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Lense-Thirring Effect and Localizability of Gravitational Energy-
Momentum

by Jean Chevalier1)

Section of Theoretical Physics, University of Geneva

(7. III. 75)

Abstract. The Lense-Thirring solution is analysed in connection with the problem of the gravitational

energy-momentum localization in general relativity. Using M0ller's conditions for the tetrads,
it is shown that for great distances from the source the gravitational energy has a well-determined
velocity proportional to r_l. The same result is obtained for the analogous problem ofelectrodynamics,
according to the well-known Maxwellian character of general relativity in the case of the weak field.
The notion ofangular momentum then allows, in principle, the exclusion of some possible gravitational
energy-momentum distributions. Thus, in opposition to some authors' opinions, it would not be

impossible to localize the gravitational energy-momentum.

1. Introduction

In a recent paper [1] we have developed physical arguments that seem to indicate
the possibility of localizing the gravitational energy-momentum (GEM) in general
relativity (GR). Mathematically, such a localization can be obtained in the frame of
Scherrer's formalism (or of the theory of tetrads if one prefers). Without referring
back to the well-known difficulties of this formalism, we intend to expose, in the present
paper, a new argument in favour of GEM localizability. For this purpose we analyse,
in detail, the famous Lense-Thirring solution of Einstein's equations [2] and its
electrodynamic analogue.

2. The Lense-Thirring Solution

We consider an homogeneous sphere, of mass density p, at rest in a given inertial
co-ordinate system. This body produces a gravitational field (GF), classically described
by the Newtonian potential iji(r) —(GM/r) (G Newtonian gravitation constant)
and by the Schwarzschild solution in GR. Rotating our sphere with constant angular
velocity co in the classical theory changes nothing in regard to the case m 0. But in
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the GR the GF is slightly modified according to the Lense-Thirring solution
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where a GM/c2, M total mass of the sphere, r Vx2 + y2 + z2, and / s radius of
the sphere. The g„v are expressed as functions of orthogonal harmonic co-ordinates
(x°,x,y,z), Lorentzian at infinity. They correspond to a weak field, i.e. measured at
large distances from the source. Moreover, the terms of order (v/c)" are neglected for
n > 2. For co 0 we obtain, ofcourse, the Schwarzschild solution in first approximation.

When co 0, the GF is static, and, if one adopts the point ofview of GEM localiz-
ability, each point is characterized by a definite GE density—k_12o/0(k 8nG/c4)that
tends to the classical potential energy density at the limit of the weak field [1 ]. When co

const. # 0, the movement of the sphere generates a rotation of the GF (that remains
stationary), with a GE flux. Our purpose now is to calculate the velocity of this flux.

To this end we know that we have to impose Moller's supplementary conditions
for the tetrads gx\„ [1, 3]. It is easily obtained2):
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For the following calculations it is preferable to use polar co-ordinates. Applying
the usual transformation formulae to the four covariant co-ordinate vectors gx\Uy we

2) Recall to mind that the tetradsgy-,„ are connected with theEinsteinianmetrictensori*„vby the
formulae g„, e,g*;Hg*;y.
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We refer the reader to Ref. [4] for detailed expressions of the components Tx7" of
the GEM tensor. Recall simply that

/V3^«*'., -dvgX',u)

J w= 8*7 gv,' J '.it J =J a etc., (2.4)

the matrice (gx.'11) being the transposed inverse (transverse) of gx\u). Thsfx„v are listed
in the following table:
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The H are [4] :

3a2 3a2 a2
H - — + 12A2 H=- — +6A2 H=-—. (2.6)
i 2r4 2 4r4 3 4r*

With the assistance of formulae (3.18) of Ref. [4], we are now able to calculate the
(physical) GE density —kt1!^,'0 and the energy flux density —K_1crsin9T0;3 in the
(p-direction.

In the calculation of the GE density, terms of order A2 ~ m2 appear that are the
contribution of the rotation. But these terms are generally very small in comparison with
the static GE density —K~1(a2/r4). For the earth in the field of the sun, for instance,
this ratio is of the order (col/c)2 (lIr)2 ~ 10-15. We therefore neglect this A2 contribution,
the role of which is irrelevant in the following. We then obtain for the GE density,

1 la2
--tq;° 1\ (2.7)

k k r4

and for energy flux density,

1 2acA sin 9
--crsin9T0'3 -. (2.8)
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According to the general formula current density density-velocity, dividing
(2.8) by (2.7) gives the velocity ven of the GE flux in the (^-direction:

2 ml2 sin 9
vm=r (2.9)

5 r
This result is interesting in that it shows, at large distances from the source, that

the GE velocity decreases proportionally to A and is zero at infinity. We shall refer
back to formula (2.9) in the next paragraph, where we consider what we could call the
'electromagnetic Lense-Thirring effect'.

3. The Electromagnetic Analogue of the Lense-Thirring Effect

We consider the same physical situation as in Section 2, but now the rotating sphere
carries a constant electric charge density p. If this sphere is at rest, it produces an electric
field only. But its rotation also generates a magnetic field that corresponds to the Lense-
Thirring modification of the Schwarzschild solution in the gravitational case. For l/r 4,1,
the classical formulae of electrodynamics allow us to easily calculate the energy and

energy flux densities. The velocity of propagation of the energy that is deduced from
these expressions is also given by formula (2.9). This result calls attention to the following

remark.
Although the electromagnetic energy is quite well localized, it is clear that the

equality of the velocities mentioned above do not 'prove' the GEM localizability.
In Section 2 we applied Moller's conditions for the tetrads, for we know that this choice
at least gives 'good' results in the case of the weak field [1]. But there is no physical
argument to justify these supplementary conditions. What we would like to emphasize
once more, by means of the above result, is that it does not seem impossible to localize
the GEM (in opposition to the Landau-Lifchitz opinion for instance).



