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A Model for Absorption or Decay

by E. B. Davies')

Mathematical Institute, Oxford, England; and Department for Theoretical Physics, University of
Geneva, Switzerland

(14. 1I1. 75)

Abstract. We investigate the gradual absorption or decay of a single quantum-mechanical particle
by means of a simple model consisting of a one-parameter contraction semigroup on a Hilbert space.
As well as relating our work to quantum-mechanical measurement theory, we find the evolution equation
for the particle in the classical limit.

1. Introduction

We study some aspects of the theory of strongly continuous one-parameter
contraction semigroups U,(¢) on a Hilbert space #. We suppose that the generator is

Z,=iH— AV : (1.1)

where H is a self-adjoint operator, V' > 0 is a well-behaved perturbation and Re4 > 0.
If Re A = 0, so that U,(¢)is a unitary group, the spectral properties of Z, and its scattering
theory have been intensively investigated [1, 2]. However, there are many interesting
questions to be answered when ReA > 0. For example if A is real, one would expect
that as A increases the semigroup would become more contractive. We show in Section
2 that in the limit A — +co this fails in a spectacular manner, the limit U,(¢) being
unitary on a subspace of 5. Subsequent sections are devoted to the probability of
eventual absorption, a model for position observables, sojourn times and the classical
motion, these involving the limits A — 4w, A >0, t >+ and #— 0 in various
combinations.

The author would like to thank Professor R. F. Streater and Professor K. B. Sinha
for some helpful comments.

2. The Strong Coupling Limit at Fixed Time

We study the limit A — 4+ by analytic continuation from the unitary case very
much in the spirit of [3, 4]. We shall suppose that Vis a relatively bounded perturbation
of H with relative bound zero, although the results can be extended to relatively bounded
quadratic forms by the usual techniques [1, 2]. If Re A > 0 then Z, is a dissipative operator
with the same domain as H and, by [1], U,(2) is a strongly continuous one-parameter
semigroup for ¢ > 0. Moreover for each ¢, use of the Trotter product formula [5]
shows that U,(¢) is an analytic function of A on D = {Re A > 0} and strongly continuous

1) Supported in part by the Swiss National Science Foundation.
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for Ain D = {Re A > 0}. Recall from [6] that norm, strong and weak analyticity coincide
for operator-valued functions of a complex variable. We shall frequently use the
following proposition, which may be deduced from the scalar version.

Proposition 2.1: Let { f,(A)},> o be a family of uniformly bounded s#-valued analytic
functions on D which are norm continuous on D. Suppose that

lim £,(2) =£(4) @2.1)

for all A € S, where either

i) S has an accumulation point in D, or
i) S < {z:Rez =0} and has non-zero Lebesgue measure. Then the limit exists for all
A in D and is an analytic function on D.

We start our study with some results about quadratic forms. Let 2 be a subspace
of o, not necessarily dense, and let Q be a non-negative quadratic form on 2. If Q is
closed we can associate to it a non-negative self-adjoint operator H on & such that
2 = Dom(H'?). We then define a bounded operator Ay(f) on +# for all >0 by

ABSf=B+H)'S (2.2)
if fe 9 and
Ao(B)f=0 (2.3)

if fe Z+. These 4,(f) form a pseudo-resolvent family in the sense of [1]. We extend
Q to A by putting Q(f) =+« if f¢ 2 and then write O, < Q, if

0< 0:(f) < Qu(f) S+ (2.4)
for all fe 5.

Lemma 2.2: If Q, and Q, are two closed non-negative quadratic forms on #
then O, < Q, if and only if 4,(B) > A4,(B) for all B > 0.

Proof: This is a small modification of [1, p. 330].

Corollary 2.3: Let Q. be the form associated with H + xV where x > 0. Then as
x — 4o, @, converges to the form Q of a self-adjoint operator H with

Q(H;’Z) = 2(HY*) N Null V. (2.5)
Forall >0

s-lim A (B) = A(B) (2.6)

x—++o

where A(B) is the pseudo-resolvent of H,.
Proof: If we define

Q.(f)= lim Q.(f) (2.7)

X—+ 400
then Q. is certainly a quadratic form. Since such a form is closed if and only if it is
lower semi-continuous, and the limit is monotone, Q. is closed, and so may be associated
to a self-adjoint operator H,. Now clearly Q, is the smallest closed quadratic form
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such that O, > O, forall x > 0, so by Lemma 2.2, R_(f) is the largest pseudo-resolvent
family such that

R.(B) < R«(B) (2.8)

for all >0 and x > 0. But R,(f) are monotonically decreasing in x and so converge
strongly, and the limit is also a pseudo-resolvent family. Therefore equation (2.6) is
valid.

