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The Relativistic Two Body Problem

by C. Piron and F. Reuse*
Département de Physique Théorique, Université de Genéve, 1211 Genéve 4, Suisse

(1. VIL 75)

Abstract. The two body problem of relativistic mechanics with scalar interaction is treated
in the framework of a canonical formalism which is manifestly covariant.

To each solution of the reduced Newtonian two body problem with radial potential, with
the one restriction that the speeds stay smaller than the velocity of light, there corresponds in our
model a solution differing from the Newtonian one only by a global Lorentz transformation.

Other solutions occur which show properly relativistic effects in particular the potential energy can
become bigger than the masses.

Introduction

The difficulties encountered in relativity to elaborate a canonical dynamics which
is covariant and non-trivial are well known. Let us simply remember the no go
theorems of D. G. Currie [1]. Under such conditions it is only possible to overcome
these difficulties by accepting to change radically the point of view of Einstein’s theory.
In fact the relativistic dynamics that we proposed before [2] avoids these difficulties.

In this paper we study in detail the relativistic two body problem corresponding
to Newton’s classical case. We hope to prove by this example the soundness of our
theory and its capacity to describe the real phenomena of relativistic physics.

Before we enter into our model’s details we would like to recall to mind the
essential differences between our point of view and the usual point of view. In the
usual Einstein theory each particle is identified with a trajectory in space-time and
the dynamics, of the system is simply reduced to a description of these trajectories.
For instance in the free particle case, the system is reduced to a family of time-like
straight lines. As nothing changes, since nothing runs over these trajectories, we
cannot properly speak of system’s behaviour, and the concept of probability, one of
the characteristics of quantum theory, is meaningless in such a scheme. ‘

This is the reason why, when taking seriously both Einstein’s ideas and Newton’s
ideas, we have admitted the existence of a space-time supplied with the geometry given
by Poincaré group and have identified each particle with a single point of that space-
time, or an event according to Einstein. Moreover we have postulated the existence
of another time, the historical time, which passes by uniformly and inexorably, as
Newton imagined, and that we can neither change nor directly observe.

We are then led to describe the state of each particle by eight independent numbers

9=1(949%4%q9) = (4,1)
p = (P, % P°, p*) = (P, E|c?)
where c is the velocity of light.

* Supported by the Swiss National Science Foundation.
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q is identified with the position in space-time and p with the state of motion, i.e.
the energy momentum.
Under these conditions

p® = p.p*

is a function of the state whose value is susceptible to change during the system’s

behaviour.
The behaviour itself is described as a function of the historical time = and is

governed by the canonical equations

C_fgii — gw oK

dr ap}
and

L/ ) ¢

dr 5q:

where K = K(p!, q) is a scalar function of the state (p¥, g') of each particle i.
In the following we note

XY = gux"y”

for the four-dimensional scalar product and we have chosen, as in [2], for the metric
g = (1, 1,1,—c?.

The Two Body Problem
In the case of the two body problem, our model consists of taking:
K(p", g4, p~ pi p3
U - o
Phabph g8 = 3 + 5 + a — a) ()

where ¢, — ¢s| = v (9. — q2)?, My and M, are constants which are the masses of
the particles 1 and 2 and @ a function which characterizes the interaction between

both particles.
In such a case it is convenient to use the following new variables

M,q, + Myq
P = ¥ po, _ Mq 292
#17+ P =0T M,
Mip, — Myp @
p= 34?+M:1, q=q2_q1

They define a canonical transformation leaving K invariant.
It leads to the decomposition

K= Ko + k
where
P2
Ko = m, M = Ml + M2
= MM
k=P_ 1 o — 1M
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The motion is then governed by the equations
do* _ P+ dp+

e ~wm a0

(3)
dq* _p* a* _ L, 7P
d'r_p,’ dr g oq’

Therefore K, k and also P = (P, E/c?) are first integrals. P is the total momentum

of the system and E its total energy. The four vector Q = (Q, T) defines a point of
space time called the center of mass. Then

E

T=Mcz'r

passes by uniformly and so Meller’s condition on the time used by J. L. Cook [3] is
justified by our model.
It is important to note from (3) that the antisymmetric tensor

M =qp" — r'q’

1s also first integral. It is the generalized angular momentum of the system relative
to the center of mass.

