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General Theory of Potential Scattering with Absorption at
Local Singularities

by D. B. Pearson

Department of Theoretical Physics, University of Geneva?l)

(8. VIIL. 75)

Abstract. The mathematical theory of potential scattering is generalised to allow real singular
potentials for which there is a non-zero probability of absorption of the particle by the scattering
centre at large (positive or negative) times. That such potentials exist has already been shown by
the present author,

The usual identification of M, . (H) with the subspace of scattering states need no longer
hold. Instead for each limit # — + 00 we have a canonical decomposition of M, .(H) into two
mutually orthogonal subspaces, one being the scattering subspace and the other consisting of
states which are absorbed.

The general theory applies equally to short and long range potentials, but for short range
potentials the scattering subspaces may be identified with the ranges of corresponding wave opera-
tors, which are known to exist even if the potential is highly singular.

I. Introduction

The customary picture of quantum mechanical scattering of a single particle by a
local potential V(r) is of a particle initially (i.e. at large negative times) moving
freely far from the scattering region, subsequently to be scattered by the potential and
finally (at large positive times) again moving freely and receding to a great distance
from the scattering region.

Such a picture of the physical scattering process is to be related to a corresponding
mathematical description in which the states are represented by elements of the Hilbert
space L%(R®), and the evolution of states by the one parameter family of unitary
operators, of which the generator is the total Hamiltonian H; H is some self-adjoint
extension of the differential operator —A + V. An important initial step in construct-
ing this mathematical picture of the scattering is to define the subspaces of scattering
states M %, for which two definitions have recently been proposed. Both definitions
have the merit of relating to observable properties of the evolution of states in position
space.

The first is to define M % to consist of states for which the mean squared prob-
ability of finding the particle in any bounded region of R® approaches zero as t — + o
[1, 2].

Because of the existence of bound states, M £ will generally be a proper subspace
of the entire Hilbert space, and contained in M., the subspace of continuity for the
- total Hamiltonian. Physically one would expect to have M £ = M,, and indeed this

result has been proved for a very large class of potentials [2].

1)  Now at Department of Applied Mathematics, University of Hull, England.
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An alternative and complementary approach, which will be adopted here, is to
take M % to be a subspace of the space of absolute continuity M, ., of the total
Hamiltonian, consisting of states for which the probability itself of finding the particle
in any bounded region of R® approaches zero [2, 3].

This definition is particularly appropriate when one studies the way in which
scattering states have asymptotically free evolution. The mathematical expression of this
depends on the behaviour of the potential at large distances, the simplest case being
that of short-range potentials. (For long-range potentials see, for example, [4, 5].) In
this case, scattering states become free in the limit # — +co in the very precise sense
that they approach in norm states for which the evolution is given by the unitary
group generated by the free Hamiltonian H, = —A [6]. This result, called asymptotic
completeness, is equivalent to the equality of M, . with the ranges of the wave opera-
tors Q. (H, H,), and has again been proved for a wide class of singular and non-
singular potentials [5, 7, 8].

However, highly singular potentials have now been found [9] such that there are
states in M, ., which are asymptotically free at ¢ = —oo but which have non-zero
probability of absorption into the scattering centre at time ¢ = +00. Such potentials
violate asymptotic completeness, and the results mentioned above do not apply to
them. (Whether these potentials should be regarded as pathological is not yet clear.)

The purpose of the present paper is to establish a framework for the mathe-
matical description of potential scattering which is sufficiently general to allow ab-
sorption at local singularities. We considered it important to deal with as wide as
possible a class of potentials; we therefore consider potentials not necessarily spheric-
ally symmetric nor short-range, and which may be singular on some arbitrary bounded
set 2 of measure zero.

An important aid to studying the asymptotic behaviour of states in position space
is an analysis of local domain properties of H, and closely related to this the use of
compactness methods. (Roughly we say that f'is in the local domain of H if, away from
the singularities of V(r), f is equal to some element in the domain of H.) We rely
heavily on the method and results of lkebe and Kato [10] which, though applying to
non-singular potentials, may be extended in part to the class of potentials considered
here. The use of compactness is already apparent in [2]. In Section 2 we give a fairly
systematic analysis of local domain properties, the results being summarised by
Lemmas 1-5.

A first consequence (Section 3, Theorem 1) is that for any state in M, . the
probability of finding the particle in any compact region #ot containing singularities
of V(r) approaches zero. (One may show that, for states in M,, the mean-squared
probability approaches zero). This leads us to define subspaces M3, consisting of
states which as 1 — + oo asymptotically approach the singularities of V. Analogous
subspaces may be defined by the asymptotic behaviour of states in momentum space,
viz. N% consisting of states for which the kinetic energy (or free energy) tends to
infinity and a corresponding orthogonal subspace N #. (For precise definitions see
equations 13-14.) The relevance of these definitions appears from Theorem 2, showing
that

(l) Ma.c. == M% @ Mod:oa and

(1i) Subspaces defined by asymptotic behaviour respectively in position and
momentum space are in fact identical; for example M{ = N 3.