Note: If # = L*(R?), H is the Laplacian and ¥ > 0 is a scalar potential whose
support S has smooth boundary; then H_ is the self-adjoint operator on L*(R3\S)
given by taking the Laplacian with vanishing boundary conditions.

Theorem 2.4: Let fe 9(H,) and let A > 0. Then
lim U,(t)f = e'H=! f. (2.9)
A=+

Proof: We first note that by analytic continuation equation (2.6) holds for all
Re B > 0. A small modification of [1, p. 502] now yields

llm e!t(H+AV)f= €"wa (210)
A=+
for all fe 2(H,)". If Rez > 0 and we define
gi(z) = eMH- 4=V £ (2.11)
then
- _ HitHg £
Jlim g,(z) == f (2.12)

for all z on the negative real axis and hence by Proposition 2.1 for all Rez > 0. The
theorem is proved by taking z = 1.

As an immediate consequence we see that if fe D(H,)™ then for all 1> 0
lim ([U,)f 1= 1] \ (2.13)

even though the generator becomes more dissipative as A — +w. We remark that
similar conclusions have been reached by C. N. Friedman [7] who, however, considers
the case A =+ directly using the Trotter product formula. Although at first sight
paradoxical, a particular case solved by Allcock [8] shows that a wave packet suffers
partial reflection at the boundary of the support of ¥ and that the reflection coefficient
approaches unity as A — +o.

We mention here a related and well-known phenomenon in electromagnetic
theory [9]. If an electromagnetic wave evolving according to the telegraph equation is.
incident upon a conducting medium then it is partially reflected and the transmitted
wayve is absorbed as it travels through the medium. As the conductivity is increased the
absorption rate in the medium increases but so does the reflection coefficient and in the
infinite conductivity limit the wave is entirely reflected.

3. The Probability of Eventual Absorption

We study the evolution equation

W'(t) = GH — AV)(2) 3.1
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as before. If ||/|| = 1 then according to quantum-mechanical measurement theory [10]
P(t) = |[etH-2ry |12 (3.2)

may be interpreted as the probability of non-absorption up to time ¢ of a particle
starting at time zero in the state ¥ and moving in a medium whose absorptive properties
are represented by the operator AV. Therefore one can say that the particle is certain
to be absorbed eventually if

lim || e#H-4% || = 0. (3.3)

t—+o0
Theorem 3.1: Suppose that for small purely imaginary A
s-lim Uy(—t) U,;(t) = W (1) (3.9

t =+

exists. Then for all Y € ¥ and all ReA >0
Py() = lim U0V (3.5)

“exists and is non-zero except possibly on a discrete set of values of A.
Proof: The function

S Q)= Us(=0) Us(1)¥ (3.6)

is continuous on D, analytic on D and uniformly bounded. We are given that it converges
as ¢t — + for a certain interval on the imaginary axis. Therefore by Proposition 2.1 it
converges to an analytic function £, ,(1). For the given range of values of 1 on the imagin-
ary axis W,(A) is isometric so f, (1) has non-zero boundary values. Therefore its zeros
are isolated points. Finally

Py(w) = lim [UO¥I = lim |Us=1) U1 = (DI 3.7

Note: If A is purely imaginary then U,(¢) is unitary and conditions for the existence
of W.(4) have been very extensively investigated, the case where || is small being par-
ticularly well-behaved [11]. Expressions for W,(1) when ReA > 0 but |4| is not small
may then be obtained by analytic continuation.

The following lemma shows that if Re A > 0, the existence of bound states does not
prevent decay of wave-functions.

Lemma 3.2: Let H be a self-adjoint operator with no point spectrum, let ¥ >0
be a perturbation with relative bound zero and let ReA > 0. Then any eigenvalue a
of iH — AV has Rea > 0.

Proof: If 0 £y € 2(H) and

(H = AV)Y = ay (3.8)
then

IKHY > — KW 90 = alY > (3.9)
and taking real parts '
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Therefore either Rea < 0 or {(Vy,¢> = 0. But in the latter case, since V > 0, it follows
that Vi = 0 so that Hiy = —ia)s, contrary to our assumptions on H.
The following technical lemma is needed for the proof of Theorem 3.4.

