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The Relativistic Two Body Problem

by C. Piron and F. Reuse*

Département de Physique Théorique, Université de Genève, 1211 Genève 4, Suisse

(1. VIL 75)

Abstract. The two body problem of relativistic mechanics with scalar interaction is treated
in the framework of a canonical formalism which is manifestly covariant.

To each solution of the reduced Newtonian two body problem with radial potential, with
the one restriction that the speeds stay smaller than the velocity of light, there corresponds in our
model a solution differing from the Newtonian one only by a global Lorentz transformation.
Other solutions occur which show properly relativistic effects in particular the potential energy can
become bigger than the masses.

Introduction

The difficulties encountered in relativity to elaborate a canonical dynamics which
is covariant and non-trivial are well known. Let us simply remember the no go
theorems of D. G Currie [1]. Under such conditions it is only possible to overcome
these difficulties by accepting to change radically the point of view of Einstein's theory.
In fact the relativistic dynamics that we proposed before [2] avoids these difficulties.

In this paper we study in detail the relativistic two body problem corresponding
to Newton's classical case. We hope to prove by this example the soundness of our
theory and its capacity to describe the real phenomena of relativistic physics.

Before we enter into our model's details we would like to recall to mind the
essential differences between our point of view and the usual point of view. In the
usual Einstein theory each particle is identified with a trajectory in space-time and
the dynamics of the system is simply reduced to a description of these trajectories.
For instance in the free particle case, the system is reduced to a family of time-like
straight lines. As nothing changes, since nothing runs over these trajectories, we
cannot properly speak of system's behaviour, and the concept of probability, one of
the characteristics of quantum theory, is meaningless in such a scheme.

This is the reason why, when taking seriously both Einstein's ideas and Newton's
ideas, we have admitted the existence of a space-time supplied with the geometry given
by Poincaré group and have identified each particle with a single point of that space-
time, or an event according to Einstein. Moreover we have postulated the existence
of another time, the historical time, which passes by uniformly and inexorably, as
Newton imagined, and that we can neither change nor directly observe.

We are then led to describe the state of each particle by eight independent numbers

q (q\ q2, q3, q4) (q, t)
p (p\ p2, p3, p4) (p, Etc2)

where c is the velocity of light.

* Supported by the Swiss National Science Foundation.
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q is identified with the position in space-time and p with the state of motion, i.e.
the energy momentum.

Under these conditions

p2 p^p»

is a function of the state whose value is susceptible to change during the system's
behaviour.

The behaviour itself is described as a function of the historical time r and is
governed by the canonical equations

H _ „uv SK

and

dr S dp\

*l -?«v SK
dr 8

8q)

where K K(pf, ql) is a scalar function of the state (pl, qf) of each particle i.
In the following we note

xy guvxy

for the four-dimensional scalar product and we have chosen, as in [2], for the metric
gwv (1, 1, 1,-c2).

The Two Body Problem

In the case of the two body problem, our model consists of taking:

K(PÌ,qì,p"2,q"2) ^ + ]J± + 0(|9l - q2\) (1)

where \qx — q2\ V(qx — q2)z, Mi and M2 are constants which are the masses of
the particles 1 and 2 and O a function which characterizes the interaction between
both particles.

In such a case it is convenient to use the following new variables

P Px+Pn, q *hsi ± y.Ml + Mn
(2)

Mip2 - M2pi
P M,+M2 ' 1 «2 - I1

They define a canonical transformation leaving K invariant.
It leads to the decomposition

K K0 + k

where

P2
K0 jjTj, M M, + M2

k £+<H\q\), MlM2
2/x Vl^"' r M,+M2
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The motion is then governed by the equations

dQu F" dP"
V

(3)
M' dr °

dr p' dr 8 dq"

Therefore K, k and also P (P, E/c2) axe first integrals. P is the total momentum
of the system and E its total energy. The four vector Q (Q, T) defines a point of
space time called the center of mass. Then

Mc2T

passes by uniformly and so Moller's condition on the time used by J. L. Cook [3] is
justified by our model.

It is important to note from (3) that the antisymmetric tensor

is also first integral. It is the generalized angular momentum of the system relative
to the center of mass.

