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On Mixtures of Relativistic Fluids

by Kolumban Hutter

Laboratory of Hydraulics, Hydrology and Glaciology,
Federal Institute of Technology, Ziirich

and Ingo Miiller

Institut fiir Theoretische Physik, Universitit Diisseldorf, Diisseldorf

(29. VII. 75)

Abstract. A relativistic thermodynamic theory is presented for chemically reacting simple
mixtures in which each constituent has its own temperature, The field equations for particle num-
bers, velocities and temperatures are restricted by a general entropy principle and the principle of
special relativity. It is shown how absolute temperatures for each,constituent can be defined and
that heat fluxes and production densities of energy-momentum are related to the gradients of
temperatures and densities. The paper closes with a comparison of this theory with that of Eckart
for the case of a single fluid.

1. Introduction

Relativistic thermodynamics of chemically reacting mixtures is a field theory
whose objective is the determination of the fields of particle number, velocity and
temperature of each constituent. The field equations are the equations of balance of
particle numbers and of energy-momentum of the constituents supplemented by
constitutive relations for the stress-energy-momentum tensors, for the production
densities of energy-momentum and for the reaction rate densities.

Previous relativistic theories of thermodynamics of fluid mixtures use the idea of
a single temperature, common to all constituents (e.g. see [1]). Such theories are
formulated within the framework of linear irreversible thermodynamics and assume
the validity of the non-relativistic Gibbs equation and a particular form for the entropy
flux. When each constituent has a different temperature it is not clear how to extend
the ideas of linear irreversible thermodynamics and therefore we adopt a different
approach: We consider constitutive relations appropriate to a simple mixture of
inviscid fluids and find restrictions on these relations by the principle of special
relativity and a general entropy principle. According to this entropy principle, the
entropy-entropy flux vector is a constitutive quantity and the entropy production is
non-negative for every solution of the field equations. Such an entropy principle was
proposed by Miiller [2 or 3] and has already been applied to non-relativistic simple
mixtures by Miiller [4], and by Alts and Miiller [5] to a single relativistic fluid.

For a subclass of simple mixtures, that is characterized by linear constitutive
relations, we show how absolute temperatures can be defined for every constituent and
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how these temperatures approach a common value as equilibrium is approached. We
prove that a Gibbs equation holds for every constituent and that the entropy flux and
the heat flux of each constituent are proportional to each other with the absolute
temperature as factor of proportionality. Furthermore, we derive that the heat flux
of a constituent is equal to a linear combination of the gradients of the absolute
temperature and of the density of that constituent; as a consequence, one must
conclude that in equilibrium in a gravitational field the temperature fields of the
constituents are not uniform. We also show that the interaction force between one
constituent and all others will in a linear theory depend linearly on the relative veloci-
ties of the constituents and, in general, on their heat fluxes. Finally, it comes out that
the law of mass action in a relativistic theory contains explicitly the binding energies
of the constituents.

For a single inviscid fluid we compare our results with those of Eckart’s theory of
a relativistic fluid. That theory was proposed in [6] and uses the ideas of linear irre-
versible thermodynamics. With respect to the dependence of the heat flux on the
gradients of temperature and density, there is agreement between the two theories;
however, in Eckart’s theory the heat flux contains additional terms whose interpreta-
tion seems to require further study.

2. Equations of Balance for a Mixture of Relativistic Fluids

a. Objective and notation

We consider mixtures of v fluid constituents and assume that each point in the
body is simultaneously occupied by molecules of all constituents. Quantities relating
to a constituent will carry a Greek index.

x* with 4 = 1, 2, 3, 4 denotes the coordinates of an event in space-time, so that
x* (a = 1, 2, 3) are Cartesian coordinates of its spatial position and ¢ = x*/c is the
time of its occurrence. In general, capital Latin indices range over the four values
1, 2, 3, 4, while lower case Latin indices range over the three values 1, 2, 3; summation
over recurring Latin indices is understood, and f , denotes partial differentiation of
the field f with respect to x,.

Throughout this article the frame of reference will be a Lorentz-frame with a
metric tensor of the form

-1
AB —1
-1

1
2“8 and its inverse g, are used to raise and lower indices in the usual manner and we
define 6 = g*%g5c.

The main objective of a thermodynamic theory of mixtures of fluids is the deter-
mination of the following fields:

n(x4) = number density of particles of constituent « in its rest frame,
Ve(x*) = velocity of constituent «, (2.1)

o
Hx*) = empirical temperature of constituent « in its rest frame.
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[*1
It is often useful to replace the velocity V¢ by the three independent components of
74
the four-velocity U4:

04— 4 , d sothat U4, = ¢ (2.2)

Jaya Papa
N/l = N/l =

The calculation of the fields (2.1) requires the formulation of field equations and these
are commonly based upon the equation of balance of mechanics and thermodynamics
which we now proceed to discuss.

b. Equations of balance

«. Balance of numbers, momenta, energies, and moments of momenta. The equa-
tions of balance of particle numbers, momentum and energy of the constituents read

(I‘;UA),A = ¢, a=1,2,...,v, (2_-3)1

a

T =m*,  «=12,...,» | | (2.3),
Here, ¢ is the production density of particles of constituent « due to chemical reac-

a
tions. T4 is the stress-energy-momentum tensor of constituent « and m4 is the pro-
duction density of momentum and energy of that constituent. More specifically we have

24
T = momentum flux of constituent «,

a
7% = ¢c-momentum density of constituent «,

a 2.4
T* = 1/c-energy flux of constituent «, ey
[¢4

T** = energy density of constituent o,

m* = momentum production of constituent «, (2.5)

m* = 1/c-energy production of constituent «.

The momentum production ® can also be interpreted as a force of constituent «
which is due to the interaction of that constituent with all others.

