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Relativistische Gleichungen fiir Teilchen
mit beliebigem Spin

von Reinhard Giesen
Lydiastr. 6, D-43 Essen 1, Deutschland

(28.X.74)

Abstract. Relativistic equations for particles with arbitrary spin are constructed, which admit the
introduction of interactions. The equations fulfil the conditions proposed by M. Fierz and W. Pauli in
1939,

1. Einleitung

Relativistische Gleichungen fiir kriftefreie Teilchen mit beliebigem Spin wurden
zuerst 1936 von Dirac [1] aufgestellt. Fierz [2] fiihrte dann die Quantisierung dieser
Wellenfelder durch und bewies den Zusammenhang zwischen Spin und Statistik.
GemaiB der Formulierung in [2] kann ein freies Teilchen der Masse m mit ganzzahligem
Spin f durch einen symmetrischen Tensor y/'1’zrmit verschwindender Spur dargestellt
werden. Die Tensorindizes nehmen die Werte 0, 1, 2 oder 3 an. Dieser Tensor der Stufe
f geniige den Gleichungen

(O + m?) Y irizis =0, | (1)
9, Yirizis =0, V)

Dabei ist [1=0;0' =g, 9’9" mit 9; = 9/0xi und dem metrischen Tensor gi. Es ist
Zoo = —€11 = —L22 = —g33 = 1 und gy = 0 sonst fiir i,k =0, 1, 2, 3. Wie iiblich soll iiber
gleichnamige obere und untere Indizes summiert werden.
Ein freies Teilchen der Masse m mit halbzahligem Spln f=@2n- 3/2 firn=1,2,
.. wird beschrieben durch die symmetrischen Spinoren a.,1 ,ﬁ"" und b " mit p,v=1,2.
Dlese geniigen den Gleichungen

g Bt i .
h-ma vll...v ! —Pvlﬂnbt!’;f.‘.lv” Pl e s _pv,,ﬂ,,b:;‘lnpi'n 'L:" ! 0 (38)
n.mb f:]l{,":__ p“]l’n a e #":1,.—1 _— _p.u,.lf,, a‘"’lv1 #';":11 =1, (3b) .
P F’l .“'n 1 :0’ (4a)

L¢! F'l fn —
p!‘qbvi “Vn-1 0. (4b)

Der Spinor p# ist mit Hilfe des Differentialoperators d; und der Pauli’schen Spin-
matrizen erklart. Naheres dazu findet sich unten im Abschnitt 5.
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Fierz und Pauli [3] zeigten schon 1939, daB die Gleichungen (1) und (2) bzw. (3)
und (4) nach Einfiihrung einer Wechselwirkung im allgemeinen nicht mehr miteinander
vertraglich sind. Diese Schwierigkeit tritt schon beim Spin$ auf, wenn man eine
elektromagnetische Wechselwirkung durch die Ersetzungsvorschrift 6; — 0: +ied; mit
dem Viererpotential 4; einfiihrt. Als Ausweg schlugen sie dann vor, alle Gleichungen
aus einem Variationsprinzip folgen zu lassen. Dazu muBB man voriibergehend gewisse
Hilfsfelder von niedrigerem Rang als dem des betrachteten Teilchenfeldes zulassen.
Aus den Eulerschen Gleichungen sollen sich dann im kréftefreien Fall die Gleichungen
(1) und (2) bzw. (3) und (4) und das Verschwinden der Hilfsfelder ableiten lassen.
Fiir Spin 3 und Spin 2 konnten solche Gleichungen mit Lagrange-Dichte angegeben
werden, und fiir Spin /> 2 wurde bewiesen, da3 die Aufgabe 16sbar sei. Anscheinend
konnten diese Gleichungen fiir héheren Spin bisher nicht gefunden werden. Neuerdings
hat Minkowski [4] ausgehend von den Fierz-Pauli-Gleichungen eine Theorie eines
Spin-2-Mesons entwickelt.

In der vorliegenden Arbeit wird zunichst ein Konstruktionsverfahren fiir Glei-
chungen der genannten Eigenschaften vorgefiihrt. Dann werden als Hauptergebnis die
Gleichungssysteme fiir beliebigen ganzzahligen und halbzahligen Spin bewiesen. Es
zeigt sich, daB verschiedene Formen des Gleichungssystems méglich sind.