In Section 4 we turn to the description of free particle states in the case that V is
short-range, and prove (Theorem 3) that in this case M 2 is identical to the range of
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the wave operator Q. (H, H,). Asymptotic completeness then holds if and only if
M35 is empty, implying that all states in M, . move asymptotically to infinity in posi-
tion space as { — + c0. This confirmation of a result which is physically very reasonable
has as a by-product a proof of asymptotic completeness for semi-bounded Hamil-
tonians under extremely weak conditions (Corollary to Theorem 3).

We have succeeded, then, in establishing a more general framework for potential
scattering, with the usual scattering theory for non-singular potentials as a special
case. In addition to the scattering states, there are states which are asymptotically
absorbed, for which the kinetic energy necessarily tends to infinity. (Either at r = — oo,
or at ¢ = 400, or conceivably in both limits). A correct formulation must take these
states into account. For example, in defining the wave operators Q,(H, + V,
H, + V;) by a strong limit it must be realised that the evolutions generated by
H, + V; and Hy, + V, may be comparable only in regions free of singularities; the
strong limits, suitably redefined, may then be proved to exist for short range potentials
(Remark 2, Section 4), and to define partial isometries. However, in general H, + V,,
H, + V,, acting in their respective absolutely continuous subspaces, need not be
unitarily equivalent. In several respects the theory of scattering by absorptive poten-
tials presents a richer structure, and we believe one that deserves the further attention
of mathematicians and physicists.

II. Local Domain Properties of —A + V

The differential operators —id, (= —id/ox,, k = 1,2,3) and —A (= — >3, 0%/ox}),
defined on all C* functions having compact support in R, are known to be essentially
self-adjoint, and we denote by P, and H, respectively their self-adjoint extensions,
acting in L?(R3).

We suppose that there is a compact subset of R®, denoted by =, having zero
Lebesgue measure and such that the potential ¥ is locally L? in the complement of X.
(This means that every point of R*\Z has an open neighbourhood N with ¥V e L%(N)).
We denote by H the operator —A + ¥ with domain D(H) consisting of all C*
functions ¢ on R® such that supp. ¢ is compact and is contained in the complement of
2. It is easily seen that D(H ) is dense in L*(R®) and that His symmetnc Since every
self-adjoint extension of A is a restriction of A* (the adjoint of A), it is important to
study the domain of H*.

Let us denote by DY°(T) the local domain of a self-adjoint operator 7, defining
this by

fe DYT) < pfe D(T) Vpe D(A).

(With some abuse of notation, we shall employ the same symbol for the function p as
for the operator of multiplication by p).

Now let f be any element belonging to D(H,). Then any point in the comple-
ment of £ has an open neighbourhood N for which we can find p € D(H) such that
ply = 1. Af may now be defined as an element of L*(N) by

(Af)x) = (—Hopf)®)  (reN).

The right-hand side is independent of the particular choice of p, since if p = p1, ps, 52y,
then

CHo(pr — pa)fs ¢ = (pr — pa)fs Hypy =0
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for any ¢ € D(H,) having supp. ¢ = N; such ¢ are dense in L2(N), so that Hy(p, — p2)f
= 0 as an element of L%(N). Now the assumption that X is of measure zero, and the
observation that the open sets N cover R®\X, enable us to construct a function (or more
exactly an equivalence class of functions), defined a.e. on R®, and which we denote by
(Af)(-), which agrees with the above definition on each local neighbourhood N. If
f€ D(H,) then fe DY9(H,) and Afe L%*R?), whereas the converse implication is in
general false. We may similarly define —io, f for fe DYO(P,).

Jorgens [11] has pointed out that the arguments of Ikebe and Kato in [10] may be
extended and used to obtain local domain properties of A * even for potentials having
local singularities. Thus for any fe€ D(H*) an integral representation may be derived
for f(r) in an open neighbourhood N of each point in the complement of Z. This
integral representation (c.f. [10], equation (A2)) may be regarded as a local analogue
of the relation

0 = [0 4y,

e —r|

giving the solution of Laplace’s equation in potential theory. We find, from the
integral representation, that f is bounded locally in the complement of X. Again, by
differentiation we obtain an integral representation for (6f/dx,)(r), from which it
follows that &f]dx, € L3(N) for each N. Given any pe D(H), a compactness argument
shows that supp p may be covered by a finite set of neighbourhoods N. Hence we
readily obtain fe D(P,)Vpe D(H), fe D(A*), which in the notation introduced
above gives

D(H*) < DY(P,) k=123 | (D
In fact, noting DY9(H,) = DW9(P,), a stronger result than (1) holds, namely

Lemma 1
D(A*) = DYo(H,) 1)

Proof. Suppose f € D(H*)and pe D(H). We first prove pf e D(H*). Fory € D(H)
we have

CHY, pf> = (A + VY, pf>
_ _ 8 & op
— (Dt VPSS + GBS+ 2D < f> @)

xy, 0x;°
The first term on the r.h.s. is

<ﬁﬁ‘/’sf> = <¢'s pﬁ*f>

The second term may be written

<, (Ap)f >,
and the third term is

3 3
2 glﬁszﬁ, (@plox)f> = 2;@, P (2p[ox,)f,

where we have used (1) and noted that dp/éx, € D(H).