Lemma 3.3: Suppose the measurable function b satisfies
0<b(t)<y forall 0<t<o and limb(t)=0.

t->+00

Suppose a is a non-negative locally bounded measurable function on [0, «) satisfying

‘ t
at)<a+ f a(t — s) b(s)ds (3.11)
0
for all > 0. Then
lim e a(t) =0. (3.12)
t—co

Proof: We put () = e "a(t) and 8(z) = e "*b(t) so that forall £ > 0
ait) < ae ™ + f a(t — s) b(s) ds. (3.13)
o
Since ||b]); < 1 the equation
)=ae™+ f &t — 5)B(s) ds (3.14)
0

can be solved by iteration in L!(0, «). Inspection of the equation then shows that ¢ is
continuous and vanishes at infinity. We therefore have only to show that d(¢) < é(¢) for
all ¢ > 0 to complete the proof.

The equation

ae ™ + j a(t — 5) b(s)ds < (1 + ) &) (3.15)

is satisfied for 7 = 0 and both sides are continuous functions. If it is not satisfied for all
t = 0 then there is a first value ¢, for which it fails. But then d@(¢) < (1 + &) é(¢) for all
0<t<tys0

e "o 4 I a(to — 8)b(s)ds < (1 + g)ae "0 + f (1 + &) &(to — 5) b(s)ds
0 (1)

= (1 + &) &(to). | (3.16)

This contradicts the assumption that there is a first point where equation (3.15)
fails. Finally ¢ > 0 is arbitrary so we get the required inequality.

Theorem 3.4: Suppose that V' =yl + WX where ||W| || X| <7 and
lim || XeH W) =0. (3.17)

| Snde of- 4]
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Then

lim |jeH-V>|| =0.

t—=+o

Proof: From the equation

t
pUHAWX) _ iHE J' HHAWX) =) WX oiHS g

s=0

we obtain

t
e(iH+WX)t W___ eth W+ '[ e(iH+WX)(t—s) WXeiHs st.

s=0

Putting

[|eHHHF O W | = a(t)
and

| X '™ W|| = b(r)
this yields

a(t) < |W) + j a(t — 5) b(s) ds

s=0

and so by Lemma 3.3

lim a(t)e ™ =0.
t—+c0

Now by equation (3.19)

t
lem w0 <14 [ a(t—s)|Xds

s=0

SO

t
”e(m—V)t” e "M+ f e "a(t— $)IIX|\ds

s=0

which converges to zero as t — +oo.

E. B. Davies H.P. A.

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

Theorem 3.5: Let H=—A on L?*(R") and let ¥ be a bounded non-negative scalar

potential
(W) (x) = V(x) Y (x)

such that
lim V(x)=y>0.
X =0

(3.27)

(3.28)
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Then

lim [leGH#-V)| = 0. | (3.29)

t—++00

Proof: We let Vy(x)=V(x) if 0<V(x)<y and V,(x)=y+ A{V(x)—7y} if
V(x) > y. Then Re V,(x) > 0 if A lies in the region '

D={A:Rei>0o0r |A| <y|V]| '} (3.30)
If A € D and ¢ > 0 then by the Trotter product formula
A (2) = etV (3.31)

is a uniformly bounded analytic function of A. Therefore norm convergence to zero
holds for all A € D, and in particular for A = 1, if it can be proved for |i| < 7|V~
By Theorem 3.5 it is sufficient to prove the following.

If Y > 0is a bounded potential and lim Y(x) = 0 then

X=>00

lim ||Ye'8 Y| = 0. ' (3.32)

t—=++x

This result holds for all bounded potentials of compact support by [11]and the class
of potentials for which it holds is obviously closed under uniform limits.

4. Generalized Position Observables

As well as asking whether the particle is absorbed one may ask where it is absorbed.
For the sake of definiteness we carry out the discussion in L*(R?) although it is clearly
of a more general nature. We put H = —4 and let ¥ > 0 be a bounded scalar potential.
For any Borel set £ = R?* we define the projection P(E) by

{P(E) Y} (x) = xe(x) ¥(x). .0

Following [12] we now define the probability of absorption within a region of space as a
certain positive operator-valued measure.

Theorem 4.1: Suppose that

s — lim eVt = (), 4.2)
t—+ow

Then if E is a Borel set in R3 the formula
A(E) = 2"' eHH-V) 12 p(E) P12 pUH-V)E gy 4.3)
0

defines a normalized positive operator-valued measure on R3.