2. Konstruktionsverfahren und Spin-2-Gleichung

Gesucht wird fiir das symmetrische Tensorfeld y* mit / =0 ein Differential-
gleichungssystem, das aus einer Lorentz-invarianten Lagrange-Dichte ableitbar ist.
Dies Gleichungssystem soll die Eigenschaft besitzen, daB aus ihm ([J + m?)y* =0
und 0 Y = 0 folgt.

Wihlt man als Ausgangsgleichung

(O+m?)y*—-2a'9,y* =0, )
und wendet man darauf d; an, so erhilt man

2,y =0. (@)
Damit folgt aus Gleichung (1) auch '

(O+m?)y*=0. (b)

Das Ziel ist nun, Gleichung (1) unter Erhaltung dieser Eigenschaft zu symmetrisieren
und auf eine aus einer Lagrange-Dichte ableitbare Form zu transformieren.

Dazu wird Gleichung (1) um —2%9,y/" + 99,y erweitert. Dann wird +9%d, /"
durch gi*0:0, y' ersetzt. Dabei bleibt die gezeigte Eigenschaft von Gleichung (1)
erhalten, denn die beiden Ausdriicke sind dquivalent hinsichtlich der Operation d;,
d.h. 9; (8%91y") = 0:(gi* % 0- Yy'"), und (a) und (b) folgten ja erst nach Anwendung von
o; auf (1).

Damit ist die Symmetrie schon erreicht. Will man in der Lagrange-Dichte nur
Ableitungen des Feldes von héchstens 1. Ordnung zulassen, so gelangt man dazu durch
Einfiihrung eines skalaren Hilfsfeldes ¢:

010,y =m’ . 2
Gleichung (1) ist schlieBlich:
(O + m) Y~ 079,y — 0%,y + m*g* ¢ =0. 1)
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Aus den Gleichungen (1) und (2) folgt nun auler (a) und (b) auch
¢ =0. (©

Um eine invariante Lagrange-Dichte zu dem Gleichungssystem bilden zu konnen,
formt man es weiter um durch die Substitution y* =% — gikep. Aus dem neuen
System folgt wieder (a), (b) und (c). Zunichst folgt namlich (a) und (b) fiir
(Y — g#* ) und wie bisher folgt (c), d.h. ¢ = 0. Wegen ¢ = 0 gilt dann (a) und (b)
auch fiir das neue Feld y/*.

Durch diese Substitution entsteht in (1) auch der Ausdruck g#[¢, der durch den
hinsichtlich 6; dquivalenten Ausdruck 9'9% ¢ ersetzt wird. SchlieBlich 148t man an der
neuen GroBe ¥ den Strich wieder weg, und das Gleichungssystem lautet nun

(O+mHy™*—0'0,y* —08%3,y%+0'9%p =0, (A.1)
—2,0,y" + (O +m?)e=0. (A2)
Fiir die Behandlung der Spurbedingung y{ = 0 bieten sich 2 Mdglichkeiten:

A. Man definiert \i{: = ¢. Dann folgt die Spurbedingung schon aus dem Glei-
chungssystem.

Vergessen wir nun fiir einen Augenblick die Spurbedingung, und fassen wir ¢
noch als unabhingig von % auf! Dann 148t sich folgende Lagrange-Dichte kon-
struieren: (

L=m?y p* —0,yp 0"y +20" ), 8,4
— @ YUnd o+ 2,00,y ) —m2o p+0,0"0" 0. - (A3)

Aus ihr lassen sich die Gleichungen (A.1) und (A.2) herleiten. Beim Variieren ist als
Nebenbedingung nur die Symmetrie 1 * = /¥ zu beachten. Ferner sind ¥*, Y, @, ¢*
unabhingig von einander zu variieren. Der Stern * bezeichnet das konjugiert-komplexe
Feld, bzw. in einer quantisierten Theorie den hermetisch adjungierten Feldoperator.

Erinnern wir uns jetzt wieder an die Definition y/{ : = ¢ und beriicksichtigen dies
beim Variieren von (A.3), so erhalten wir die Gleichung

Dl,[’ik _ aia,l//'k _ akar‘/lri _I__gikaral l,b'l
+9'9%p —g* O + m*(Y *— g*p) =0. (A4

Dies ist die Form des Gleichungssystems, die z.B. in der Theorie des Spin-2-Mesons
von Minkowski [4] verwendet wird. Es lassen sich durch Verjiingen und Differenzieren
die gewiinschten Eigenschaften fiir (A.4) nachweisen.