The balance of energy and momentum for the mixture as a whole may be written
as

> TH =2 M (2.6)
a=1 ’

a=1

whence follows

> mt=0 2.7
a=1

as the expression of conservation of momentum and energy.
Not all » production densities ¢ of particles are independent: Indeed, if there are
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n independent chemical reactions and A® is the reaction rate density of the ath reaction,
we have

=2 Y, a=123..,v (2.8)
a=1

where ¢ is the stoichiometric coefficient of constituent « in reaction a. The stoichio-
metric coefficients are restricted by the requirement that in every reaction the number
of nucleons and the number of electrons must be conserved. Therefore,

V. « Y. &
D Zwi=0 and Y Zyt=0 (2.9)
=1 a=1

must hold, where 7 ~ and Z are the number of nucleons and of electrons respectively
within the molecules of constituent «. It follows from (2.8) that there are v — n rela-

tions between the v densities ¢ and that the » reaction rate densities A* are the true
variables governing the chemical reactions.

Multiplication of (2.3); by x? leads to a tensor equation with free indices 4 and
D and its antisymmetric part reads after an easy calculation

o 24
(x[DTA]B)’B — Tt4D) 4 XAl 1y

- - - a .
The quantities x“7** are the components of moment of momentum of constituent

and xm? are the combined torques of the interaction force. We shall assume for
simplicity that in every Lorentz frame those torques are the only causes for the produc-
tion of moment of momentum and this assumption is tantamount to saying that the
stress-energy-momentum tensors of each constituent are symmetric:

a
TtaD1 — (), (2.10)
B. Balance of entropy. Various considerations of thermostatics and of statistical
mechanics suggest that the entropy of a constituent is an additive quantity just like
energy and momentum, In special relativity this observation can be expressed in
equations of balance of the form

o

S4 =32 (2.11)

a - . . . . a -
where X is the density of entropy production of constituent «, while S$4 is the entropy-
entropy flux vector whose components have the following interpretation:

a
S® = entropy flux of constituent «,

; (2.12)
S* = c¢-entropy density of constituent a.
The entropy balance for the mixture has the form

4 =2, (2.13)

where S4 and T are the sums of S4 and o over all «. Later we shall postulate an
inequality for the entropy production density  of the mixture.

1) Square brackets indicate antisymmetrization.



Vol. 48, 1975 On Mixtures of Relativistic Fluids 679

3. Field Equations, Principle of Special Relativity, Entropy Principle

a. Constitutive equations

We recall that thermodynamics has the principal objective of calculating the
fields (2.1). Clearly the equations of balance (2.3) cannot by themselves serve as field
equations for that purpose, and in order to obtain field equations from (2.3) we must
supplement these equations by constitutive equations which relate the quantities

Xe, A, T48 G.1)

to the fields 7, Ve and §in a materially dependent manner. By (2.8) the reaction rate

densities A* determine the production densities ¢ of particles which occur in (2.3);.
If in particular the constitutive equations are of the form

T45 = TA8(Gh; U4; ;703 B.4); (3.2);
3 @ B8 8 B B
mt = mA(n; UA; 19';’1 A &.A); B - ]5 29 s Vs (3'2)2
g B B 5 B
A=A, U4 9 n .8, B=1,2,...,v; (3.2)s

we call the material a simple mixture of inviscid fluids.

The entropy-entropy flux vectors S# in a simple mixture of inviscid fluids are
24
also assumed to be given by a constitutive equation of the same type as 745:

S4 = SAG; U4 8: 745 8. (3.2),

The class of materials characterized by equations of the type (3.2) is special in two
respects as follows:

(i) The stress-energy-momentum tensor and the entropy-entropy flux vector of
constituent « depend on the particle number, velocity and temperature of that con-
stituent only. It is with reference to this property that we speak of simple mixtures.
Interaction between the constituents of a simple mixture is thus effected only by the

production densities m4 and by the reaction rate densities A* which may both depend
on all particle numbers, velocities and temperatures.

(i1) Velocity gradients are not included among the independent variables in (3.2)
and this implies that viscous effects are ignored.

In classical theories of simple mixtures density gradients would be absent from
the list of variables in (3.2) (e.g. see Ref. [7], p. 186). In a relativistic theory, however,
these variables play an important role which will become clear later.

When the constitutive equations (3.2), 5 5 are introduced into the equations of
balance (2.3), one obtains a set of field equations for the determination of the fields

r‘ft(x*‘), Ve(x4), 3(x*) and every solution of these equations is called a thermodynamic
process in a simple mixture of inviscid fluids.

If the constitutive functions in (3.2) were known, the problem of finding thermo-
dynamic processes subject to certain initial and boundary values would be entirely
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mathematical. However, for no material are these functions known and therefore
most thermodynamicists attempt to exploit general physical principles which impose
restrictions on the constitutive functions. The main principles of this type are the
principle of special relativity and the entropy principle which we now proceed to discuss.

b. Transformation properties and the principle of special relativity

The transition from one Lorentz frame to another one is effected by the trans-
formation x4 = L#xB with

o _ V“Vb( ! _1)5 i

L (@gm) o Wi—vmeE ) evT-vye

B = |- ottt 1 [ttt ittt i """"""""""""
0 :1 —1_ po E 1

cVI- Ve L VI- e

where (¢ is an orthogonal matrix, V¢ are the components of the relative velocity of
the two frames, and V is the magnitude of that velocity.

44
n and & are by definition scalars with respect to these Lorentz transformations

a a Q (¢4
while U“ are vectors. It is assumed that 742, m4, S4, \*> and X are tensors, vectors and
scalars respectively so that we have

ra a e ri a
AB _ yAFBTCD. S4 _ 74%C. A _ JAQC. _ )a.
T4% = LCLDT ;o mA =Lom®; S§4 = LCSC, AC = A,

=]

= (3.3)

Clearly, with these transformation properties, the equations of balance (2.3) and (2.11)
retain their forms in every Lorentz frame.