Proof: It is shown in [10] that for all y € 5#

%”e(iﬂ—")t ‘1’”2 =-=-2 <Ve(lH-V)t l/l, e(IH—-V)t w>- (44)
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Therefore

WP =2 [ (VetH=pry, dH—r gy dr + lim [led5" g2 4.5)
0

t—+o

which proves that A(R*) = 1. That A(E) is a countably additive positive operator-
valued measure is obvious from its definition.

We now specialize further by letting ¥ =311 where 1> 0. For x € R® we let
x — U, be the strongly continuous unitary group given for { € ¥ by

U ) () =¥(y — x). (4.6)

Theorem 4.2: The positive operator-valued measure A(F) is covariant in the sense
that for all Borel sets E and all x € R?

U A(E)U, = A(E + x). 4.7)
Proof: We use the well-known fact that for all € R and all x e R®
[U.,e'H]=0. (4.8)
For the simple potential we have chosen
A(E) =4 j e~ ¢~1H1 P(E) ¢!Ht df. 4.9)
o
Hence

U* A(E)U, = 2 f e~¥ U* ¢~1Ht P(E) Bt U_dt
1]

=3 j e~ g1t % P(E) U, ™' dt
0

A f e e M P(E + x)e'f' dt
0

= A(E+x). (4.10)

Introducing explicitly the dependence of A(E) on A, the relationship between it
and the usual projection-valued measure is an obvious consequence of equation (4.9).

Theorem 4.3: For all y € 5 and all E = R?
(PEWY> = llim CAAEYY . 4.11)

—++00

Returning to the case of finite A we mention that covariant positive-operator valued
measures have been studied in [13, 14]. The representation theorem below is a special
case of a very general result in [14]. We let

fy =@y | feyet=rd®x (4.12)
R3
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for fe L*(R3) and let
7 @ ={fe LA(R¥:f e L'(R®) N L*(R3%)} (4.13)

so that 2 is a dense subspace of L%(R3) consisting entirely of continuous bounded
functions.

Theorem 4.4: There exists a positive self-adjoint operator T on L*(R?) such that
2 < 2(T'?) and such that if one defines

T, = U*TU,  (414)

for all x € R? then
AEWN) = [ 1) Ty > dx 4.15)
R3

for all Borel sets £ < R* and all y € 2.

Proof: We first note that U,: 2 — 2 for all x € R3 so if T'/2 has domain containing
2 then so does T}/2. It is sufficient to prove the theorem in the case when E is a bounded
Borel set. We then have

AEYWN =1 [ [ e\ y) @) & xdr (4.16)

E =0

=l(21r)_3 J' J.e—lt+ik-x—ik2t—1h-x+th3txﬁx)ﬁ(k)mdkdhdxdt

t=0 RY

-3 A i(k—h)- x LN (I
- [ s e W I TR e dhds. @17

”Y
Now if
9o = {f & L*: f has compact support} (4.18)
then the formula
A .
) () = 2n)3 k) dk 4.19
(T ®) = @7) j“i(kz_hz)f() | 4.19)

R3

defines an operator T: 9, — L*(R?). Moreover if € 9, then by equation (4.17)

CAEY> = | 1) T dx. (4.20)

R3

if S, is the sphere centre O, radius ¢, then

TV =Im(% ne’) "t CAS.) ¥ > (4.21)
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so T = 0 on the domain 2,. The self-adjoint operator of the theorem is then defined as
the Friedrichs extension of 7. The domain of 7%/ equals the domain of the closure of
the quadratic form defined on 2, x 2, by

f(k) &(h) dk dh 4.22)

(If,g>=Q2n)—3 f

R6

A+ i(k:—h?)
and this contains & because the kernel is a bounded function.