Vol. 48, 1975 General Theory of Potential Scattering 643

From the Cauchy-Schwarz inequality applied to each term of the right-hand
side of (2) it follows that

|<A, pf>| < const|y| Ve D(H), 3)

where the constant is independent of ¥, so that we indeed have pf € D(H*).

Now let ¢ be an arbitrary C*® function having compact support in R3. The open
sets R®\supp p and R3\X together cover R?, so that by a standard result on partitions
of unity (see for example [12]) we can find real non-negative C ® functions p, (k = 1, 2)
satisfying p, + p, = 1, with

supp p1 < R®\supp p; supp p, = R®\Z. 4
Writing ¢ = ¢, + ¢,, where ¢, = p.¢, and defining

V() = V(r)} I esupp p (5)

=0 otherwise,
we have

{=A+ Pyb,pf> = (=D + V)b, 0f )
= <H¢2a pf> = <¢2a H*pf>9

where we have used
i) ¢, =0and ¥ = ¥ onsuppp,
ii) ¢, € D(H),
iii) pfe D(H*).
Hence

[X(=A + P)¢, pf>| < const|gs| < const||g],

so that pf belongs to the domain of the adjoint of the operator —A + ¥ defined on
C* functions having compact support in R® But, by a compactness argument,
V e LAR®), and it is known [13] in that case that —A + ¥ with this domain is essen-
tially self-adjoint, the self-adjoint extension being H, + ¥, defined as an operator sum

on D(H,). It follows that pfe D(H,) (Yp € D(H)), so that (1’) holds and we have
proved the lemma.

Following the discussion of the local definition of A at the beginning of this
section, we also have

Corollary. If fe D(H*), then
(H¥)x) = (=4 )@) + V(@Of(r)  ae, ' (6)
where both terms on the right-hand side are locally L? in R*\Z.

Lemma 2. Let p be any C® function with supp p = R®\Z, such that p(r) = const
for sufficiently large |r|. Then

fe D(H*) = pfe D(H*).
Further, if there exists R > 0 such that V'€ L? + L* in the region
Ir| > R, then fe D(H*)= pfe D(H,), D(H**).
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Proof. For the first part of the Lemma, and to prove pf € D(H,) under the addi-
tional hypothesis, follow the proof of Lemma 1, replacing the hypothesis pe D(H) by
the weaker assumptions on p. Observe that

(i) oplox, € D(H),

(ii) If ¥ is defined by (5), the condition on V¥ implies ¥ e L2(R3) + L*(R3),
so that again —A + V, defined on C* functions having compact support in R3, is
essentially self-adjoint.

To prove pfe D(H*¥), consider a general member g of D(H*). Then

<ﬁ*g’ Pf> = <Iq*P237Pf>,

where we have written g = p, g + p,g, and the C*® functions p, satisfy (4). If p has
compact support, then p, may be chosen to have compact support, whereas if p(r) =
const # O for large |r| then p, has compact support, so that p,(r) = 1 — p,(r) = 1
for large |r|. Hence in either case, by the first part of Lemma 2, p,g € D(H*) (k = 1, 2).
Also, from the Corollary to Lemma 1 we have

CH*pig, pf > = {(—Ap:8)(-) + (Vpr2)(-)s pf > = 0,

since p; = 0 wherever p # 0.
We also have p,g € D(H,) N D(V), so that

CH*g,pf > = {(Ho + V)pag, pf > = <pa8,(Ho + Vpf>
= {g, (Hy + V)pf>, since p, = 1 wherever p # 0.

Since g is an arbitrary member of D(H *), it follows that pf e D(H**), and Lemma
2 is proved. It is also useful to note at this point that

A* > Hy +V (7)

where the r.h.s. is defined on D(H,) N D(V) by the operator sum. To verify (7), we
need only observe that, if ¢ € D(H) and

he D(Hy) N D(V), then <{H¢, hy = {(Hy + V)¢, b = <, (Hy + V)I).