However, the principle of special relativity requires that the field equations — and
not merely the equations of balance — retain their forms and therefore the constitutive

functions T42, m# and A® must be the same ones in every Lorentz frame. We postulate
p

a
the same invariance for the constitutive functions S of the entropy-entropy flux
vectors.

Thus the principle of special relativity combined with the transformation proper-
ties (3.3);_, implies that the constitutive functions be isotropic tensorial, vectorial and
scalar functions with respect to the transformations L, i.e. that the following condi-
tions hold

[+4 [+ 4 4 (24 [14 a a o o
TOP(n; LAUC; 9; Lén o; L4 o) = LSLET43(1; U*; 9 n_4; & 4);

S¢( ) = LSS¥( );
(3.4)

@B L alic. b b o clab. Fa b 8 8
m (n;L’CU s O3 Lgn o L&Y o) = LSm*(n; U4; &;n 4; & 4);

A% ) =A% )-
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These conditions must be satisfied identically in the matrices L4 and that requirement
leads to important restrictions on the constitutive functions. Such restrictions are best
expressed, in our opinion, in terms of the variables

n= (U}Aﬁ,,,; nid = A4Bp .

and (3.5)
d = U4 ,; 4= A9

rather than in terms of 1'; 4 and 5 4 In (3.5) A4E i a projection operator defined as

3 @ @ a
A4B — g4B _ clzﬁAUB so that A%BU, = 0, (3.6)

In terms of the new variables (3.5) the representations implied by (3.4) read, since

a
T48 was assumed symmetric
o a @ @ o« 2 o« «
T = —pg"® + cl—z(f?mc2 + né + PUAU® + — (U™ + UPn*)

I% o a o @ a @ ® o a
+ _2(UA3J.B UB&_LA) n,LA o) p P(n.LAﬂJ.B + nLB&J.A) _ Q&J_A&J.B;
C

3.7,
o ca & ¢« c @
S4 = nmUA + s,nt4 + 5,944 (3.7),
[14 b a’ [+4 'ﬂ
= > z a4 + ni’;aam (3.7

af aB af 4 g
and the scalars m,, my, m, as well as the reaction rate densities A*> may depend on the
scalar variables

a

B
UAUA, UAnA, U“’&j;
e ¢ & @ a
b b AL AR  BLAGL: (3.8)
19'J’AU !9J.A &J.Aﬁ,.k.

It must be noted that the first line and the first column in the matrix scheme of (3.8)
do not give rise to variables, if « = B8 because U4U, = c?, while UAﬁj = 0 and
U Agﬁ = 0. The scalar variables in (3.7); » may depend on the scalar variables

a

n: 3; n; 5; G= 5“6‘;; H= ’%M’c{j; ;E :;Ma;j; (3.9)

the coefficients p and nmc? + ne in (3.7), denote the pressure and the energy density

of constituent « in its rest frame and 7 is the density of rest mass. 7 in (3.7), denotes
the entropy density of constituent « in its rest frame.

a
The energy flux c¢- 7% and the flux of entropy S° of constituent « in its rest frame
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will be denoted by g° and qZ” respectively and, according to (3.7), ; these fluxes read

~
~

a @ @ u a& a o
g = kD, + ) B = g0, + San.); (3.10)

a a
for brevity in future arguments we call g* and ¢ the heat flux and the non-convective
flux of entropy respectively of constituent c.

c. Entropy principle

We recall the equation of balance of entropy (2.17) and postulate that the entropy
production density 2 be non-negative for every thermodynamic process. Thus the
entropy inequality

S4 >0 (3.11)

must hold for every thermodynamic process, i.e. for all solutions of the field equations
that result from a combination of the constitutive equations (3.2) with the equations of
balance (2.3).

A general entropy principle of this type was proposed by Miiller [2] in a non-
relativistic context and was used by Alts and Miiller [5] in a relativistic theory of a
single inviscid fluid. This principle was also applied by Miiller [4 and 8] for the
formulation of non-relativistic thermodynamic theories of mixtures.

We recall that we rely upon the entropy principle for the derivation of restrictive
conditions on the constitutive functions. Now, the key for the evaluation of the
inequality (3.11) is the statement that this inequality must hold for all thermodynamic

processes. In other words: the fields roi(x“'), 5(x“") and I%(x") for which (3.11) must hold
are constrained by the requirement that they be solutions of the field equations. Liu [9]
has shown how one can get rid of these constraints: He showed that the new inequality

v(g @ "(a)a v(a)aa
S4- 2 A)[(:%’UA),A —-é-2 AATHE — ] - 2 AUUE1 20 (.12)

a=1
must hold for all analytic fields n(x*), U C(x4), 5(x“'). The quantities
() &) @)
A, A, A4

are called Lagrange multipliers by Liu and, according to his proof, may be functions
of all variables in (3.2). Inspection of (3.12) shows how this inequality has been formed:
Each field equation has been multiplied by a Lagrange factor and subtracted from the
S#4, in the original inequality (3.11). One feature of (3.12) deserves a remark: In (3.7)

a a a
the four-velocities U4 take the role of the velocity variable but, since U4U, = c2, only
[74 a [
three components of U4 are independent, so that the equation U,U% = 0 in addition

to the field equations serves as a constraint on the fields ﬁ(x“‘), lo} C(x4), 5(x‘4). The term
with the Lagrange multiplier in (3.12) takes care of that additional constraint.
We shall now turn to the evaluation of the inequality (3.12).