Der Ubergang von (A.1) und (A.2) nach (A.4) ist iiberraschend, aber wohl nicht
rein zufillig. Systematisch gelangt man zu (A.4) indem man L mit unbestimmten
Koeffizienten ansetzt und daraus (A.4) ableitet. Hieraus erhélt man durch Verjiingung
eine Gleichung (A.5). Man kann dann mit dhnlichen Schritten wie oben von (A.4) und
(A.5) zur Ausgangsgleichung (1) zuriickkehren. Dadurch werden die Koeffizienten
bestimmt.

B. Man setzt yi =0 von Anfang an voraus. Dann muB dies als Nebenbedingung
bei der Variation der Lagrange-Dichte beriicksichtigt werden. Das fiihrt zu etwas
komplizierteren Gleichungen. Dazu formt man (A.1) und (A.2) weiter um. Der Aus-
druck 0'9%¢ in (A.1) ist hinsichtlich @ Aquivalent zu $0°9%p + 3giw[J¢. Ersetzt man
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hier [(J¢ aus (A.2), so erhilt man fiir (A.1)

(O +m) Y% — @70,y + 30,y — 4g%2,0,y") +39'9% ¢ — 4g™m* ¢ = 0.
Nun substituiert man y* = /¥ + 1g*¢. Das fiihrt zu

(O+m)yY® —(@'0,y™ + %0,y —4g™8,9,y"") —49'9%p — 3™ e =0, (1)

—2,0,Y" + G0+ m) g =0, | @

Setzt man jetzt in (1) fiir —39'8%p + 3g*[Jo den hinsichtlich 8; Aquivalenten Ausdruck
+40'9%p — & g*[o ein, substituiert ¢ = —3¢’ und 14Bt zum SchluB den Strich an den
neuen Feldern wieder fort, dann hat man das neue Gleichungssystem

(O +mt) ™ — @0,y + 843,y — 3g™0,0,4") — 49'9%¢ + g™ Tp =0,
(B.1)

9,0, ¥"+3G0+m)e=0. (B.2)

Dies kann man durch Variation unter den Nebenbedingungen ¢! = 0 und y* = y/*' aus
der folgenden Lagrange-Dichte herleiten:

L =m2111;,"lll"k— ar ¢?kar¢’ik 4 zarw:kaswsk
+ 30 V050 + 0,0°0, Y ™) —3m* 9" 0 + $0, 0" 0'0. (B.3)

Das ist die Form der Gleichungen fiir Spin-2-Teilchen, die von Fierz und Pauli 1939 [3]
aufgestellt wurde.

Bemerkung. Das Konstruktionsverfahren, das hier an den bekannten Spin-2-
Gleichungen demonstriert wurde, 148t sich nun anwenden zur Gewinnung von Glei-
chungen fiir beliebigen ganzzahligen Spin. Fiir beliebigen Spin f wihlt man als Aus-
gangsgleichung ([J 4+ m?)yriz-ir— 819y yfyiriaiair = 0,

3. Gleichungen zum Spin 3

y*! ist nun ein symmetrischer Tensor 3. Stufe. Wieder hat man fiir die Behandlung
der Spurbedingung 2 Méglichkeiten:

A. Mandefiniert yi: = ¢!, wobei ¢! das in den Gleichungen auftretende vektorielle
Hilfsfeld ist. Dann kann das Verschwinden der Spuren aus dem Gleichungssystem
gefolgert werden. Die Feldgleichungen lassen sich aus der Lagrange-Dichte

L=m? o y™ — 2,y 0"y ™ + 307y ;3 8,y
— 3@ Y0 o' + 0,07 0, Y ™)
—3(m’ @] 9" — 09,0197 ¢! — 1070 9,9°) —dm* (910" x + 9,x" ¢")
+3m*(4m* y*y — 9, x* 9" y)

herleiten. Beim Variieren muB als Nebenbedingung die Symmetrie des Tensorfeldes
! beriicksichtigt werden. Ferner ist zu beachten, daB ¢! durch ¥ definiert ist,
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wahrend y ein unabhéngiges skalares Hilfsfeld ist. Die Gleichungen lauten
(O+m?) i — @10, 0™ + 38,y +3'9,y*) + 3'd%p! + 03! o'
+9'9'p* + g% {9,8,y™ — (O +m) o' —32'0,¢° — §m* 'y}

+gH{@, 0,y — ..} +gl{a, 0,y — ...} =0, (A.1)
A 99"+ ([0 +4m?) x =0. (A.3)
Verjiingen der Gleichung (A.1) gibt
—0, 0,y +(O+im)¢ +30'0,0°+1m?0! =0, | (A.2)
Wendet man 9; auf Gleichung (A.1) an und substituiert aus (A.2), so erhilt man
o,y — (0 p! +8'p*) — $2%0"x + g (30, 0" + % 010 =0. *)
Hierauf wendet man 0, an, und man bekommt mit Hilfe von (A.2) und (A.3)
p'+d'y=0. (+*)

Mit (*#) folgt aus (A.3) x =0. Wegen (*%), (*) und (A.1) gilt dann Y= ¢! =0,
Y™ =0und (0 + mH) Y =0.