Lemma 2 applies to a wide class of short- and long-range singular potentials.
For the second part of the lemma, the behaviour of ¥ for large |r| must be such that
—A + Visessentially self-adjoint, and for this the assumptions on ¥ could be modified
or weakened somewhat. If p has compact support, all the conclusions of Lemma 2 are
obtained without making use of any assumptions on V" beyond the property that
is locally 12 in R3\Z. Restating the lemma in this case gives

Lemma 3
D( ﬁ*) < DUee)( H**) c D(loc)(ﬁ*)' (8)

Each self-adjoint extension of H is a restriction of A*, and may be defined by
specifying a core. The following result shows that, for a wide class of potentials, there
is a core consisting precisely of those members of the domain of the extension which,
as elements of L?(R®), have compact support.

Lemma 4. Suppose V' € L? + L™ in the region [r| > R, for some R > 0, and let
H be a self-adjoint extension of H. Define a set A of C*® functions on R® by pe A
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iff supp(1 — p) is compact and supp p = R®\Z. Then {(1 — p)f; pe A, fe D(H)}is a
core for H.

Proof. From Lemma 2, we have pf e D(H**) = D(H), so that certainly (1 — p)fe
D(H). Now let g satisfy

(H i1 —p)f,g>) =0, VpeA, fe D(H). €)
Then D(H) < D(H), so that if ¢ € D(H) we have

(A + i1 — p)p,g> =0, forallpeA. 9)

Since p may be chosen to vanish on supp ¢, (9') implies

(H + i)p,g> =0, Ve DA). 9")

But, from Lemma 2 again, pf € D(H**), and H** is just the closure of A, so that
from (9”) we obtain

(H x i)pf,g>) =0, VpeA,fe DH).

Combining this result with (9), we now have

(H £ Df,g> =0, VfeD(H),

so that g = 0, since H is self-adjoint. Hence there is no non-trivial g satisfying (9),
and the lemma follows.

It may happen that the set of points X on which V is singular may be further sub-
divided, and we conclude this section by exhibiting a class of self-adjoint extensions
of H in that case.

Lemma 5. Suppose £ = X, U X,, where X, 2, are compact disjoint subsets of R®
having zero Lebesgue measure. Writing V' = V, + V,, suppose that V,(V3) is essen-
tially bounded in some open set containing X,(%,), and that V, (k = 1,2)is L? + L®
in the region |r| > R, for some R > 0, and is L? locally in R%X,. Denote by H,
(k = 1, 2) the operator —A + ¥, defined on all C* functions having compact support
contained in R®\Z,, and let H, (k = 1, 2) be self-adjoint extensions of H,. Let H
denote the closure of the operator —A + V defined on all p.g, (k = 1, 2) (and on
linear combinations), provided g, € D(H,) and the C® functions p, have compact
support and satisfy supp p, © R3\Z,, supp p, < R3\Z,, supp(l — p,) < R\Z,.

Then (1) H 1s self-adjoint, and (ii) If f€ D(H) and p, (k = 1, 2) satisfies the condi-
tions above, then p, fe D(H,) N D(H).

Proof. The proof, of which we shall give a sketch only, uses the results of the
preceeding lemmas. Thus, for example, p, g, € D(H,) (from Lemma 4), and Hp, g, =
Hip,g, + Vyp,g,. Using a similar expression for Hp,g,, one may verify that H is
symmetric.

Moreover, if fis in the domain of H (or of some self-adjoint extension of H), and
g, € D(H,), we may write

{Hig1, pof> = <Higi, pof) + CH(1 — g, prf> (10)

where ¢ is a C® function chosen such that supp(l — ¢) < R®\Z; and such that
p; = 1 on supp . The first term on the r.h.s. of (10) may be written

CHpg, > — Vabgy, > = g1, SZ’Hf> — {&1 Vz‘ﬁf%
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so that certainly [(H,4¥g,, p.f>| < const|g,|. Similarly one may show that

|[<HA(1 — $)g1, p1f>| < const| g,

so that from (10) we have
|<H181, prf>| < const| g, | Vg, € D(H,).

Hence p, fe D(H,), since H, is self-adjoint, and it follows easily that p, fe D(H).
Similarly we find p,f€ D(H,) N D(H).
The self-adjointness of H is a straightforward application of Lemma 4.

ITI. Behaviour of States as 1 > + «©

We consider a single quantum-mechanical particle moving in the potential V,
and suppose throughout this section that ¥ is L2 locally in R3\Z, that Ve L? + L* in
the region |r| > R, and that X is contained in the region |r| < R.

The total Hamiltonian H is some self-adjoint extension of the operator A defined
in Section II, and H, is the free Hamiltonian. H is in general not essentially self-
adjoint (and indeed may well have infinite deficiency indices), and we know of no
mathematical or physical principle which in all cases selects any one self-adjoint
extension in preference to the others. We have already seen, however, that certain
domain properties are common to all self-adjoint extensions of A, and we shall find
that it is precisely these domain properties which determine the behaviour of states for
large times. A preliminary result of this kind is the following.