Vol. 48, 1975  On Mixtures of Relativistic Fluids 683

4. Consequences of the Entropy Principle, Linear Constitutive Equations and
Equilibrium

a. General consequences of the entropy principle

When the constitutive relations (3.2), 4 for T4E and S are introduced into the
inequality (3.12) and when all indicated differentiations are performed, what emerges
is an inequality whose left hand side is linear in the quantities

o aQ o

N ap; P, 45; U,Ei;- (4.1)

Since the inequality must hold for all analytic fields #, 9, U4, it must in particular
hold for arbitrary values of the derivatives (4.1) in one event. Thus the terms with
these derivatives must not contribute to the inequality or else that relation could be
violated. This argument leads to the following conditions?)

P §<B’ () a;‘A(B

- — AA = — 0; (4.2)1
on, g, on, g
a§(ﬂ (%) a;‘A(B

<A ./ ey (4.2),
.5 08 g,

s8 () gras @),  (8) .
057 _ A, orss _ (D, 558 — AR/, = 0. (4.2),
oUE aU"

There remains the inequality

v B T AB nla L4 B () ABY «
5 Qbn Q5 g Qofey

a=1 8n 6!9'

(4.3)
(2), (“)
+ z {Ac + Am } > 0.

=1

Some of the relations (4.2) may be used to calculate the Lagrange multipliers. Thus,
8

multiplication of (4.2); by A®F results in a tensor equation whose trace implies

Sﬁ'{)=3in(3§3 (K) aTAB) o

[7] A [ AB
oUE oUE

When this is put back into (4.2); and when that equation is multiplied by UE one gets
(j@ 1 {(85‘3 (i)afu) L %(3§c (K) aTAc) ¢« a }

2

o0c  oUe
Therefore equation (4.2); becomes
( 0 §'C (T) TAB) o

A (8BAFF — 3 AEABF) — 0, (4.4)
oU U™

UE " A AEUB
oUE oUE

2)  Round indices indicate symmetrization.
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We proceed to study the equations (4.2), , and (4.4): First of all, (4.2), implies
&) ) )

a
that A, depends on n, U4, 5, ﬁ, 4>9 4 only and is an isotropic function of these variables
so that it has a representation of the form

(g") ¢ « a

A, = AU, + ARt + 13\5;, (4.5)
2

a /4 (14
where A, ./2\ and ./3\ are scalar functions of the scalar variables (3.9). Next we introduce
the representations (3.7), ; and (4.5) into the equations (4.2), , and (4.4) and, since

; ; . . . 2« z .
these equations must be satisfied identically in Uy, n ,, & 4, we obtain a great number
of conditions on the scalar functions in (3.7), , and (4.5). The determination of these
conditions is long and tedious, even though it is straightforward and we just give the

results: The coefficients A and A in (4.5) turn out to be related to A by the equations

a a

.Z\ = R,A, where ﬁz =

L4+ On + PS

amc + fe + p — (1/c2)(% + k%)
L (4.6)
kK + Pn + Q0

nme? + ne + p — (1)c2)(h + &6%)

13\ = R3A, where R; =

so that by now of all the Lagrange multipliers, that we introduced, only v are undeter-

a

. . @ T L
mined, one for each constituent, namely A = (1/¢?)A U4

For the coefficients 5, and §; in the representation of the entropy-entropy flux
vector we get

$, = A(¥ — R,(OH + PI) — Ry(OI + PG)),
o 4.7)

§. = Ak — Ry(QI + PH) — Ry(QG + PI)).

From these two equations and (3.10) we conclude that the non-convective flux of
entropy and the heat flux are not proportional in general, although they are in a linear
theory as we shall soon see.

Further, we have equations for the derivatives of S5, §3, nn with respect to
o @ a
n, 9, G, H and I. These derivatives imply a great number of integrability conditions

o a a

which must be satisfied by the functions ﬁ, €, 7, k, 0, P and Q, but such conditions are
complicated and little suggestive; moreover, we shall not need them in the remainder
of this paper and therefore we delete them.

Indeed, from here on we shall restrict the attention to the consideration of

By . 4 .« & p ; « g
constitutive equations that are linear in n 4, ¢ 4 and velocity differences U4 — U“4.



Vol. 48, 1975  On Mixtures of Relativistic Fluids 685
b. Linear constitutive equations and further evaluation of the entropy inequality

a @ B
When non-linear terms in the derivatives ﬁ, 4 % 4and in U4 — U are neglected,

the coefficients 5, P and é in (3.7), must be set equal to zero, while the equations
(3.7)g,5 are formally unchanged. Thus we have

]avw_ % AB 1l aa o Lk o Fare 7 a1 7 B2LA
= —pg +F(nmc + ne + p)UAU +E§(Un + UBnt4)
o

+ 55 ([a]AI;J.B + (a]Bﬂ.LA);

o aa & « o a ¢ (48)
S4 = U2 + sont4 + 53044,
v v v
o ag B aB g ap 8
mt = Z m U4 + mynt4 + Z mgdtA.
f=1 B=1 B=1
Moreover, in a linear theory we must require that

a o o . 14 o . . O'! é
D, €, n are functions of n, &, and linear functions of n, &
¢ o @ « . « ¢
T, K, Sg, §3  are functions of n, &,

ab  ap . (4.9)

mgy, my are functions of n, &

b b

8 . a ) . @
;;h’ A are functions of ;;, & and linear functions of #, &
v o v
and Uy(U* — U%).

Although from here on we shall only consider the linear constitutive relations
characterized by (4.8) and (4.9), we shall not recognize this in the notation so as not to
overburden the formulae with indices. Note that a dependence of the scalars in (4.9)

« o a 74 (74 ¢4 . . .
on nt4ny, nt49;, 9494 would give rise to non-linear terms and so would a dependence
on

a g o B B a B a s B

Uny = (U4 — UYHny and U4; = (U4 - UYdy.
Also, with 5, ;’, Qa all being zero, the equations (4.7) read

@ L3 & a

S = Ar and s3 = Ak, (4.9)
whence follows that A can only depend on n and $. The equations (3.10) and (4.9)

combine to give a relation between the heat flux and the non-convective entropy flux,
ViZ.