5. Sojourn Time

We put # = L*(R3) and let P be the projection associated with the interior of a
bounded region D in R3. If H is some Hamiltonian on 5 and y € J is a unit vector
representing the state of the particle at time zero then the length of time that the particle
is within D, its sojourn time, is usually [15] taken to be

f |1P e™* 1 dt. (5.1)
0

However, the justification of this expression in terms of the quantum theory of measure-
ment is not straightforward. One may certainly take

1P et |2 (5.2)

as the probability that the particle is within D at time ¢ if the particle has been allowed
to evolve unobserved between times 0 and ¢. However if the particle is observed at two
times 0 < s < ¢ then the probability that it is inside at both times is

HP eiH(t—s)PetHs ll‘llz (53)

with similar but more complicated expressions if one makes observations at frequent
intervals. As Friedman [7] showed, attempts to take the limit of continuous observations
in this manner lead nowhere. :

The theory of quantum stochastic processes [10] allows one to describe such con-
tinuous measurements, but not in a unique way. We shall try to make clear that even
for so simple a situation as asking a question corresponding to a given projection over
a period of time there are various experimental methods of doing this which give rise
to mathematically different equations. _

In the discussion of the very similar problem of decay of an unstable particle in
[16, 17] it is supposed that an unstable particle collides randomly at a rate A with the
atoms of some medium, and at each collision the relevant atom changes its state in a
manner which after amplification gives information about whether the particle has yet
decayed. If P is the projection onto the subspace of # corresponding to the undecayed
particle and Q = I — P the projection onto the subspace of the decay products then the
evolution equation for the density matrix p(t) of the particle is

p'(t)=i[H,p] —ip+ APpP + QpQ). (54

However, the equation in which we are interested is that for the evolution conditional
on the particle not having decayed and this is

p'(t)=i[H,p] — Ap + PpP. (5.5)



Vol. 48, 1975 A Model for Absorption or Decay 375

It is known [10] that if p(0) > O then p(¢) > O for all ¢ > 0 and that tr[p(¢)] is monotonic-
ally decreasing. If tr[p(0)] =1 then tr[p(¢)] is interpreted as the probability that the
particle has not decayed at time 7. Measurement theory then suggests that we should
define the sojourn time 7'(4) in the unstable state by the asymptotic equation for  — +c

tr[p(t)] = e~44-TG», (5.6)

Theorem 5.1: Let p(0) = |y ><{y| where ||| = 1. If there exists a constant ¢ such that
for all n '

j ds, j‘ ds,... j ds,||P 51 PetHsa P, Pettsn |2 < ¢ (5.7)
0 0 0

then the sojourn time 7°(A) is finite for sufficiently small A and

lim T(A) = [ ||Pe'® |2 ds. | (5.8
A=0
0

Proof: The evolution equation (5.5) may be rewritten as the integral equation
4
p(t) = e * e p(0) e 1t + ), I e 2 eHsPp(t — s)Pe M3 ds (5.9)
: _
which may then be solved by integration giving

t
p(t) =e M {e!Ht ,0(0) e-lHt 4 j eiHsPeiH(t—s)p ewiH(t-—s)Pe-—leds
0

t s

+ 2 J‘ J‘ etH (=9 P giH(s=w) P piHu p o=iHU P o=iH(s—W) P o=IHC=9) gy ds 4 ...},

5=0 u=0
(5.10)
Therefore if p(0) = |y )<y
t t s
etr[p(t)] =1+ 4 f IPe'Hs |2 ds + A? J- f |P et PetHt |2 dyds+....
= mow-o (5.11)
If 0 < A < ¢! then T'(4) is finite and given by
ATD — | 4 1 j I|P e s |2 ds + O(42) - (5.12)
0 )

from which the result follows.

It is something of a joke that the standard formula for sojourn times is given by
taking the weak coupling limit A — 0, while in the last section another equally standard
formula (4.11) corresponds to A — . As pointed out in the discussion of Eckstein and
Siegert [16] the treatment above would still be correct (as far as any argument not
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involving a quantization of the atoms of the medium can be) even if the collisions
between the undecayed particle and the atoms resulted in no macroscopically observable
signal, for the reduction of the wave packet is caused by the collision and not by the
efficiency of the amplification process (we stress that this statement depends on our
decision not to quantize the atoms in the medium).

We consider next a somewhat different experimental arrangement, which corre-
sponds more closely to that described by Allcock [8]. We suppose that an unstable and
stationary particle is near to a counter which detects the decay products when they are
emitted. The counter is spatially separated from the particle but the decay products are
emitted into the counter and then detected in the same way as before. We claim that in
this situation the appropriate evolution equation for the density matrix p(z) of the
particle plus decay products is [10]

p'(t)=i[H, p] —3A(Qp + pQ) + A0p 0. (5.13)
By [10] the equation analogous to (5.5) is

p'(t)=i[H, p] —3M(Qp + pQ) (5.14)
whose solution is

p(t) = eWH-3Q/2)t () p(~iH-2Q/2)t ' (5.15)

According to this equation, which is the one used by Allcock [8], the undecayed particle
evolves without any reduction of the wave packet, but its probability decreases with
time.

