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On the Anomalous Skin Effect in Metals Part 2:
Some Aspects of Superconductors, Sum-Rule Applications
and Limits of this Technique

by K. E. Drangeid and R. Sommerhalder
IBM Zurich Research Laboratory, 8803 Riischlikon, Switzerland

(16. VI. 75)

Abstract. Based on previous work applying to normal conducting metals [1], an analog
network model for superconducting metals is developed. The reciprocal surface impedance
associated with this model is used as a response function in connection with the Kramers-Kronig
relations and the sum rule to compute electrodynamic properties of superconductors.

Introduction

This paper discusses electrodynamic effects which are rather straightforward
consequences of results established in Part 1 [1] from developing an analog model for
normal conducting metals. Firstly, the close resemblance between the electrodynamics
of normal and superconductors is used to set up an analog model for a superconduct-
ing metal. We shall point out that it must be incomplete because it tolerates unlimited
propagation velocities, and that taking into account the parallel flow of normal
electrons with superelectrons in principle eliminates this difficulty. Such a completed
two-fluid model is however no longer a linear model. Secondly, an approach for an
approximate two-fluid model is made, assuming discontinuous switching between the
pure state models at a typical frequency (gap frequency). In a similar way to Tinkham
and Ferrell [2] we compute, by means of the sum-rule technique, the effective penetra-
tion depth of a magnetic field into a superconductor as a function of mean-free electron
path in the normal conducting state, and the coherence length in the superconducting
state as a function of mean-free electron path in the normal conductor. Generally, the
results look reasonable, and we find the fact attractive that a macroscopic solution to a
microscopic problem is derivable in this way. By the same technique, we further
compute for the case of pure metals whose individual normal-state material parameters
are given, the relationship between an assumed gap frequency w, and the correspond-
ing coherence length &, in the superconducting state, and from this a = vg/(€w,).
(v = Fermi velocity.) We find a physically acceptable value around unity for «, which
however is almost independent of the assumed w, value, and thus conclude that any
value for the energy gap of an individual metal fits with Kramers-Kronig relations and
sum rule. Thirdly, we emphasize the unsatisfactory aspects revealed by the analysis.
It turns out that numerical results computed from the approximate two-fluid model are
no better than semi-quantitative. While it is obvious that improvement should be
sought by working out the approximate model nearest to a complete two-fluid model,
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it is also obvious that a complete model will have non-linear elements and will not,
therefore, generate a linear response function. Thus, we conclude that the sum-rule
technique cannot be developed to a quantitative method.

1. Analog Model for the Superconducting State

There is a close resemblance between the current-density versus electric-field
relation in a normal conductor and the current-density versus magnetic-vector poten-
tial correspondence in a superconductor, which was first recognized and discussed by
Pippard [3] and — based on very different arguments — confirmed by BCS (see, e.g., de
Gennes [4]). The formal procedure is: substitute for the electron mean free path / a
coherence length £, and for the specific resistance p an inductance jwAy£,/€, where A
stands for the (London) superconductivity constant, £, means the coherence length in
an ideal lattice, and ¢ the coherence length as reduced in a real lattice by contamina-
tion or distortion. :

This procedure yields, for low enough frequencies, out of the analog model
designed in Part 1 for normal conductors, the superconductor model plotted in
Figure 1. We should note that not only transmission line 1a is the Maxwellian-fields
transmission line 2a of Part 1, but that also the transmission line 1d represents the same
electrodynamic interaction mechanism as line 2d of Part 1. Its visually different
appearance results merely from the need to adapt the coupling facilities to the trans-
formed line 1c. All material data are contained in this line. The inductive impedances
which replace corresponding dissipative impedances of line 2c of Part 1, reflect the step
of making potentials (in superconductors) rather than fields (in normal conductors)
responsible for current flow. We cannot perceive this phenomenon classically and,
therefore, do not attempt to interpret line Ic.

The model corresponds to the set of equations
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for the supercurrent density i. Equations (1) to (4) also follow from equations (11) to
(14) of Part 1, if we make the appropriate substitutions there.
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Figure 1

Analog model of superconducting metal. Transmission lines represent (a) Maxwellian field
(E, H); (c) Current densities (i, i*); (d) Electromagnetic field (E*, H*).