We write

3 (ju, y24, ht) c2tp - eq

i (4)
o (J23, hi, y'12) q A p

where q (q, t) and p (p, etc2).
Consequently e"vM being the canonical antisymmetric tensor we have

Ab h""AAox 0

b2 - cPjc2 irJuv
(5)

It can also be verified that the relative motion takes place in a plane 0* of the
relative ^"-coordinate space.

Moreover this plane is space-like (i.e. q2 > 0, V e SP) if and only if

j"%y > 0

that is \b\ > \a\jc.
In the following we shall discuss this case. The other case where fvj„v < 0 will

be discussed afterwards.
So when fvfuv > 0 there exists reference frames relative to the point defined by

the center of mass in which a 0. Effectively by a pure Lorentz transformation of
velocity v we have

a i-»- a, 1 + y(a± + v A b)

ï^ru + y (ft, - ^~)



634 C. Piron and F. Reuse H. P. A.

where 3n,T)u and 3±, bL are respectively the parallel and perpendicular components

of a and b relatively to v and y (1 - v2/c2y112.
Consequently those reference frames are characterized by the pure Lorentz

transformations given by :

a A b b
v —û2—+ A —b

\b\

A such that v2 < c2.

In such reference frames (designated by ') we necessarily have from (4) that

MlE'n
e

Mi
- MnE'l
+ Mn

0

t'' ti- ti 0, for any t
This implies that

/,' t' T E'
T¦1 - • Mc2

As q' (q\ 0) andp' (p', 0), the relative motion follows the Newton equations
of the classical model corresponding formally to the same potential d>, that is

r-rf, y _«J) (6)
dr dr 8q

Consequently there exist reference frames in which the 'geometrical' times t'x and
t2 of the particles coincide and where the motion is not different from the one given
by the corresponding non-relativistic model.

Nevertheless we note the following fact (as from (2)) :

P^JkP-p
M D

(7)
P2 ÌT1P + P

we get

P2»=-TT2P2-2A-Pp+p2Ml - M2
(8)

ti ikp2-2wxPp + p2

and it is apparent that p\ and p§ are generally not first integrals nor even conserved in
a scattering process.

We now examine the scattering problem. Concerning the initial conditions we
have

Pita -M\c2
(9)

Plin -MIC2
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if the particles were not interacting when they were far away from each other [2].
Then we obtain

1 (dqlta\
C2\ dr

n2^As. i /=12Mfc

and the proper times of the particles coincide with the historical time t for the initial
state, whereas after the scattering process we generally have

Pi,out A Pi,im ' L 2

and the proper times do not coincide with the historical time t.
Such a state of the particle is called virtual and is in fact unstable. Therefore we

postulate the existence of an irreversible process back to the equilibrium during which
the particle recovers its characteristic mass Mf.

We then get from the initial conditions according to (9) that

K Pl-iD P2ia M°2
2M, 2M2 2

and so

where W cV—P2 is the total energy in a reference frame where P 0.
We then have

Moreover

Pi2n Pi'n2 - Pole Po2ut 2pk (1 1)

It is also useful to define a four-vector d which plays the part of an impact
parameter such that

d' (d', 0) and d'pjn 0

and then

dPta 0 (12)

and according to (5)

ira b'2 d,2p(i pid2 > o

By a classical calculation it is then easy to obtain the following expression for the
angle B' between the vectors pt'n and pout-

\ p JPo IW2 - M2c4 • -"
2Mc2 - «Kp) Am]1'2

4W2/
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where p0 > 0 is in general the greatest value of p for which the square root under the
integral sign vanishes.

Finally as the square of the invariant momentum transfer A is expressed according
to (7) and (11) as:

A2 (Pl.out - Pi.m)2 (Pa.out - P2,in)2

(Pout - Pm)2 (PA - PL)2 4p*(l - cos 6') (14)

W2-M2c\t2p- -rj-2 (1 -coso)

we can express A, by (13), as a function of the invariants W and y*7«v
For instance in the coulomb case where

*(kl) ^
where g is the coupling constant, we get :

A2 8/xV(H/2 - M2c4)
fvfuv( W2 - M2ci) + 2Mpc2g2

In fact the scattering angle in the reference frame where P 0 or in the laboratory
frame cannot be expressed in terms of W and A without knowing the variations of
Pi and p\ due to the scattering process.

