing we really need to know about B is its explicit form : B •£(
_ 1 11.

Gross's inequality

The operator B is a Gross operator.

Proof. We must show that for any multiplication operator V I *
J we have

<A>, V<f7y < <A>, B<j7y + log || exp V || 21|<£||2 for all <f> in the Hilbert space. In other words
we must show that (,</>, (V — .#)</>> < log||exp V\\2 for all <f> with ||<£||2 1. But since
V — B is Hermitian, this is the same as showing that the eigenvalues of V — B axe less

than log|exp V\\3.
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The largest eigenvalue of V - B is i(vx + vz - 1 + ((vx - v2)* + l)1'2). On
the other hand, log || exp P"||2 log^e2»! + ie2v7)li2. If we set x vx + v2 and

y Vi — v2 the inequality we have to prove is thus

i(x - 1 + (y2 + l)1'2) ^ i(x + log cosh y).

The proof is completed by the following lemma.

Lemma. (1 + y2)1'2 4, 1 + log cosh v.

Proof. Let/fjO (1 + log cosh^)2 - (1 + y2). Check that/(0) 0,/'(0) 0,
and f"(y) > 0. It follows that/(v) > 0.

Now we come to the analogy between B and a second order differential operator.
Since Bx x and BI 0, B is the orthogonal projection onto x. Let if) be a complex
function on the real line. Then tp(x) is a function on M. We compute B(ifi(x)). This is

B(ip(x)) (x,<l,(x)yx

-*Wl)-K-i)]*
i[0(* + 2)(x - 1) + 2000 - <Kx - 2)(x + 1)]

-i[+(x + 2) - Wx) + <Kx - 2)] + ixmx + 2) - ip(x - 2)].

Notice that in order to check that this holds, it is sufficient to check the cases x 1

and x — 1. To be sure, the expressions if>(3) and ^(-3) will occur, but always with
coefficient zero.

Finally, we come to the proof of Nelson's inequality. The following elegant proof
is due to Leonard Gross.

Proof. Vet Mn be the space consisting of all sequences of n points selected from
M. Vet an be the measure which assigns weight (l/2n) to each such sequence. Let
xx, x2 xn be the coordinate functions on Mn (so that Xj is +1 or — 1 depending
on whether x is +1 or — 1 on the/th term of the sequence). Finally, let Bx, B2,. Bn
be operators acting in L2(Mn, an) such that B, acts on functions of the xt coordinate in
the same way that B acts on functions of x.

Let Cn Bx + B2 + ¦ ¦ ¦ + Bn. Let yn ixx + ¦ ¦ ¦ + xn)/(2ri)112. Let 0 be a
complex function on the reals. Then <(i(yn) is a complex function on M". We compute
CnWjV)).

Notice that (xx + x2 + ¦ ¦ ¦ + xn + 2)/(2ri)112 yn + h, where h (2/ri)112. It
follows that

cn(<r(yn)) 2 BMy*))
i=i

2 -iwc* + *) - 2ft*) + •Piy- - h)i
i=i
+ ixMy» + h)- «A(jn - h)]

- I My» + h)- 2ip(yn) + ip(yn - h)]

+ a {^- [>Kyn vh)- iKvn - h)].
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In other words, CA4>(yA) (Dn4>)(yn), where Dn is the difference operator defined by

AL m + h)_ m) + ft -h)] + t±r(DJ,)(t) =-rjh m Ah)- 2m + ip(t -h)] + tA- y,(t + h)- if)(t - h)].

Notice that as n -> oo (h -» 0) the operator Dn approaches —\(d2jdt2) + t(djdt).
Let vn he the measure defined on subsets E of the reals by vn(E) on(yn in E).

This measure may be evaluated as follows. The number of sequences in Mn such that

exactly k of the numbers xu x2,..., xn are +1 is the binomial coefficient 1,1. Therefore

the a" measure of this subset of Mn is ^ 1,1. The value of xx + x2 + - - - + xn

on this subset is 2k — n, and so the value of yn is (2k — ri)/(2ri)112. Hence vn assigns the

weight Yn W) to the points (2k - ri)/(2n)112.

Thus vn is given by a binomial distribution. It is known from experience with
coin tossing that the sequence of measures vn approaches the Gaussian measure
dv(t) =-n--112 exp(-t2)dt. (In fact j u(t) dvn(t)-> j u(t) dv(t) for every bounded
continuous function u. We will save the proof of this fact for later.)

The crucial observation now is that by the product space property, the operator
Cn is a Gross operator. Hence if V is a real function on the reals

<4>iyn), V(yn)t(yAy < <*00, CB(0(^))> + log||exp(nvn))||2||^(A)||2.

The integrals may be written over the reals instead of over Mn. This gives an
inequality involving vn and D„:

j" v(t)\i/,(t)\2 dvn(t) < \ m*Dj(t) dvn(t)

+ log ^exp(2V(t))dvn(t)J2^\m\2dvn(t).

We wish to show that we may take the limit n -> oo to get an inequality involving v
and N.

It is not necessary to prove Nelson's inequality directly for all ip such that (if>, NijT)
is finite. It is sufficient that these can be approximated by ip for which the inequality
holds. In particular, it is sufficient to prove it for ip which are linear combinations of
Hermite polynomials, that is, for if) which are polynomials.

It is even sufficient (in the case n < oo, at least) to prove it for if) which are smooth
and have compact support. In fact polynomials may be approximated by such
functions. (To see this, let u be a smooth function with compact support which is 1

near the origin. Let un(x) u(x/n). If if) is a polynomial, then unif) is smooth and has

compact support. But

8 1 8u 8è 8J)

dA/^^ndA^ + ^dx-^Sx,
in L2 as n —> oo.)

Similarly, it is enough to prove the inequality for V which are, say, continuous
and bounded. Thus we take ip smooth with compact support and V continuous and
bounded and let n -> oo in the inequality involving vn and Dn. Since all the integrands
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are bounded continuous functions, the terms in the inequality converge to the
corresponding terms in Nelson's inequality for the case n 1. This proves the inequality
for n 1, and hence for the general case.

For completeness we give a proof of the central limit theorem for coin tossing.
This says that the sequence of measures vn approaches the Gaussian measure v.

The trick is to compute Fourier transforms. The Fourier transform of the
Gaussian measure is

i>(k) [ exp(ikt) dv(t) exp(-k2/4).

On the other hand, the Fourier transform of vn is

vn(k) J exp(*0 dvn(t) j exp(ikyn) dan.

Since y„ (xi -\ h xn)/(2ri)112, this factors to give

*»(*) f lì exp(/(A:/(2«)1'2)xO **»
J i

IÌ i exp(i(k/(2n)ll2)x) da
1=1 J

(cos(kj(2n)ll2))n.

Hence î>n(k) (1 - k2j4n + ••.)"-»• exp(-fc2/4) t(k) as n -> oo.

Now let w be a smooth rapidly decreasing function. Then its Fourier transform û

is also such a function and u(t) j exp(itk)û(k) dk. Hence

f u(t) dvn(t) f û(k)K(k) dk-+\ û(k)v(k) dk J u(k) dv(k).

The result J u(t) dvjt)->f u(t) dv(t) may be extended to all u which are continuous and

bounded by an approximation argument.
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