We write
G = (J14, joar Jas) = 2P — eq 4)
‘b = (j23,j31a j12) = ‘7 A ﬁ
where ¢ = (¢, t) and p = (J, e/c?).
Consequently &“*** being the canonical antisymmetric tensor we have
ab = 1"y jpn = 0
(5)

2 —‘2 2 — . .
b* — a /C - J2‘]1”]“

It can also be verified that the relative motion takes place in a plane & of the
relative g*-coordinate space.
Moreover this plane is space-like (i.e. g2 > 0, V € &) if and only if

ey s 1)

that is [B] > |a]/c.

In the following we shall discuss this case. The other case where j*%j,, < 0 will
be discussed afterwards.

So when j*¥j,, > O there exists reference frames relative to the point defined by
the center of mass in which & = 0. Effectively by a pure Lorentz transformation of

velocity ¢ we have

]
C2

F""’EI +vy (FJ. &=
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where d,, 75” and d,, b | are respectively the parallel and perpendicular components

of @ and b relatively to # and y = (1 — #2/c?)~ V2,
Consequently those reference frames are characterized by the pure Lorentz
transformations given by:

5 iAnb b

v = 3 +’\T;
b

|5

A such that #2 < ¢2,
In such reference frames (designated by ") we necessarily have from (4) that

o _ MiE; — MyE]

M, + M, =0

'=6—1t=0, for any 7
This implies that

o r ' i
tl——tz—T —Mc2 T
Asq' = (§’,0)and p’ = (§’, 0), the relative motion follows the Newton equations
of the classical model corresponding formally to the same potential ®, that is

s gt B OOLFY)

Consequently there exist reference frames in which the ‘ geometrical’ times ¢; and
t5 of the particles coincide and where the motion is not different from the one given
by the corresponding non-relativistic model.

Nevertheless we note the following fact (as from (2)):

P1=‘”_P—P

(7
P2 = M1P+p
we get
p?=ﬂ’}2P2-2M2Pp+p
(8)
p§=722P2 2M1Pp+p

and it is apparent that p$ and p3 are generally not first integrals nor even conserved in
a scattering process.

We now examine the scattering problem. Concerning the initial conditions we
have

Pim = — Mic?

9
pgln = = M%cz
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if the particles were not interacting when they were far away from each other [2].
Then we obtain

1 dqiz,in _ — P in ;
‘?( ar )“‘“ e = =2

and the proper times of the particles coincide with the historical time = for the initial
state, whereas after the scattering process we generally have

ptz,out #* Pi2,ins I = l, 2

and the proper times do not coincide with the historical time 7.

Such a state of the particle is called virtual and is in fact unstable. Therefore we
postulate the existence of an irreversible process back to the equilibrium during which
the particle recovers its characteristic mass M.

We then get from the initial conditions according to (9) that

K . p%,in + pg.in _ _MC2

TAIM; T 2M, T T 2
and so
p* ' W2 — M2t
2 T ¥ =K~ K e (10)

where W = ¢V — P2 is the total energy in a reference frame where P=0.
We then have

’2

k=2~ 4 o(q))

2u
Moreover
Ph = Pig = Pody = Pu = 2uk (11)

It is also useful to define a four-vector d which plays the part of an impact
parameter such that

-

d =(d,0) and dpl,=0
and then

dpin = 0 (12)
and according to (5)

3% = b2 = &2 = ppd® > 0

By a classical calculation it is then easy to obtain the following expression for the
angle 6’ between the vectors pi, and Pg..

B’ = U7 — juvjl-l‘l 1[2f+w dP/P2 - - (13)
m A (Wz — M2ct — ®(p) — J‘“’Juv)l"z
2Mc? P 4up®
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where p, > 0 is in general the greatest value of p for which the square root under the
integral sign vanishes.

Finally as the square of the invariant momentum transfer A is expressed according
to (7) and (11) as:

A% = (pl,out - pl,in)2 = (pz,out - p2.in)2

= (pout - pin)2 = (ﬁéub - ﬁl’n)z = 4lu'k(1 — COS§ 0') (14)
- 2.4
& ZM% (I — cos 6")

we can express A, by (13), as a function of the invariants W and j*Yj,,.
For instance in the coulomb case where

@(|q]) =ﬁg|

where g is the coupling constant, we get:

AZ _ 8#2g2( W2 o Mzcé)
T W?2 — M?c*) + 2Mucg?