Theorem 5.2: If p(0) = |y>{Y| where ||/|| = 1 and P is a smooth perturbation of H,
then the sojourn time is finite for sufficiently small A and

0
lim T(2) = [ 1P et®* i ds. (5.16)
A—0 4
Proof: By [11]if A is sufficiently small then the expansion

t
UHAPIL Yy _ il 4 1) f H—9) potHs o o (5.17)
; |

converges uniformly with respect to ¢ and one has

Q. = lim e 'Ht gUH+P/2)ty,

t=>+c0

=y +3 [ e EPe Y ds+ ... (5.18)
]

Now
e tr[p(t)] = e.l:“e(tu— AQ/2)t 'I’”z
= ||eH+4P /D)t ;|12 (5.19)
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SO
ATP = lim e tr[p(t)]
t—=+w
=[1Q, ¥|?

=142 [ IPetmey|Rds + 029 620
o

from which the result is again immediate.

An intuitive explanation of the difference between the two models is that for the
first the particle may 1) be observed to have decayed or ii) be observed not to have de-
cayed, while for the second the particle may i) be observed to have decayed or ii’)
be inferred not to have decayed through not having been observed decaying. Whether
or not one believes that there is some philosophical distinction between ii) and ii") it is
clear that there are two mathematical models, and that which is appropriate depends on
the experimental arrangement.

The above two cases are extremes but there are many intermediate situations.
For example one may suppose that the particle moves through the medium but that
the particle and its decay products have significantly different collision cross-sections
with respect to the atoms of the medium. There are also advantages in replacing the
projections by other operators for some purposes [18]. All of these possibilities can be
described within the formalism of [10].

6. The Classical Limit

In the above sections we have described the dynamics of a quantum-mechanical
particle by the use of a non-self-adjoint Hamiltonian in Hilbert space. In classical
mechanics there is no possibility of following this procedure since a classical Hamiltonian
can have no meaning unless it is real. It is therefore quite interesting that one can find
the classical limit of the above dynamics. We follow closely the method of Hepp [19]
where the unitary problem is solved.

In L*(R) we consider the equation

Y')=2Z,y()- 6.1)
where
Z,=— %pz —iA"V(AY2q) — B(AV?gq). - (6.2)

Here p, g are the usual operators on L%(R), V is real, twice differentiable and satisfies
V" @)= V") < Clx—y° + C|x— y|? - 6.3)
for some 6 > 0 and all x, y € R, while B > 0 satisfies
|B(x) — B(y)| < C|x—y|° + Clx—y|"°. (6.4)

It is shown in [19] that the growth condition for large |x — y| may be greatly weak-
ened, and it may easily be seen that the same is true of the growth condition for small
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|x — y|. In connection with the technique of analytic continuation it is significant that
B and V have different scaling factors and that different degrees of smoothness are
needed for B and V in the proof of the theorem below.

We suppose that U,(¢) is a one-parameter contraction semigroup on L2(R) for all
sufficiently small A > 0 and that its generator is an extension of Z, defined on Schwartz
space &. For any complex « = 271/2(¢ + in) the Weyl operator

U(a) = expi (nqg — &p) (6.5)
is well defined and

V@U@ =p+7, U@qU@=q+¢. ©6)
We define the classical evolution by

C@)=mn(), =n'@®)=-V"{{E)} (6.7

with initial conditions £(0) = £ and #(0) = =, and suppose that these equations have a
solution for 0 < ¢ < 7. We then put

a(t) = 27V2(&(r) + in(2)). , (6.8)
We also let
B(,s)= [ B{ER)}ax (69)

s0 289 represents the probability that a particle starting at time s and moving along
the classical trajectory is not absorbed at time ¢, when the absorption rate at position x
is 2B(x).