Boundary conditions, as before, may either be diffuse or specular, or a mixture
of both types. Diffuse surface scattering is associated with reversible storage of energy
in the surface, while this phenomenon does not occur with specular surface scattering.

Solutions of equation (4) yield the shape of a penetrating magnetic field as shown
in Figure 2. Plots refer to diffuse surface scattering and to the limiting case of a very
pure or very impure metal.

A characteristic of pure metals is a region of reversed field [3, 5] while impure
metals show a tendency towards an exponential penetration curve. In a pure-metal
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0.5

-05

Figure 2
Shape of a penetrating magnetic field. Full line: pure metal (¢ = & = 4760 A, [ = ); Broken
line: dirty metal (&, = 4760 A, ¢ = 400 A, I = 464 A). Surface scattering is diffuse.

situation with £ = & » A, (\, = V' AL/u, = London penetration depth), the above-
mentioned substitutions yield, out of equation (18) of Part 1, the expression for the
surface impedance Z,, at extreme anomalous conditions

Zoo = ijO(AI%EO/z)USs (5)
or an effective penetration depth
Aeffco = (,\%60/2)1/3’ (6)

which comes very close to the corresponding BCS value
Aere = (0.6247.£0)"°.

In the dirty-metal limit € « &, the effective penetration depth becomes

Aere = AL(£o/€), (7)

which also corresponds to the BCS value.

It is obvious that the analog model (Fig. 1) is incomplete, due to unlimited signal
propagation velocities along the transmission lines. A complete model should include
elements which establish finite propagation velocities in the transmission lines at high
frequencies. We know from phenomenology that superconductivity goes over to
normal conductivity at high frequencies, so that these velocities are those of the
normal conducting-state model. However, it is very unlikely that a linear complete
(two-fluid) model can be made up from the low-frequency model. The condition for a
finite velocity is that the longitudinal and transverse elements of the transmission lines
are dual [6]. Now a possible longitudinal impedance element z;, representing parallel
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Figure 3
Longitudinal impedance z;, representing parallel flow of normal and supercurrent densities (i, i,
respectively) in transmission line 1c, and associated transverse dual impedance z;.

flow of normal and supercurrent densities (i,, i;, respectively) in line lc, should be
something like that plotted in Figure 3. The associated transverse dual impedance
element z;, which is also shown qualitatively in Figure 3, is not however an inductance
at low frequencies as requested by the model Figure 1c.

2. Correspondence between Normal and Superconductmg Properties from Kramers-
Kronig and Sum-Rule Equations

In this section, we introduce an approximate two-fluid model for superconductors,
and compute correspondence between electrodynamic properties of normal and super-
conductors by exploiting Kramers-Kronig equations and sum rule [7, 8]. The idea of
proceeding in this way is due to Tinkham and Ferrell [2], but the detailed properties of,
and requirements for, a response function were not emphasized as much in the earlier
work as here.

Let us first briefly sketch the technique. The Kramers-Kronig equations

0 1 — w
2w [ -d '
o) = — 2. | "okt ®)

claim that the real and imaginary parts of any complex function of frequency

o(w) = 0y(w) — joy(w)
depend on each other as expressed by equations (8) and (8’) provided that ¢ as a
function of time generates a linear response to a physical cause, so that no effect
(response) precedes its cause. Among the wide variety of possible response functions
for a metal we choose the reciprocal surface impedance (surface admittance).

We have shown in Part 1 that the respective analog model generates for normal
conducting metals a surface admittance

a(w) = ol(w) — jol(w), ©)
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which is phenomenologically realistic at all frequencies, and which satisfies the
mathematical conditions for a response function.

For superconductors, the situation is less satisfactory because there is no linear
model for all frequencies. We have defined as our response function for w < w, the
surface admittance

o%(w) = o}(w) — joi(w) 9)

which is generated by the superconductor analog model of the preceding section, and
for w > w, the surface admittance generated by the normal conductor model of Part 1.
This corresponds to supposing a discontinuous transition from superconductivity to
normal conductivity at the gap frequency, and is an approximate approach in view of
experiments by Tinkham et al. [9] indicating that this transition is continuously smeared
out on the frequency scale.