¢ = Age. (4.10)

()
We shall now proceed to evaluate the inequality (4.3). When A, A from (4.4) and
(4.5) and S B, T4% and M4 from (4.8) are inserted into (4.3), it is easily appreciated that
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the left hand side of that inequality reads

v a o [} a . Vo, @ a 2%\ &
| fé[?g-A(a_‘_;)]h zn(fﬂ_A?.;),&
=1 Lon n? oo

a on a=1 33
oL L A2 8s + Aty 3Bt
v on 2 on 2
4 Z .
@8=1 o aA a 3(1 a 14
3 Bse [(K s - —"E) 8up + Am”s]
o8 ° a9 A

;}J_A ﬁJ.A v @ s o « 8 v o8 Bga @ 8
x + D [Amy + AmglitaU, + D [Amy + Amgl$H4U,

A=1 @,f=1
> aO!B o 8 U [+4 ® 4 o 1‘; 2
+ > AmUAU, + Y [n +A (mc2 + €+ _)} D YEA >0, (4.11)
a,B=1 a=1 n a=1
where for brevity we have defined
a . K @ o 8 g o,
B — [(x L N Af—) Sup + Ariy + Ané’a] (4.12),
on  *on o % a9 3 2
and
& 5 %8 B EG p
£z 4 (nt + k3 (g + k) 4.12),

3c? Amc® + ne + p
It requires considerable study of (4.11) to see that further conclusions can most easily
be drawn from this inequality, when a change of variables is made: Indeed, we shall

now replace oa by the quantity

[+ 4

gh = A 4 k9L, (4.13)

whose first three components, by (3.10), in the rest frame of constituent « are the heat
flux of that constituent. It is then easily confirmed that (4.11) assumes the following

form:
" o[ e (€ H\]a Y. o fOn @ B\ ¢
2 - AGRlr e 2 A A )

a=1 8”1 aﬁ n a=1 319
0 {éaﬂ giA ﬁlJ.A
+ > : ;
4 8A x 8 @ a
a,f=1 %BBO( .&178. [(K = A'_a) 8a8 + é"ga] (5«4 qA
KK oo 3 20 o
N Y TR L P
+ z A\my — - mg| n+2U" + Z o (Bdmy + Amg)q*Uy
a, B=1 K a,f=1 K

v B o o« a a # . a n
+ > AmUAU+ > [n - A(mc2 + €+ 35)] D Y20, (414
, n
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where B% stands for
1[{« A 58 L BA a5 5 5
o a a
K on 3 on o9 2 o9 3 2

Inspectibn of (4.14) shows that the left hand side of that inequality is linear iﬂ

fz“‘; on the other hand the inequality must hold for arbitrary values of n*4 and there-
fore we have

1 ,,af\ “8a aaK a g “ ga @ gy | ¢
2 z[(x—w\——f—— A% o0 + (A - Afhs)]AABS«B
1 K a 2 3 2

o a « a a
@ P x: @ g
A=l m =i a il (4.15)
K on oo 8 on 2 99
Equation (4.15); shows that the vector m, has the form
4 2 ag B . ;1’53 B
my = Z m U, + Z qa, (4.16)

so that, if all constituents are at rest, there is an interaction force m, due to the heat

fluxes of the constituents, unless all coefficients %3 are zero. Equation (4.15), will be
evaluated later (see equation (5.2),).
The residual entropy inequality reads

The left hand side of this inequality is the entropy production and we shall now pro-
ceed to draw conclusions from it for the equilibrium values of constitutive functions.

c. Equilibrium and equilibrium properties
Equilibrium is characterized as a process, in which the number densmes velocities

and temperatures of all constituents are time-independent, so that h= U a=0,
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(‘2 a ¢4 [+ (]
% = U4 , = 0 and U4UE = 0, and in which the reaction rate densities A% vanish
as well as the heat fluxes g° of all constituents.

o B
Since 5" is zero in equilibrium, (4.16) shows that m,|; = >5-, ?1';1 U,|g holds?®)
and furthermore that the equations of balance of particle number, momentum and
energy of constituent « read in the rest frame of that constituent

Ua’a[E B 0;
a = aBE a
—Pals = D mU,s where U, =0; (4.18)
B=1
P 3
0 = Z nflUﬂE
=1

The number balance (4.18); shows that only isochoric motions are possible in equi-
librium and the energy balance (4.18);, written in an arbitrary Lorentz frame rather
than the rest frame of constituent «, reads

¥ af @ B
> mU,U4[ = 0. (4.19)
=1

By (2.11) we have 2 5-1 %1 l‘} Aﬁ 4 = 0 and therefore (4.19) are v — 1 equilibrium
conditions.

Inspection of the inequality (4.17) shows that its left hand side, the entropy
production X, assumes its minimum, namely zero, in equilibrium. X is a function of

a <

] e ¢ g « . 3 .
n, %, U4, n, &, nt and q,*); alternatively, assuming that the Jacobians

vV 45 @ B
6Aa' EZrﬁlUAUA
—|(e,a=1,2,...,n) and gl 5 (c,y=1,2,...,v—1)
on o9

do not vanish, we may write

y :
n+1 v ag & B vV a g4 & g &
P ()\“,n,...,n,(z mlUAUA) 3, Ue, n, &, nt, g)
B=1 4

n+1 v L (420)
Xl =20,n,...,n0,98 U0,0,0,0).
Of necessity then, we must have the following conditions
o
x|, =0 (4.21)

%)  The index E denotes equilibrium and the hat denotes the rest frame of constituent e.