Theorem 1. Given a bounded measurable subset B of R?, such that the closure of
B is contained in R®\Z, define the corresponding projection operator E, .z by

(Exesf)x) =f(r) reB }

=0 otherwise

(11)

Then for any fin M, .(H) (the subspace of absolute continuity for H) we have
s-lim E. ge™Hf = 0. (12)

t— + 00

Proof. 1t will be sufficient to prove (12) for a dense set of elements fin M, . (H).
Since the range of E |y, <., as c is varied over the interval (0, o), is also dense, we need
only show that

f-lim Erge M E g of =0, (12"

—++
where (with a fairly obvious notation) E|4 .. denotes the spectral projection of H
associated with the interval (—c, c).

Now certainly E gy ..f€ D(H) < D(H*), and it follows from Lemma 1 that
PE\y <.f€ D(H,), where pis a C*® function of compact support, chosen to satisfy
p(r) = 1 for r € B, and such that supp p = R3\Z.

Thus (H, + 1)pE <. is defined on the entire Hilbert space and must, by the
closed graph theorem, be bounded. Moreover, it may be verified that E,..z(H, + 1)~?
is compact (in fact Hilbert-Schmidt). The product of a compact operator and a
bounded operator being itself compact, we see that E,.gpE 4 <. 1S compact.
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By a version of the Riemann-Lebesgue lemma,

w-lim exp(—iHt)f = 0, so that s-lim E, gpE g . .e”"#f = 0.

t—+ o t— + 00
Equation (12’) follows immediately on observing that E..; = E,.zp, and the Theorem
1s proved. :

Let us now define eight subspaces M35, M%, Ni, N7, of M, .(H) as follows,
where in each case g is assumed to belong to M, . (H).

geMy iff s-lim E ..e 'Hig =0, Va > R (13)
t— 4+

geMyg iff s-lim Ey.,eg=0, Va >R (13)
=+ o

geNs iff slim E, .,e g =0, Vb > 0 (14)
t— +

ge N/ (respectively N;) iff, given any e > 0, there exist 8,7 > 0 such that
|Exr, > v exp(—iHt)g| < €, V&' > B, t > T (respectively t < —T).

Remark 1. 1t is sufficient to verify (13) for a single value of @, a = a, say, since if
R < a, < a, then from Theorem 1 we have
s-lim E,, < r<q, €Xp(—iHt)g = 0.

t—+ o0
Similarly, (13") need be verified only for a single value of a’.

Remark 2. With the help of Theorem 1 we find that M3 consists of states which
(with probability 1) approach X asymptotically as r — +co. M % consists of scattering
states, that is states for which the particle moves asymptotically to a large distance
from X as t — + oo.

N % contains states for which (with probability 1) the kinetic energy tends to
infinity as # — + 00, whereas for states belonging to N/ the kinetic energy remains
essentially finite.

The following theorem gives the relationship between the subspaces defined above,
and shows that they reduce H.

Theorem 2
) Mf | M5 M5 | Ms | (15)
(i) M} = NX; M: = N3 (16)

(iii) Denoting by Pf and PZ the orthogonal projections onto Mz and M %
respectively, we have

P;: = g-lim ethEirl-(a’e—thPa.c.(H)

t— +

and ‘ ok
P; = §-lim ethEm >a€ Py (H)

t—+ +

where a, @’ > R, and P, . (H) is the orthogonal projection onto M, . (H).
(iv) Moo (H) = M3z ® Mc, (18)

and the subspaces reduce H.



648 D. B. Pearson H. P. A.
Proof. (i) Suppose g€ M% and he M ;. Then

(g, by = {Ey>qe" g, e Hhy + (e Hig, E\p qe™'h), (19)

But, from (13) and (13’), the r.h.s. of (19) converges to zero in the limit as  — + 0.
Hence (g, k> = 0, and we have verified (15).
(ii) Suppose g € M% . Then

-iHty _ ~1iHt - iHt
EH0<be g = EH°<bE|r|<a€ g + EH0<bE|r|>ae 8-

On the right-hand side, the first term tends to zero as t — + oo since Ey . Ejr <4 iS
compact (in fact Hilbert-Schmidt), and equation (13) implies that the second term
also tends to zero. Hence g € N %, and we have proved Ms < N &.

Now suppose conversely that g € N 5. Given any € > 0, we can choose ¢ sufficient-
ly large that |E . .g|| < €/2. Given any a > R, we can find a C* function p, with
0 < p < 1, such that p(r) = 1 for |r| > a, and supp p = R?\Z. From Lemma 2 we
have pE ;< .g € D(H,), so that HypE y, <. is bounded (c.f. the proof of Theorem 1).
Also |Ey,.(Hy + 1)7| = (1 + b)~1, so that we may choose b sufficiently large that

|Exy>s(Ho + 1) (Hy + 1)pE <. exp(—iHt)g| =
| Esy>oPE m <c €Xp(—iH)g| < €/2 for all ¢.