The sum rule, claiming that

f: [#3(w:) — oi(wy)]-deoy = O, (10)

is an implication of equation (8"), and of ¢%(w) — o™(w) for sufficiently high frequencies,
because if we choose w so large (w > w,), that a superconducting metal becomes
practically normal conducting, then o¢f(w) — o%(w) = 0 may with equation (8’) be
written as

0= fw U;L(wlg — af(wl) _de. (] 1)

wl_wz

Since also of(w;) — oj(w;) = 0 for w; > w,, the integration in equation (11) extends
only to some upper limit for w,. This permits to choose w so large that w > w,. After
that we find equation (10) by treating the denominator of the integrand as a constant
and shifting it in front of the integral sign.

Like the Kramers-Kronig equations (8) and (8’), the sum rule expresses a very
generally valid correspondence, because it holds for any particular dependence of ¢
and ¢° on frequency. This view point does not, of course, make sense if expressions for
o” or o° are used which do not fulfill all presuppositions for a response function.
In our case, we know that a phenomenologically realistic transition from superconduc-
tivity to normal conductivity around gap frequency conflicts with the requirement of
a linear response function. The sum rule is thus not strictly valid. Nevertheless, we
shall subsequently take it literally and confirm that it is at least a very useful and handy
tool.

We proceed in the following manner: because of the presumed sharp transition at
w = wy, the integration in equation (10) extends to the range w < w, only. We are
able to compute the contribution of the normal conductor, and to conclude that there
is no contribution from the superconductor. This result would damage the sum rule
and is therefore not acceptable. The superconductor has, in fact, its contribution
concentrated in a pole at w = 0, of strength

A= fwg ol (w,) dw,. (12)
0
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The pole is associated, according to equation (8), with a low-frequency susceptance

2 A
ojw) = =2, (13)
T W
This result is more conveniently expressed in terms of effective penetration depths;

since o%(w) = 1/(w-po- Agts)
Aete = 77/(2'#0‘14)' (14)

We have computed from equation (12) 4 as a functional of /, and subsequently
Aesr from equation (14). The result, corresponding to the data of tin [p-/ = 1.05-
107 Om?, vy = 1.31-10° m-sec™ and Ay = 600 A for the pure-metal case limit
(/ - 0)], yields the overall behavior correctly but gives only a semi-quantitative fit to
the experimental data of Pippard [3] (see Fig. 4). Ao;y = 600 A is obtained with w, =

Aeff
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Effective penetration depth A as a function of L. Circles refer to the data by Pippard [3].

2.75-10*2 sec™!, which is higher than found in tunneling experiments, but not un-
reasonable. From ¢, = vg/(¢-w,) we determine with « = 1) a corresponding &, =
4760 A. Some discrepancy seems natural. An abrupt phase change at w = w, is an
over-simplification. The same pole strength 4 would be feasible with a smaller w,
if the phase transition were continuous above w,.

The result expressed by equation (14) does not make direct reference to the
superconductor analog model. We can, therefore, in principle go a little bit further
and involve its properties more explicitly.

1) BCS gives « = =2, experiments by Tinkham et al. [9] ¢« & 1.06, by Faber and Pippard [10]

a2,
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Let us first mention the case / — co. Then the superconductor model contains the
material parameters Ay, = plfvr and ¢ = &,. If for pl, vy and &, the afore-mentioned
values are used, the model-predicted effective penetration depth should agree with that
computed from equation (14). The impact of the comparison is unfortunately some-
what affected by uneasiness with the boundary conditions: while the Kramers-
Kronig and sum-rule procedure yields penetration depths without a need to specify
boundary conditions, the model does not permit such calculation unless boundary
conditions have been properly defined. We have chosen either completely diffuse or
completely specular surface scattering and determined the ratio A/A, for both condi-
tions. The result is A/A;, = 3.85 for specular, and A/A;, = 1.13 for diffuse scattering,
and thus seems to be compatible with the latter condition. However, bearing in mind
the surface energy storing effect mentioned in Section 1 of this paper, we feel that
diffuse surface-scattering is not necessarily a natural physical boundary condition, and
therefore the discrepancy might actually be larger than only the computed 139%.
Secondly, let us consider the case of a finite /. Then the superconductor model contains
the three parameters A, &, §&. We may accept &, from before and the A values just
determined, and compute the coherence length ¢ which corresponds to the chosen /L
An example of such curves (/) is plotted in Figure 5 for specular and diffuse surface
scattering. Again the overall tendency is in agreement with BCS, except that with
both types of surface scattering ¢ does not approximate / for extremely small /’s,
but becomes greater than / for sufficiently small /’s.