a
%) Note that 7%, g+ and U* are not among the variables, because they can be determined from
a 24 @
the identities U 4 = 0, U43, = 0 and U, U4 = ¢2.
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o aff &« B
where X stands for any one of the quantities A* (@ = 1, 2,...,n), -1 m U, U4
¢ &
(a = 1’25-'-51’ - 1),50,’ n,19‘(0£ = 1929---’V)-

We exploit the derivatives with respect to g° first and obtain (note that §*U, =
_'5(1 Ua)

B
1 v o [ B
e > (Rt + Aity (0. - 0. 54)| =0
K g=1

4

E

Excluding the possibility that the matrix of coefficients of this linear system is
singular, we thus conclude |
B o
(Va - Va)IE = 0,

i.e. in equilibrium the velocities of all constituents are equal. Because of this property,
(4.19) can be written as

> myls =0, (4.22)
=1

and the momentum balance (4.18), reads
;;,alE = 03

~ 1

together with g%z = O this equation implies that & and # are uniform in equilibrium,
but of course this holds only when there are no external forces acting on the constit-
uent «.

ag & B .
Since D7 5.1 n%l UAU, = 0 holds, the next to the last term on the left hand side
of (4.17) can be written as 321 (A — A)S3., 5, 04U,) and (4.21) with X4 =
o a B
(54, m,U,U%) implies
Alg = Alz. ' (4.23)

Thus all K’s have the same equilibrium value. Since A is a function of n, 9, equation
(4.23) shows that ¢ is determined by &, nandnin equilibrium; later we shall strengthen

v 1
this statement by showing that & alone determines & in equilibrium.

The conditions that follow from (4.21) for X = n and X? = 9 are

aa i 8& 4 o Pr 14
T = Al (—Z - p—'*‘i) and 2| = R, % (4.24)
onle onle n? od e 0 | &
and these will be discussed in the next chapter.
Finally we can choose X2 = A% in (4.21) and obtain, using (4.12),
(-:; _ A(;:wz + it £)) ye =0, (4.25)
a=1 n//le
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which is the law of mass action in a form appropriate for the simple mixtures of
relativistic fluid that we are considering here. We shall come back to this relation in
Section 5.c.

We shall now turn to an interpretation and elaboration of the results of this
chapter.

5. Absolute Temperatures, Heat Fluxes, Law of Mass Action, Diffusion and Tempera-
ture Relaxation

a. Absolute temperatures and the Gibbs equation
«. The functions A(n, 5). The equations (4.24) are conditions on the functions

a 5 a 4 @
#(n, 3, n, ) and &n, 9, n, §) which - in a simple mixture — are specific entropy and
specific internal energy of constituent «, even if no other constituent is present. In the

relations (4.24) we may therefore regard n and 9 as independent variables even in
equilibrium and write e.g.

o

on

ol o, o
E on o

0€|g
— —a—,

oY

E

where 3|5 = %(7, $,0,0) and &5 = &, 8, 0,0). Thus the relations (4.24) may be
combined to read

« o & & g
&l = A, 9) [% s + (a—‘IE - P—'E) dr"i]- (5.1)
a9 on n?

We see that A is an integrating factor of the expression [de|z — (p|z/fi?)dr] and there-
fore A must satisfy the following integrability condition for 7|z

oy oI A (aaE B i)'ls) oln A _ —18f]s (5.2)
— L ¢ 1

(74 a o« a a - ('3
o% ©on on n? o n?® od

Similarly, we may consider equation (4.15), as an equation for constituent « alone

which, in equilibrium, has independent variables # and 5:

a 'g 'aﬁlE - I% aa|E
@ cln A _a alnaA _ od on (5.2),
on o8 nme? + nélg + plg

The equations (5.2) form a linear system from which the derivatives o In K/af'i and
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¢ In K_/Bg can be calculated:

co (el Lol

oln A nmc® 4+ nelg + plg\ 9 on/\on  n? n? o
80: o @ a 5 aa
; _K (il_ _ £|_§) 42l
o (12
on n od (5.3)
[+4 [14 [+4 a
— 1 (;ﬁ op|e _ & p|e\ O¢li o 8 L ple
a xa a a « o « «
dln A _ Amc® + nélz + plg \ 89 on ) &8 n® 8%
o « @
od — (% — P_IE) i - _a.i!;":
en  n? a9

The equations (5.3) embrace our knowledge about the functions K(ﬁ, 3) so far. In

the next subsection we shall show that 8K/Bﬁ must vanish and shall draw further
conclusions from that.

B. Absolute temperatures. The concept of temperature is a basic and primitive
one in thermodynamics, both classically and relativistically; it gives a measure for

- . a .
how hot a body is and — in the present case — ¢ measures the hotness of a constituent.
Now, in thermostatics and in statistical mechanics, it is common to define an
absolute temperature T as the integrating denominator of the expression de —

(p/n®) dn. Accordingly we shall define the absolute temperature T of constituent o
as the integrating denominator of dé|; — (p|g/n?) d7 so that, by (5.1), we have

1

T=
A, By

(5.4)

There are three good things to be said for considering the absolute temperature
a a
T = 1/A as a possible measure of temperature of constituent «:

(i) In equilibrium, by (4.23), the absolute temperatures of all constituents are
equal. :

(ii) Temperatures of bodies are measured by thermometers by virtue of the
assumption that the thermometric substance — when in contact with the body - has
the same temperature as the body. Therefore, a quantity deserves to be called a tem-
perature only if it is continuous across the wall of the thermometer and we shall now

show that A indeed has that property: We take it for granted that in the wall of a
thermometer there is neither production of energy nor of entropy; therefore, the
normal components of the heat flux and of the non-convective entropy flux are
continuous across the wall under rather general conditions which are easily satisfied
here.®) Now, let the substance within the thermometer be the single constituent 8 and
let the body, whose temperature is to be measured, consist of the single constituent .