But ||Ey, > pE 4> exp(—iHt)g| < €/2, and hence

|Ex,-spexp(—iHt)g| < e  (for sufficiently large b). (20)
We also have

Ey,<ope g = Ey o(p — De g + Ey e g.

On the right-hand side, the first term tends to zero as # — + oo since Ex,<,(p — 1) is
compact (in fact Hilbert-Schmidt), and equation (14) implies that the second term
also tends to zero. Hence

s-lim Ey .,p exp(—iHt)g = 0,

t— + oo
and since e in (20) is arbitrary we have s-lim;. .. pexp(—iHt)g = 0. Now (13)
follows immediately on noticing that E,; 5 ,p = E|s >4, and we have proved ge M 3.

We have, then, N¥ = M%, so that we may conclude M35 = N 3. The proof that
M% = N} follows by very similar arguments.

(iii) Let p be a C* function with supp p = R3\Z, and such that p(r) = 1 for
Ir| > R. With a > R, define V(-) € LAR®) + L*(R®) by

V)=V, |t|j=a }

= 0, otherwise

21)

and let A denote the (unique) self-adjoint extension of —A + ¥ acting on C* func-
tions of compact support [13].
Now let 4,, A, be any pair of self-adjoint operators such that

A1E1A1l<01 TEIA2I<Cg - E|A1|<c1 TA2E|A2}<62
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is of trace class for some bounded operator 7. Then s-lim; , ; « E| 4, <c,€"1*Te ™ 42'E| 1 | <o,
exists on M, . (H,) and has range contained in M, . (4,).

We shall apply this result, which is a slight generalisation of a theorem of Belopol-
skii and Birman [14] on a two Hilbert space formalism of scattering theory, to the case
A, = H, A, = H, T = p. A proof of the result, based on methods developed in [15],
will be published elsewhere. (An alternative approach to the present application is to
use methods based on smoothness; see [16, 17]).

We have to show, then, that Eg <.,(Hp — pH)E,z <., is of trace class. (Using
Lemma 2,

fe D)= pfe D(Ho) N D(V),

so that pfe D(V) also. With (7), we have pfe D(H*), and pfe D(H) on a further
application of Lemma 2, since H > A**. Hence we are justified in writing

HEIHI <c1pEII§| <eg & EIHI <01HpEII-}I <cz')

Setting H = —A + Vand H = —A + ¥, we have

3
Hp — pH=p(V — V) —Ap —2 > 9p|ox,-8]ox,. 22)
k=1
Now let ¢ be a C* function with supp ¢ < R3\XZ, and such that ¢(r) =1 for re
supp 9p[0x;. (k = 1,2, 3) and ¥(r) = O for [r| > a.
If fe D(H) then yf e D(P,) (c.f. equation (1)) so that we can write

op [ o
—iE g <c, B, (axk)ElHl<cz = E|H|<c1¢ ey Pk‘/’EIH|<c2

From Lemma 1, fe D(H) = Jf € D(H,), so that (H, + DJE 4 ., is bounded (c.f.
proof of Theorem 1).

If fe D(H), then yf € D(H), and writing H = —A + ¥V we obtain
3
Hyf = A + (M) = 2 > 8jox(ed/ox.f).
k=1

If fe D(H?), then the first two terms on the right-hand side belong to D(H) = D(H,)
and dy/ox, fe€ D(H,), so that the third term on the right-hand side belongs to D(P,).
Hence certainly f e D(H?) = Jf e D(P H). But Byf = Hyf (since ¥ = 0 on supp ¥),
so that Jf' € D(P,.H,), and it follows that P, (H, + 1)YE gz <., is bounded.

We now have

E|H|<C1¢ Pk¢E]HI<02
= [(Ho + DJE g <c, J¥(H, + 1)7? (Ho + D)7HPU(Ho + DYE ) <c,].

But dp/ox, € L*(R®) N L%(R®), so that (H, + 1)~ * dp/ox (H, + 1)~ is of trace class
(see [18]), and we have shown that the contribution of the third term of (22) to
E vy <c,(Hp — pH)E, Al <c, 18 Of trace class. The remaining terms of the right-hand
side of equation (22) similarly give rise to trace class contributions, since both p(V — ¥)
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and Ap belong to L(R®) N L%(R®). (For these terms we need use only the boundedness
of (Hy + DJE| <., and of (H, + l)ﬁbElH[qg)

Hence E, y <.,(Hp — pH)E g, <., is of trace class, and we have proved the exis-
tence of the limit slim,_. , o E| <c,6"*pe *2E 5, <o, On M, . (H). Moreover, one may
verify that

1Eis15 e:PE it <coll = [ Eimse,(|H| + DX H| + DPE i <c,ll

may be made arbitrarily small by taking ¢, sufficiently large (| Ejn>c,(|H| + D7 <

(1 + ¢y)7% and (|H| + 1)pE <., is bounded.) We may deduce the existence on
M, . (H) of sllim,_, , , exp(iHt)p exp(—th)E, i) <c, and since, as c, is varied over the

interval (0, c0), the range of Eg .., is dense in M, (H), the existence of

sdim, , , ., exp(iHt)p exp(—iHt) on M, . (H) follows. As ¥ is a non-singular potentlal

and (1 — p) is of compact support, Theorem 1 implies sdim,_, , (1 — p) exp(—iHt) =

on M, . (H).