In a series of additional numerical computations, the following different approach
was made to set up the expression of the surface admittance in a superconducting
metal: first the ratio o§(w)/o}(w) was fitted to a shape similar to that proposed by

£
o

1.0

0.8

0.6

0.4

0.2

Figure 5
Coherence length ¢ as a function of /. Surface scattering is diffuse (full line) or specular (broken
line).
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Tinkham et al. [9]. Then o5 (w) was determined by multiplying the ratio with the model-
generated o}(w), and o§(w) in accordance with the Kramers-Kronig relations. Numerical
results for A.(/) and £(/) obtained by this procedure, with various parameters p/, vg
and §,, were not more convincing than those obtained with our models and the
suggestion of a discontinuous transition from one to the other model at w = w,. We
believe in fact that abrupt switching from super to normal conductance at the gap
frequency is the most general approach that can be made at all to combine our low
and high-frequency models, because only with a vanishing transition width on the
frequency scale may we achieve that the non-linearities involved with the response
functions in the transition-frequency range are not perceived in the integrals of equa-
tions (8), (8") and (10).

An additional series of computations was made to check whether the gap fre-
quency of an individual pure metal, e.g., tin, could be determined by the sum rule, if
its material parameters (pl, vy, €, ] — 00) associated with the normal-conductor
analog model are known. The superconducting state was characterized by the material
parameters (A, = p-l/vg, &) associated with the superconductor model. If now any
value w, is chosen for the transition frequency between the normal and superconduct-
ing states, the sum rule permits to compute the corresponding coherence length &,
and from this ¢ = vg/(& - w,), where « is a numerical factor around unity if the gap
frequency meets with a realistic choice. With the data of tin (p/ = 1.05-1071° Qm?,
vp = 1.31-10°m/sec, |1 <e < 12, |—>o0; A, =8.04-10722 Qm/sec, w, = 1.71-
1012 sec~1) we found « & 0.85, which is definitely less than the BCS value =/2, but
still reasonable?). Then w, was chosen smaller or larger, but it turned out that « is

A a
1.0 —
0.8 |-
0.6 | l | -
4 - =
3 S R 10 1-2mg[sec 1]
Figure 6

o = vp/(&- w,) as a function of w, for tin.

2)  Essentially the same situation with numerical factors was found by R. Sommerhalder, K. E.
Drangeid and W. Bichtold [12] when deriving the maximum Josephson tunneling current
density with the sum-rule technique.



618 K. E. Drangeid and R. Sommerhalder H.P. A.

almost independent of w,. This finding is plotted as Figure 6. Only very slightly devia-
ting curves were obtained when p-/, or vy, or € were varied within the limits given by
typical metals. We are thus left with the result that our attempt to estimate the gap
frequency was not successful. If we take into account that w, is a parameter which is
typical for the nonlinear transition region between superconductance and normal
conductance, the failure seems due to having reached the borders of linear analysis.

3. Conclusions

We have investigated, within the frame of linear models and linear analysis, the
electrical conductance properties of normal and superconducting metals. Very gener-
ally valid concepts — Kramers-Kronig equations and sum rule — have been applied to
find correspondence between the material parameters involved with either the normal
or superconducting states.

We arrive at the conclusion that interesting relations such as the coherence length
in a superconductor as a function of mean-free electron path in the normal-conducting
state, are derivable in this way. The appeal of this technique is that a simple macro-
scopic procedure is being used to bypass much more sophisticated quantum-mechanical
considerations?®). The accuracy of our procedure is, nevertheless, limited. We suggest
that nonlinearity which must be associated with a properly designed two-fluid model
of superconductors, marks this limit.
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