B. Man setzt ¥ =0 von Anfang anvoraus. Zur Konstruktion des Gleichungssystems
geht man aus von der Gleichung

(1:]+m2)![l"kl—a"a,t/l’k’=0. ' (1)
Man erweitert sie um
340, Y7 = 310,y + 4g2, 0,y + 1510, 0,47 +1gH2,0, "
—1g%3,0,y" — 1g713,9,y"* — 1g¥ 3,0,y + 3%a, Y + 319, Yk,

Die Glieder 1g*9,d, y"*'+ 4g"0,0; Y"*+ 4g*'9,0, " miissen in diesem Fall wegen des
komplizierteren Variationsverfahrens (Spurbedingung) eingefiihrt werden. Die
letzten 5 Glieder der Erweiterung sind hinsichtlich ; dquivalent zu

2g%9,9,07! + 810,90,y —1ghd,d, Y.
Man fiihrt nun das Hilfsfeld ¢! ein durch
9,0,y =m? @' @
Damit wird Gleichung (1) zu
(O +m)Y™ =010,y — 340,y — 910, Y™™ + 4g*2,0,Y ™ + 470, 0, Y™
+1gk 3,8,y + 3 mPgk ol + 2migi ok _%ngkl(pi —0.

Fiir den das Feld ¥/ enthaltenden Teil dieser Gleichung kann man die Abkiirzung
(Hy)* einfiihren. Sie sicht dann so aus:

(Hl,[l)ikl + %ngikqgl -l-%ng”(pk—%ngk](pi:o.
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Die Substitution
Wikl = ikl _ 2 gkl _ 2gilgk + gkl

fiihrt dan zu den Gleichungen

0,097 = R0+ m?) o' + 3212, 47, | @
(Hl//)"d ki %aiak(pl + %aialqok_ %akaI(Di +gik(—%|:}(pl+ —%alar(p’)
+8"(-3000* + §9%8,0") + g4 (+ 400" - §2'2,0") =0. O

Das Verhiltnis von 3'd%¢? zu g*[Je! soll wegen der Nebenbedingungen beim Vari-
ationsverfahren —6, das Verhiltnis von g*[Jo! zu g#%8'9,¢" soll § betragen. Darum
ersetzt man

%(siaiakqol + %aialfpk _ gisakal(pi
durch den hinsichtlich 9; 4quivalenten Ausdruck
38 gik[p! + 3 gl ok — 218319, o7 — 21 gilgkd, .

Beachtet man ferner, daB (4[(J¢‘ — % 9'0,¢") hinsichtlich 9; dquivalent ist zu (—&[Jo’ —
190,07, so erhilt man

(HY)* + 240705 p' + 0'0'p* + 0%3' ') + gk (— A o' — % 28'8,0")

+g" (- 5 0e* — %0%0,0") +g¥(— 5 0e' — 11970, ¢") =0. (1)
Fiihrt man nun das skalare Hilfsfeld y ein durch
0rp" =my, 3

erweitert man Gleichung (1) um
_Zﬁggikalarq,r_f_sgilakarqor_'_ fggklaia,(pr
+a%ngikalx_i_%ngilakx_Zagngklaix
und substituiert schlieBlich
'J,ikl:lllikl'_nggika‘lx__i%_gilakx+ ijs_gklaix’
so erhalt man
(Hlﬁ)ikl i %(aiakgot +aial¢k+akal(pi)+gik(_ %D(oi - 48_salaf(P')

+g" (= 00"  — £0%0,0") + g (— ZDo' — £ 0'0,¢")

£ %aiakalx _ Z;ggikljalx_ ZLSg” Dakx_ & gkl Daixz(), (I)
0,0, ™ =(30+m)e'+39'0, 0"+ 10"y, 2