%)  See Ref. [10], p. 526 for a specification of such conditions.
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Then the above-mentioned continuity conditions for the heat flux and the flux of
entropy read

- - & B

G, = e, and %, = e, (5.5)
where e, is the unit normal to the wall. According to (4.10) we have §* = Ag® for both
the body and the thermometric substance and hence (5.5); ; imply

a B

A=A (5.6)

b

which shows that indeed the A’s may be used as temperatures.

(iii) In statistical mechanics the temperature of a body is considered to be a
measure of the mean kinetic energy of its molecules. Now, all statistical relativistic
theories of gases show that indeed it is the integrating factor of (de — (p/n?) dn) that
determines the mean kinetic energy of the molecules and vice versa; e.g. see Jiittner
[11], or Synge [12] or the more far reaching papers by Chernikov [13].

Thus it would appear that we have made out a good case for calling T=1 [A(n, 3)
a temperature. How then do the empirical temperatures 3 fit into this? Obviously,
from (5.4) the #’s can be called temperatures only, if the A’s are independent of 7.

Therefore we must have 8A/on = 0, and the two equations (5.3) reduce to

o 8a
1 2k
f=——. - (5.7)
dT|d$ nmc? + nels + pls — T(0p|s/0T%)
and
dinA _ 1 dl_ dp|Jdd" (5.8)
49 T 85 #7228 s/0R) — Pls

a
But this is only a necessary condition for the &’s to be proper temperatures. We must
also require that & has the same value at both sides of a thermometer wall and this

¥
brings us back to the considerations under (ii) above: With A being independent of n
the equation (5.6) at the wall of a thermometer reads

a o B8 B
A(®) = AP
and, since we must have 3 == 5 = i
a 8
A = A®@D).

¢4 a [44
This has to hold for all &. Hence, A or T is a universal function of &, i.e. the same
function for all constituents:

A =A@ or T=T®). (5.9)

Note that d7/dd in (5.7), (5.8) can thus be written dT]d5.
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We can calculate the function T(r;) from (5.8) by integration to within a factor of

integration, if only the functions p|; and 2| z/on have been determined for a single
material. This is no different from non-relativistic thermodynamics and with a proper

choice of the factor of integration T(#) turns out to be a positive-valued, mono-

a a
tonically increasing function. Therefore, we may now choose 7, instead of &, as vari-
ables in the constitutive relations. By (5.4), we can then write the equation (5.1) as

dn|p = l (% dT + (@f’- — P‘E) diz’) = %(déj_,; _Ple d;’i) (5.10)
T \oT - T 72

(44
on n?

and this is the well-known Gibbs equation of thermostatics, written down here for
constituent c.

Note that (4.23) and (5.9) imply that in equilibrium all z;’s are equal as well as
all A’s.

b. Heat fluxes

The general constitutive equation for the heat flux of constituent « reads, accord-
ing to (3.10),

g = g (kS , + THy).
We can now eliminate the coefficient 7 between this relation and (5.7) and obtain

B _ oo | (; _ T(25)3/2%)

S

a a a a « .a (5.11)
dT|d$ nmc?® + ne|z + plz — T(0p|s/0T)

Equation (5.11) shows that in relativistic thermodynamics the heat flux ¢° is not

proportional to the gradient of temperature f’ - Indeed, the density gradient ﬁ,a also

contributes to the heat flux in a manner that is determined by the functions p|; and €.
This result recovers a result that was obtained for a single fluid by Alts and
Miiller [5] and it is akin — in a manner to be discussed in Chapter 6 — to a result in
Eckart’s theory of relativistic thermodynamics (see Ref. [6]).
The equation (5.11) implies that if the temperature is uniform, the heat flux is not
zero unless the density is uniform. In other words, if a density gradient is kept up by a
gravitational field the temperature field is not uniform in equilibrium.

c. The law of mass action

With A = 1/Tand T = T = T in equilibrium the equations (4.25) read

> (ﬁ"uﬂ + €|z — Tnls + plE) =0, (a=12,...n). (5.12)

a=1 n
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This relation represents as many conditions for the particle densities 7 as there are
independent reactions. We shall now derive an alternative and more suggestive form

of (4.25): The rest mass m of a molecule of constituent « can be decomposed into the
sum of the rest masses of all nucleons and all electrons and into the mass equivalent
of the binding energy of constituent «. Thus

a

5 - i i, % (5.13)

where my and m, are the rest masses of nucleous and electrons respectively.
Elimination of m between (5.13) and (5.12) gives, when due regard is given to (2.9),
D | Es + €|z — Tils + pl*’ =0, (@a=12,...,n) (5.14)

a=1 n

and these relations represent the law of mass action in a simple mixture. Classically
one gets the same form of this law, except that the binding energy does not explicitly
appear there.

d. Temperature relaxation and stationary diffusion

The conditions (4.21) are not the only ones that must be satisfied, if the entropy
production on the left hand side of (4.17) is to have its minimum in equilibrium and in

this section we shall derive some additional ones. Let us write the entropy production
as

T = 3Gi; T; U n; T; A% &), (5.15)
we know from before that £ has a minimum in equilibrium, where n, T and &" vanish,

a 1
when the 7’s obey the law of mass action and when all 7’s and U®’s are equal. Neces-
sary conditions, which X must then satisfy, include

%%
a B
, oToT g
8a >0 and positive semidefinite. (5.16)
043 |g
2z
o B
oU,oU, |g

There are other conditions which the second derivatives of X with respect to the
variables in (5.15) must satisfy, but they do not interest us here.
Insertion of = from (4.17) into (5.16), gives

[+4
f 6P|E
[+4 (/4
e, _ oT T g 1
B 4 Rl Bl Bt e Bl B

o

dd

> 0, (5.17)
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a relation which, in the non-relativistic limit simply states that the heat conductivity
is non-negative.
The remaining conditions (5.16) read

v
82;121 22 m
F=1

- + "=:; negative semidefinite, and

oT |k oT Ik

(5.18)

yé ay 3 3 i
m|g + mds“ negative semidefinite.