Theorem 6.1: If r, s € R then
s —lim U(A~"/2 a)* U,()* expf{irA'/?q + isA2p} Uy(t) UX" )

A-0
= exp{iré, + isn, — 2B, o} (6.10)
uniformly for 0 < ¢t < T. Consequently if ||| = 1 and
V.()=U,0) UL 2 a)y (6.11)
then
jlli_r’r(} <exp{irAt2q + isA'2 p} (1), Y 1(2)) = exp{iré, + ism, — 2P, o}- (6.12)

Proof: We define the unitary operators V,(z) on L*(R) by

0 :
VOV =TV -GnY 6.13)

where € & and V;(0) = U(A""?a). Then for all 1 > 0
Vi) = UL V2 a)expif(4,t) (6.14)
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where the form of the phase factor 6(4,¢) does not concern us. We also define

Wit,s) = Vi(t)* Uyt — s) Vi(s)expid~ty, , (6.15)
where

Veos = J{}n§,+ V(E,)} dx. | (6.16)
Then if y € L%(R)

NUA~Y2 a)* Uy(t)* exp{irAt/2q + isA 2 p} U, (1) U(A~ 2 ) ¢
— exp{ir; + ism. — 2B, 0} Y|
= [V(0)* U, (£)* exp{irA/*(q — A~Y2&) + isAV*(p — A2 m,)}.
U) Vi) y — e 22y
= ||W,(t,0)* exp{irA/2q + isAY2 p} Wy(t,0) Y — e 28¢-0)y||, (6. 17)
Since

s — lim exp{irAt?q + isAt2p} =1 (6.18)

A—0

it is sufficient to prove that

s —lim W, (1,0) = W(t,0) e #¢-0 (6.19)
A—0
and
s —lim W, (t,0)* = W(t,0)* e #¢.0 (6.20)
A—0

where W(t,s) is the unitary propagator such that for ¢ € &
0
57 )Y =—iH(@)W(t,5)y (6.21)

and
H@)=3p* +3V" ()9 (6.22)

with the usual boundary condition that W (z,¢) =1 for all £ € R.

Just as H(?) lies in the Lie algebra of quadratic Hamiltonians for all ¢, it may be
shown by explicit calculations that W(t,s) lies in a certain Lie group of unitary operators
on L%(R). _

It follows that W(t,s) leaves & invariant and that if € & then t,s — W(t,5)¥
is a continuous function when & is given its usual Frechet space topology.
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If Y € & then

W, 00y — PO W(t,0) Y12
= U Vi)Y — e~477¢.0-6¢.0 (1) W (2, 0) Y|

2

—

t
0
J. = U,(t — 5)e 47 11(.0-86.0 (o) W(s,0)  ds
0

2

]
< t2 max ||— Ul(t _ S) e—u—l'r(s.O)—ﬁ(s.O) V;,(S) W(S, 0) ,I,
o<s<t||Os

= 12 max ||Uy(t — 5)(~zp) €70 08COY (5) W (s, 0)
0<t<s

+ Uyt — ) {=id " 3n2 — il V(E,) — B(L,)} e 710060y () W(s, 0) ¥

+ Uy(t — 5) e 1471 76.0-86.0) I, (5) (i3-V2 7l g — iA~ V2 & p} W (s, 0)

2

i

+ U,(t — 5) e~ 75.0-8(s.0) Vz(s){ =

P V"(és)q‘_} W(s, 00

< T?max
O0<s<T

[% (p+ 171202 + i V(E, + A12q) + B(, + 1/%g)

— iV (C)g — il mp — A ml — I V()
2

-BE) - 37— V"(&)q’} W(s 0y

= T? max
O0<sET

[ ATV (E, + AV2q) —id V(&) — IR V() g

2

- -;- V'(¢)q* + B(C, + AV2q) - B(cf.)} W(s, 0y

< T? max f
0<s<T R

A V(E,+ AV2x) — TV V(E) — iR VI(E) x

2

— 2V (€)X + BE, + A2 x) — BE)| (W (5,0} ()| dx

2

< T? max f {CA32 x2+8 . CAY28 x2+1/8 L C )92 x® 4 CA?/% x1/%)2,

0Ss<T R

[{W(s,0) ¢} (x)|*dx. (6.23)

This converges to 0 as 1 — 0 because W(s,0)y € & uniformly for0 <s<T.
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The proof of equation (6.20) is similar. If v € & then
IWa(t,0)* ¢ — e PO W (2,0)* y|
= VA% Uy(t)* V(1) e 37700 — e~8.0 (1, 0)*y|
= |[U()* Vi(t)y — 717080 7, 0) W (1, 0* ¥

t
0
J % UX(s) V,(s) e 190 -80.9 (¢ 5)* s ds || (6.24)
(4]
after which we proceed as before, using

a% W(t,s)*y =—iH(s)W(t,s)* ¢ (6.25)

instead of equation (6.21).
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