0,0" =m?y. (3)
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Die Substitution ¢@!/= ¢/ —}d'y 1aBt y aus Gleichung (1) ganz verschwinden. Glei-
chungen (2) und (3) werden zu

2,0,y =(30+m) o'+ £0'0,0" — Hm?d'y, (@)
o, 0" =G0 +m)y. ©)

Durch die Substitution ¢ = —3¢’ und y = 5y’ kdnnen etwas bequemere Koeffizienten
erhalten werden, und man hat endlich

(D +m2)lﬁikl _ (aiarll]rk! + aka,l,[/r”-i- alarl/,rik ~-}gika,asl/I'SI
_%gilarasll,rsk _%gklar aswm')_“ %(aiak(p’ +aial¢,k +akalcpi) '
+4g%G00' +0'0,07) + $8"G0e* + %0, 97)

+ $g430¢" +9'9,¢7) =0, | (B.1)
2.0,y + $G 0 +m)o' +42'9,¢" +4m* 3! =0, (B2
2,0" +2G0+mH) x=0. (B3I

Die zugehorige Lagrange-Dichte ist
L=m*Y i Y™ — 0, Y, 0 Y™ + 30"y Jy 0,y
+40 Y0 Q' + 0,010, ¥™) —10-m* i + 30,0;0 ¢’
+407010,0° —m¥@1d'x + 9, x @' ) +2-m* "y —4m?9,x"0"y.  (B.4)

Bei der Variation muBl die Symmetrie von ¢*/ und das Verschwinden der Spur als
Nebenbedingung beriicksichtigt werden.

Von den Eigenschaften des Gleichungssystems kann man sich nachtriglich noch
einmal iiberzeugen:

Anwendung von d; auf (B.l) gibt
m20, Ykl — 29k, 0,y — %0'9,0, Y™k + 4g*'9,9,0, ™
— $0%0'9, 9" — 5 Ooke! — 3 00" p* + 58X 10, 9" =0.
Man ersetzt 9,0;y"'aus Gleichung (B.2) und erhalt
0, Y™ + 39kp! + 50lp* — $gX0, 0" +10%0'y — 12X Ox=0. (*)

Dann wendet man g, auf Gleichung (*) an, ersetzt 9,0,%"%! und d,¢" durch Gleichung
(B.2) und (B.3) und gelangt schlieBlich zu

! +10'y=0. (%)

Anwendung von 0, auf Gleichung (*#) gibt 9,¢" = —3[]x. Damit folgt nun aus (B.3),
daB y=0.

Wegen (*#) ist dann auch ¢/=0, wegen (%) ist o l,b”" 0, und (B.1) wird zur
Klein-Gordon-Gleichung. |
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4. Allgemeines Gleichungssystem zu ganzzahligem Spin f

Sei f eine ganze Zahl gréBer als 1 und yv'2-irein symmetrischer Tensor der Stufe
/. Die Hilfsfelder y»+1n+2--ir seien symmetrische Tensoren der Stufe (f— n) fiir n =2,
., f. Die Spuren aller betrachteten Felder seien gleich Null. Die Tensorindizes ik

nehmen die Werte 0, 1,2und 3anfiirk =1, 2, ..., f. Dann lassen sich aus der Lagrange-
Dichte

L=y, Wi — 3, Wy, @ iuds 4 Ol 3, Yiis

n=2

S . .
+4 3 (-1)"-m*D-pl (f) A iy, O Il £ 0y AT )
n

+a, a; x* oy ‘u+1 dr — b, mzx "n+1 iy

nint1---if ninyi---iy

+(f-—n)c”a‘ "'r‘”z a!. xs'u+2 'f}

Gleichungen fiir ein freies Teilchen mit der Mass 7 und dem Spin fableiten. Beim Vari-

ieren miissen als Nebenbedingungen das Verschwinden aller Spuren und die Symmetrie
der Tensorfelder beriicksichtigt werden. Die Gleichungen lauten

£ S g g
(D + mZ).’II il"‘if —_ Z alk ai wil’il"'ik—lik'fl"'if — z alk a!t X;l"'lk—llk'i'l"'il—lll'i"l""f

k=1 I>k=1
1 S
+ 7 Z giki[ = ai ai lpil'isil"‘ik—lik+l"'i[—lil-i-l"‘if + _}Dxi-l...ik_ll'k_'_l...l.!__ll.l+1...if
r 3
I>k=1
L Bpl g oeely_qd i1 41, i
i wielgica suolfp suelj
+ z 6‘"3.-,)(2" u—1tut 1o dg—1tk+1-f-1t1410 0y
u=1
uxk,l
Z ‘a x'r’sh B TR S LS L U P  S U RS T Y =0 (1)
2(f ~ 1 ’
v>u=1
u,v+k,l

und

aiﬂ x::ji'.l-..if + (an D + bn m2) x:;H_l...lf + c” Z alk airx:!rln+1...lk_1lk+l...lf
k=n+1