In fact the scattering angle in the reference frame where P = 0 or in the laboratory
frame cannot be expressed in terms of W and A without knowing the variations of
p? and p% due to the scattering process.

K being conserved we can write

p?.out T M%C2 = 2E‘All
p%.out + M%cz = —28M2

To estimate the coefficient ¢ we define the four-vector V
VE = 4j,pPrer
SO
V = (Eb— P A @, Pb) (15)

Among the reference frames ’ there is one for which P’ is perpendicular to b
In this particular frame, we have

V' = (E'D, 0)
and in the reference frame where P = 0.
V, = (Wb, 0)
SO
VeV, = Eb'* = LE'%»),, = W? (16)
With the help of (7) we have

2 2
— pl.out - pl,in

1
2M1 == M(Ppin - Ppout)

&
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According to the initial conditions (9) and the relations (8) we find

= W2 _ M2t
Ppy = P'Bl, = (My — M) -—Mc-z-i (17)

and as P’, g, and j;,, belong to the same plane we can write
_'/2 =>/2

P P 9 3(P Pi 1)”2)
ous = BBl = '‘Pmlcos 8 + sin '\ =—— —
Pout DPout Pi ( (P Pm

where the + must be chosen according to the sign of b (P' A Bin).
Fmally using (14), (16) and (17) we get

M- M,
A

2V“Vu — Mzc'ijavjuv ﬂ))llz

2 2.4 _ AZAfA2 =
e (e /4”’)(1%(W2 —M) T 4

where the + must be chosen according to the sign of (M, — M) sin.f)'b’(f’" A PBin)
We note that the scattering process is characterized by the invariants
PPy 7w and  V*p,
that is to say by

W, b — a?c? and b?

We now consider the bound states, assuming as before j*j,, > 0. Again according
to the fact that the relative motion takes place in a plane of the g*-coordinate space,
the study of the motion is reduced to that of the corresponding classical model.

For the initial conditions in such a case we impose

P? = — M2 (19)

So the proper time of the center of mass coincides with the historical time 7.
Therefore in the case of the Kepler problem (Coulomb potential with g < 0) the
orbits are ellipses whose foci coincide with the center of mass in the reference frames .
In a different reference frame we also have ellipses but their foci do not coincide
with the center of mass. ]
It is important to note that p? and p% are first integrals if and o_{lly if the orbit
is circular in some reference frame ’. In this case we necessarily have P’ parallel to b’

that is to say that P'is perpendicular to the orbital plane. This implies that there is a
particular reference frame ’ in which

li=lhh=T =1

Consequently it is easy to see that an elliptic eccentricity for the orbit in a refer-
ence frame ' corresponds to a periodic fluctuation of the times #, and ¢, about T [3]
in the reference frame in which P = 0, because from (2)

L =T Mt
12=T+&t
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Concerning the case where j*’j,, < 0 the relative motion still takes place in a
plane of the g“-coordinate space but this plane is no longer space-like. In fact there

exist particular reference frames (designated by ") characterized by pure Lorentz
transformations given by:

inb d ¢
v = ¢? D) + /\'l—a—l, such that 72 < ¢?2

in which the relative motion is such that 5’ = 0.

It is not possible to give results for general cases. We have only studied the case
of the Coulomb potential (given previously).

We have obtained the following results:

Firstly if g < O any initial condition (such that j*j,, < 0) provides a relative
trajectory by which the light cone is reached in a finite time and in this case the
model for the potential ® is of course unrealistic since physically it must be bounded
by some mass and cannot be infinite for any state.

Secondly if g > 0 we obtain the same results unless

_ 2
0<k< _‘u",g >
’ szjuv

in which case we have a scattering process and pZ = 2uk > 0. We can choose the
reference frame ’ such that the initial conditions can be written as:

Pin = (P, 0)
d' = (0,d"%)

So the four-vector d’ which plays the part of impact parameter is purely time-like.
The previous inequality then leads to

g
0<k<—2—,
k= 24 2¢d’t

since
‘%juv'uv = —32/62 = _c2(d’4)‘2_.1'n2 = dzpizn

To conclude, in spite of the apparent difficulties due to the metric of the space-
time, our model describes well what we consider to be a relativistic two-body system
and as we have seen, it is possible, for each Newtonian system with a potential ®(|7|),
to construct a completely covariant relativistic model describing the same type of
motion.
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