K being conserved we can write

Pl.out + M2c2 2eMi

Pl.out + Mie2 -2eM2

To estimate the coefficient e we define the four-vector V

' — 2horìse

SO

V=(Éb-P Ad,Pb) (15)

Among the reference frames ' there is one for which P' is perpendicular to b'.
In this particular frame, we have

V (E'b\ 0)

and in the reference frame where P 0.

Vr=(Wbr,0)
so

V»Vß E,2b'2 iE'Yfuv W2%2 (16)

With the help of (7) we have

_ Pl.out ~ Pl.in 1
/ D„ n„ \«- JOT, M(PPta-Pp0nò
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According to the initial conditions (9) and the relations (8) we find

_ W2 — M2r*
Ppm P'PL (M2 - Mi) - 2M™ (17)

and as P', p[n and póut belong to the same plane we can write

/ / P'2n'2 \1/2\
^Pout P'PÓut P'P'iAcos 9' ± sin e'[7^Sj2 - 0 J

where the ± must be chosen according to the sign of b'(P' A p'in).
Finally using (14), (16) and (17) we get

M2 - MX
4pcM

A2

A / /2VV — M2ciiuvi M\\112±M~{(^- "V - ^Mc2l4,)^llw2MJ^ - £))
(18)

where the ± must be chosen according to the sign of (M2 — M,) sin B'b'(P' A Pi'n).
We note that the scattering process is characterized by the invariants

P"PU, Ahy and V'V,
that is to say by

W, Ï"2 - a2jc2 and Ï2

We now consider the bound states, assuming as beforey'HV./«v > 0. Again according
to the fact that the relative motion takes place in a plane of the ^-coordinate space,
the study of the motion is reduced to that of the corresponding classical model.

For the initial conditions in such a case we impose
P2 -M2c2 (19)

So the proper time of the center of mass coincides with the historical time t.
Therefore in the case of the Kepler problem (Coulomb potential with g < 0) the

orbits are ellipses whose foci coincide with the center of mass in the reference frames '.
In a different reference frame we also have ellipses but their foci do not coincide

with the center of mass.
It is important to note that pf and pl are first integrals if and only if the orbit

is circular in some reference frame '. In this case we necessarily have P' parallel to b'

that is to say that P' is perpendicular to the orbital plane. This implies that there is a
particular reference frame ' in which

ti t2 T' r
Consequently it is easy to see that an elliptic eccentricity for the orbit in a reference

frame ' corresponds to a periodic fluctuation of the times tx and t2 about T [3]

in the reference frame in which P 0, because from (2)
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Concerning the case where fuvjuv < 0 the relative motion still takes place in a

plane of the ^"-coordinate space but this plane is no longer space-like. In fact there
exist particular reference frames (designated by ') characterized by pure Lorentz
transformations given by:

„ a A b .a ^ _„ „v c2 —r-n 1- Arr-,, such that v2 < c2
a2 \a\

in which the relative motion is such that V 0.

It is not possible to give results for general cases. We have only studied the case
of the Coulomb potential (given previously).

We have obtained the following results :

Firstly if g < 0 any initial condition (such that y"7»v ^ 0) provides a relative
trajectory by which the light cone is reached in a finite time and in this case the
model for the potential $ is of course unrealistic since physically it must be bounded
by some mass and cannot be infinite for any state.

Secondly if g > 0 we obtain the same results unless

o < k< -^
2AA

in which case we have a scattering process and pf„ 2pk > 0. We can choose the
reference frame ' such that the initial conditions can be written as :

Pin (An, 0)

d' (0, d'*)

So the four-vector d' which plays the part of impact parameter is purely time-like.
The previous inequality then leads to

0 < k < 8
2V2cd'i

since

YAAy -P2/C2 -C\d'*)2p'2 d2p2n

To conclude, in spite of the apparent difficulties due to the metric of the space-
time, our model describes well what we consider to be a relativistic two-body system
and as we have seen, it is possible, for each Newtonian system with a potential Ô(|#|),
to construct a completely covariant relativistic model describing the same type of
motion.
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