Hence the wave operators s-lim,_, , ., exp(iHt) exp(—iHt)P, .(H) exist. Since the
trace conditions which we have verified are symmetric between A4, and A4, an identical
argument proves the existence of s-lim,_, . » exp(iHt)p exp(—iHt)P, . (H).

By Theorem 1, if y is the characteristic function of the intersection of supp p with
the region [r| < q, then s-lim,_, , ., y exp(—iH?t)P, .(H) = 0, so that we may conclude
the existence of the limits s-lim,_, , » exp(iﬁt)E,,[M exp(—iHt)P, .(H). The ranges
of these limits lie in M, . (H), and the existence of the limits on the right-hand side of
equation (17) follow from transitivity ; for example

s-lim ethE|r|>ae_thPa.c‘(H) — f-lim (ethe-iﬁ‘t)(eiﬂ’tElrl>ae—thPa.c.(H). (23)

t—= 1+

(For the remaining limit, substitute E;<o- = 1 — Ej>q.) The limiting operators
have ranges in M, . (H) and are self-adjoint. To show that they are projection opera-
tors we need only use transitivity again to verify that in each case P2 = P. If P denotes
the limit in equation (23) and g is in the range of P, so that g = sdim,_, , ,, exp(iHt)E;|>¢
x exp(—iHt)P, . (H)h, say, then s-lim,_ ;o E\pjcqe g = slim;, s o Ejrjea.an X
e"Htp, (H)h = 0, so that equation (13’) is satisfied and g e M %. Conversely, if
g € M % we may verify Pg = g. Hence the limit in equation (23) gives precisely Pz,
and similarly P$ is the other limit in equation (17).

(iv) Taking @ = &’ in equation (17) we have P3 + P%f = P, .(H), and equation
(18) follows. Moreover, e** commutes with P§ and with P&, and it follows that the
two subspaces on the r.h.s. of equation (18) reduce H; this completes the proof of
Theorem 2.

Theorem 2 shows that M, . (H) is the direct sum of two orthogonal subspaces, the
first consisting of states which approach X asymptotically as # — + oo, and for which
the kinetic energy tends to infinity, the second consisting of scattering states for which
the kinetic energy remains finite. There are two decompositions of M, . (H), one
corresponding to the limit # — +o00 and the other corresponding to ¢t — —co.

It may happen that there is a further canonical decomposition of M5 or M %-
For example, if Z = 2, U Z,, where XZ,, X, are compact disjoint subsets of R® having
zero Lebesgue measure, and if H belongs to the class of self-adjoint extensions defined
by Lemma 5, then using conclusion (ii) of Lemma 5 and following an argument similar
to the proof of Theorem 2, we find M3 = M3 @ M3z, each subspace reducing H,
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where M3, consists of states which approach X, asymptotically as ¢t — +co. This
result need not hold for a self-adjoint extension corresponding to boundary conditions
which ‘mix’ the singularities 2, and 2., for which (ii) of Lemma 5 is not valid.

IV. Singular short-range potentials

The preceding results have been obtained without having to make any assump-
tions which would imply the existence of the wave operators Q, (H, H,). Assuming
these wave operators to exist, it is not difficult to show [2] that the ranges of the wave
operators are contained in corresponding subspaces of scattering states; i.e.

range(Q, (H, Hy)) < MZ. (24)
If the potential ¥V is of short range, a stronger result holds.

Theorem 3. Suppose that, for sufficiently large |r| and for some € > 0, V satisfies
|V(r)| < const|r|~®*€, Then

range(Q,(H, H,)) = MZ. (24"

Proof. The existence of Q ,(H, H,) has been proved by Kupsch and Sandhas [19].
Indeed if @ > R we have sdim,_, , o, Ep| <qe” ¥t = 0, so that

Q.(H,H,) = s-lim eHte~Hot = s.lim e'HE,, , o~ Hot (25)

t= F oo t— F ©

The potential ¥ in equation (21) is both short-range and non-singular, so that
defining H as in the proof of (iii) in Theorem 2 we may conclude the existence of

s-lim exp(iH,t) exp(—iHt)P, . (H). ([5])

t— Foo
But we have already proved the existence of s-lim,_, ; », e”;"Em sq.e P, (H), so that
by transitivity we may deduce the existence of s-lim;. ;o eXp(iHof)E 5 >4 %
exp(—iHt)P, . (H). In fact, comparing with equation (25), we have

QI(H, Ho) = s-lim e"o'Ey, e~ P, . (H). (26)

t— o

By a further application of transitivity, equations (25) and (26) imply
S'lim e‘HtElrl >ae_‘HtPa..c.(H) = Qi(H’ HO)Q:(Ha HO) (27)

t— F oo
The right-hand side of equation (27) is the projection onto the range of Q. (H, H,), and
from equation (17) the left-hand side is just P 3, the projection onto M 3. Hence we
have proved equation (24").