Vol. 48,1975 Lense-Thirring Effect and Localizability of Gravitational Energy-Momentum 387

4. Angular Momentum and GEM Localizability

In the last paper [5] ofa long series devoted to the problem of the GEM localization,
Moller expresses the opinion that the major theoretical difficulties of this question
are connected with the fact that '... actually nobody has so far been able to give a
prescription for measuring the energy of the gravitational field in a small region, in contrast
to the total energy for which such prescriptions are easily given.' Notice also that Moller's
remark is valid in the Newtonian case as well as in the relativistic case.

It is certainly very difficult, perhaps even impossible, to find an experimental
procedure that would lead to the desired result. We think, however, that it is possible
to realize substantial improvements in this direction. To this end, with the help of the
above results, we study the notion of angular momentum according to the following
fundamental ideas.

In the Newtonian theory the mass of a source and its potential energy are two
distinct entities. For an homogeneous sphere of density p, for example, the total mass
Mis given by the expression (An/3)l3p, and the total potential energy by -(3/5)/GM2/l.
The situation is different in GR, the gravitational energy (which tends to the classical
potential energy in the case of the weak field) is incorporated in the total mass, according
to the formula total energy Mc2 material energy + gravitational energy (see, for
example, Ref. [6]). It is then imaginable that the gravitational energy contributes to the
angular momentum B of the sphere when the latter is rotating. It is not true in the
classical case, where only the material energy is considered in the evaluation of B.

Ifone admits this point ofview, it is then clear that the angular momentum depends
on the GE distribution (in the following, 'gravitational' and 'potential' have the same
meaning). Of course, knowing only the value of the angular momentum does not imply
an unambiguous determination of this distribution. Nevertheless, it allows us to exclude
some localizations that could, perhaps, be postulated. This shows that the GE
distribution should at least satisfy certain constraints inconsistent with the non-tensorial
character of the energy-momentum complex of Einstein's theory. To define these ideas,
we consider the following situations.

a) An homogeneous sphere of density p rotates with constant angular velocity co.

b) We first admit that p also contains the potential energy, supposed uniformly
distributed throughout the sphere (there is then no energy out of the sphere).
Calculation of the corresponding angular momentum Bx.

c) We then postulate a GE distribution according to the classical formula Kpot
—(ö2/SnG). Calculation of the corresponding angular momentum B2.

d) Comparison of Bt with B2. If Ê, # B2 it will be shown by this example that some
GE distributions are to be excluded. Indeed, a definite system cannot have,
simultaneously, two different angular momenta

Before we complete this programme, we recall to mind that Moller's remark on the
non-measurability ofGEM density is not only true in GR but also in Newtonian theory.
For simplicity, we could of course try to solve our problem in this formalism, but the
integrals representing the angular momentum do not then converge. On the other hand,
a pure GR treatment of this question is very complicated, mainly because of the non-
tensorial character of angular momentum density. It should then be emphasized that
we shall work in theframe ofthe Einstein-Maxwell theory mentionedabove. Thisformalism
fust gives the velocity formula (2.9), and the r'1 dependence ofvtn is responsible for the

fact that the angular momentum integral converges.



388 Jean Chevalier H. P. A.

a) To avoid unnecessary complications, without connection with the nature of our
problem, we suppose that the angular velocity co is small enough, so that the
relativistic mass variation is negligible. For the sun, for instance, the terms in
((ol/c)2 are of order 10"11 and can be ignored. We set aside, in the same way, that
part of energy due to rotation, at least out of the sphere.

b) The z-axis, being the rotation axis, we find for the single non-zero component Blz
of the angular momentum

Biz= j pvtBrsin9dV=iM(ol2, (4.1)
sphere

where vtn corsin 9 is the velocity of the matter contained in the volume element
dV.

c) In the above formula M is the total mass connected with the constant density p
by the formula

M=jPp, (4.2)

p includes also the potential energy. From now on we designate by a const, the
purely 'material' density, with the total 'material' mass Ma (4n/3)l3a. If the
mass of the potential energy is added to the latter we obtain

M-*.-—?- C«)
5 le2

We then calculate B2z, replacing in (4.1) the integral on the sphere by an integral
on the whole space. The latter converges because vtn ~ r"1 for great r. The
contribution AB2z to the angular momentum B2z, corresponding to the exterior of a
sphere of radius R, with l/R-41, is given by the relation

f «„, 1 GM2(ol2 C sin30
AB2z= ^.0cBrsm9dV=-- ^— -^-drd9d(p
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with «pò, —(GM2ISnr4). Evidently the calculation of B2z necessitates the exact
value of ven in the whole space. Unfortunately the exact determination of the energy
velocity is rather difficult. However we tried, with the help of several reasonable
hypotheses, some approximate evaluations and our calculations seem to show
clearly that BXz and B2l have not the same value,

d) If it is admitted that Êx =£ B2, in the actual state of our knowledge only an
experiment could show which of the two considered GE distributions has to be
excluded. We think, of course, that the S2 distribution has the best chance ofbeing
the right one.
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5. Conclusion

We find that we are still very far from direct measurement of the GE density.
Nevertheless, the notion of angular momentum seems to be a valuable way of
excluding possible GEM distributions. Even if our above considerations are limited to
the 'classical' case (Newtonian and Einstein-Maxwellian formalisms), they indicate that
the corresponding GR problem is far from being solved in the sense of the non-localiz-
abilityofGEM.
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