In order to demonstrate the significance of these relations, we consider two very special
processes.

. . y . a & ® .
First, we consider a process with uniform fields of n, ¢ and U, in which moreover

4 @
n and U, are time independent and all U, are equal. Under these circumstances all A®
vanish and the only relevant equations are the energy equations which in the common
rest frame of the constituents read

c : Y\ ap
— (Amc® + fiE) = ¢ > my.
at -
B=1
Unless temperature differences are too large, we may set

8
m,

D
M-
R

L2 (T-1). (5.19)

When the specific heats &¢/T are positive constants, the equations (5.19) describe a
relaxation of temperature differences, if only the matrix in (5.18), is negative definite.
Next we consider time-independent diffusion: Let there be no heat fluxes and let

Q a «a
the densities and temperatures be time independent, so that U "rg, 4= 0and U4} , = 0;
the equations of balance of momenta then read

and, if the right hand sides are expanded around equilibrium up to linear terms in
differences of velocity l}a — (}a, we obtain with (4.22)

v—1 v

@ ay Y
P = Z my|g(Uy — U,). (5.20)

r=1
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We thus see that (5.18), implies that the relative velocities essentially point into a
direction opposite to the pressure gradients.

6. Comparison with Eckart’s Theory for a Single Fluid

All results so far hold also for a single constituent and we get the appropriate
result by just dropping the Greek index on our quantities. For example, the Gibbs
relation (5.10) for a single fluid reads

1
dnlE = T (dEIE = ﬁ_LEdn). (6.1)

Eckart’s theory of a relativistic fluid, proposed in [6], is based upon equation (6.1) and
the assumption that 7, € and p during a process are equal to 7|z, €|z and p|g. If this is
s0, one may write (6.1) as an equation for the rate of change of »:

ﬁ:-}(e—%h) 6.2)

h

where » = U#y 4, and ¢ = U“e 4. Now, the conservation laws of particle numbers and
energy-momentum read

nUY4=0 and T45; =0 ; (6.3)
and T4® is decomposed according to

2
T48 = _—nmcc:— %€ UtUE + w4+ —clg(qAUB + qBU4),
so that in the rest frame of the fluid 7e¢ is the energy density, w2 is the negative stress
and 4%, i.e. ¢* in the rest frame, is the heat flux. The conservation law of particle num-
bers may be written as

A+ nU4 = (6.4)

and the conservation laws of momentum and energy (6.3), upon multiplication by
Ac, and Uy, respectively become after a simple calculation, with Uy = U4U, 4,

ne\ . 1
(nm + 25) Uy + W,f.a = ] [UAWCBUC,B - qBUA,B - AAC(qCUB),B] (6.5)
né + gl — WUps = 30u0% (6:6)

If % and ¢ are eliminated between (6.2), (6.4) and (6.6) one gets

- 1 I 1
mi + (qT) =d (T,B —a Ua) + 7 (W2 + pATYU, 5. (6.7)
,B

In linear irreversible thermodynamics this equation is interpreted as the equation of
balance of entropy, whose right hand side is the production of entropy which is
postulated to be non-negative.
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That inequality is then satisfied by linear relations between the ‘forces’
(T 5 — (T]c*)Ug) and Uy p and the ‘fluxes’ g and w4? + pA4E, viz

T

q® = RAB4 (T,A = UA) where % = 0,

(6.8)
wAB + pA4B = Qu(ABCU, ; + A4°UE) where p = 0.

The foregoing is a brief outline of Eckart’s theory and we proceed to compare the
results of that theory with our results.

First, in restricting our attention to inviscid fluids, we have effectively set & = 0
in (6.8), and any comparison therefore has to be made on the ground that in our
theory we have

wAB = — pA4B, (6.9)
With regard to the heat flux we have to compare our equation (5.11) for a single fluid,

V1Z.
j (7 T(dp|/n) ,
b — gba _

! £ dT|dd (T’a nmc® + ne|lg + plg — T(0p|g/dT) R (6.10)

with Eckart’s equation (6.8), in the rest frame, viz.
& = ghi (ia _ 3—2(}) 6.11)
Obviously therefore we must replace [o}a in (6.11). For that purpose we rely on the

first three components of (6.5) in the rest frame: If we use (6.9) and ignore the non-
linear term ¢°U% we get from (6.5)

1 1 1 éq.
Ly . 5 4 1%
czU"‘“nmc2+ne+p(p’”_‘_c2 81‘)

and elimination of (1/c?)U° between this relation and (6.11) gives

AN
w_ _ (KT  og°
T~ wme® + ne + p ot
=ghg |1 — T(ap/aT) ]“-v _ T(ap/an) A )
nmc? + ne + pJ\""*  nmc® + ne + p — T(p/eT) )
(6.12)

Comparison of (6.10) of our theory and of (6.12) of Eckart’s theory shows agreement
on the right hand sides, if only « and & are related by

I _ (| _ _T@peT) .
“arjds ~ " nmc® + ne + p)’

note that & > 0 implies the inequality (5.17), if that inequality is written in a form
appropriate for a single constituent. The left hand sides of (6.10) and (6.12) are not in
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agreement, however. Indeed, if 7, and n , both vanish, (6.12) implies an exponential
growth of the heat flux which represents an awkward feature of Eckart’s theory even
though, of course, inspection shows that the term in question is extremely small.

Kluitenberg [1] has extended Eckart’s ideas to mixtures of relativistic fluids. But
that theory is formulated within the framework of linear irreversible thermodynamics
of mixtures and there is therefore no straightforward manner in which its results can be
compared with ours. A comparison of the corresponding non-relativistic theories may
be found in [8].
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