Remark 1. Unitarity of the scattering operator S(H, H,) (= Q*(H, Hy)Q . (H, Hy))
is equivalent to equality of the ranges of Q,(H, H,) and Q_(H, H,). Theorem 3
shows that S(H, H,) is unitary iff the states in M, . (H) which become asymptotically
free as t — + o0 are precisely those states which are asymptotically free as t — —co.
Asymptotic completeness (the equality of the ranges of Q. (H, H,) with M, .(H))
holds if all states in M, . (H) are asymptotically free both as 7— + o0 and as f— —o0.
The use of Theorem 3 to prove strong asymptotic completeness may be illustrated by
the following.
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Corollary. Suppose that, for some g > 1, —A + gV, regarded as a bilinear form
on D(H) x D(H), is bounded below. (Hence H is similarly bounded below, since we
can write

A=-A+V=(0-¢g)-8)+g (-2 +¢gV) (28)

Then, if H is the Friedrichs extension ([20], p. 329) of A, the wave operators Q. (H, H,)
satisfy strong asymptotic completeness.

Proof. Every f belonging to D(H), by the definition of the Friedrichs extension, is
the strong limit of a sequence {f,} such that

lim <ﬁ(fm _fn)= (fm _fn)> = 0.

m,n— o

Choosing ¢ > 0 such that —A + gV + ¢ > 0, we have
lim <(ﬁ =+ Cg_l)(fm - fn)a (fm_fn)> = 0,

m,n—co

so that using equation (28) and writing —Af, = H,f,, we see that
lim <H0(fm _fn): (fm - fn)> = 0.

m,n—

It follows that fis in the domain of (H, + 1)*'2, and we have D(H) = D((H, + 1)¥2).
Hence, by the closed graph theorem, (H, + 1)Y2E|y <const 1S bounded. But
E <o(Hy + 1)~'2 is compact, so that the compactness of E|y<oE| x| <conss fOllOWs.
Anyhe M, .(H)is alimit of elements of the form E,, < const#, and we may deduce that
S-limy, 4 o Ejpj <o €Xp(—iHt)h = 0. Hence M5 (H) is empty and M (H) = M, .(H),
so that the wave operators satisfy strong asymptotic completeness. This generalises a
result of Robinson ([21]) on positive potentials.

Remark 2. From the existence of Q,(H, H,) and of the limit in equation (26) we
may use transitivity to deduce the existence of
w:i:(HV’ HW) = S"'hm eiHV Eir!>cee—i tha.‘c.(HW) (29)
i— Foo
where Hy and Hy, correspond to short range singular potentials ¥ and W respectively.
Equation (29) defines w . as a strong limit even if the wave operators Q ,(H,, Hy) fail
to exist; w, is a partial isometry with initial set M %(Hy) and final set M %(Hy), and

satisfies the usual intertwining and transitivity properties of wave operators. If
g€ MZ%(Hy) we have

s-lim Ej 5 o(exp(—iHyt)h — exp(-iHyt)g) = 0,

t—= F o

where
h = w,(Hy, Hy)g € M5(Hy),

so that w, gives the relation between two asymptotically free states (corresponding to
an evolution e~ *#v* and e~ *¥w! respectively) which become asymptotically equal in the
region |r| > a, i.e. away from the singularities of the potential.

Remark 3. If £ = X, UZX,, where X;, £, are compact disjoint subsets of R?
having zero Lebesgue measure, and if H belongs to the class of self-adjoint extensions
defined by Lemma 5, where (in the notation of Lemma 5) ¥, and V, are short-range
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singular potentials, we may prove the existence of sdim,., ., efety.e™ 5P,  (H),
where y, (k = 1, 2) are characteristic functions of disjoint bounded open sets con-
taining X, and X%, respectively. If Q,(H,, H,) are asymptotically complete then this
limit is zero (since w-lim,_, , o P, o.(Hy)eFty,, = 0), so that s-lim,_, , o yxe  #'P, o.(H)
= 0 (k = 1, 2), from which it follows that Q,(H, H,) are complete. A similar argu-
ment proves the converse to be true, so that strong asymptotic completeness of
Q. (H, Hy) is equivalent to strong asymptotic completeness of Q,(H,, Hy) fork = 1,2.
This result enables us in some cases to reduce the question of completeness for a
potential having a number of singularities to that for a potential having a single
singularity only.
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