P
_En g g, 9, y st de-tierrditien iy 4 o ‘n+1 “fk-1ik+10iy
= g9, 0, x5 m? Z X,
I> ket 1 k=n+1 5

Z gl'ma x'r'n+1 S SeUSS T e URS TR T | firn=2,3,...,f1. (n)

I>k=n+1

Dabei ist yp s = 9, Y'r"ir und y,, =0.
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Die Konstanten sind rekursiv gegeben durch

2f—1 (f—n+2)2f—n+1)

“EmY T ef—m+ @ —2m+3)
e B
Cn—m a, firn=23,...,

2m—-1D)2f-2n+3)2f-n+2) 1
n—2)Q2f—2n+2)(2f—n+3) " buy
Insbesondere ist ¢r= 0.

Es ist zu beachten,daBl Ausdriicke wie 9; x “und @, 9;, ;" sinnlos sind und in den

Gleichungen nicht auftreten. So kommt z.B. Glelchung (1) erst fiir Spin > 3 in voller
Lénge vor.

fiirn > 2.

n=

Beweis

Zuerst wird eine kiirzere Schreibweise eingefiihrt. Sei y: = yir-ir= @ Sei
allgemem @r: = @j+1+r ein beliebiger symmetrischer Tensor der Stufe (f— k) fiir
k=0,1, ..., f. Dann definiert man die Operatoren P, S und g durch

f
. — i | PR PRRY (T |
P(Pk- - z alz(pkk t=ihiegeely
I=k

Spg:= ai.+1¢,i*+‘i*+z"'i’ k<f),

S ;
¥ pdy i yeolptlpp1onidg—qlsgqee-d
Q.= z g”‘P;f‘ r—tlrt1-eds—1lsp1-ly

s>p=k—1

Da die Operationen wieder symmetrische Tensoren ergeben, konnen sie beliebig
hintereinander ausgefiihrt werden. Dafiir gelten offensichtlich die Regeln Pgoi = gPox,

SPoy = @ + {PS@},
SP2@, =2[0P¢ + {P*S¢i},
Sgoy = Poy + {gSoi}.

Die eingeklammerten Ausdriicke sind fortzulassen falls k = £, also fiir skalares ¢.
Der Beweis fiir das Gleichungssystem besteht darin, daB man zeigt, daB alle Hilfs-
felder verschwinden und y, = Sy =0. Mit Gleichung (1) erhalt man dann ([J+m?)y =0.
Zunéchst wendet man den Operator S auf Gleichung (1) an:

1 1
(O+m») Sy — OSY — PS%y — [Py, — 3PSy, + ?PS?'l,I/+ ?gs3w

1 1 1 1
+ —[P —g[S —P%S — S —gPS?
2fD X2+ 2ng X2+ I Xz"‘ng X2+fg > “ X2

1 . 1
. ', s, s P 22835, =0.
FG-1 BT g8 2f(f 2o-D & F
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Mit Hilfe der Gleichung (2) ersetzt man

(f-1) 1
— PSz _ S3
7 w+fg ¥
durch
(ff )'(a2|:|+b2m2)PX2+ (f ) 'CZ(PZSXZ—f?ngSZXZ)
=] 1 1
+(ff ),mz(sza_ﬁgPSx3)_7g[(a2D+b2m2)sz

1 1
+02(DSX2 + PS2 y, — JT_:T)PSZM_ },Tng3 Xz)

1 1
+ m? 4+ PSy,— ——PSy,— —— 9852 .
(DXa X3 =2 X3 f—2g Xs)}

Beachtet man, daB ¢, =(f— 2)/[2(f— 1)]. und b, =[f(2f— D]/[2(f— 1)*], so sieht
man leicht, daB von der Gleichung ein groBer Teil wegfillt. Es bleibt

Sy + a, Py +(f—1)-sz S - gSy l-g[]x
- 27" R 3
2 2 f 3 f—l f
2 1 5 il

—?gPSx3+f(f_2)-g S*x3=0. (1)

Allgemein gilt
ap
Xn+an+1PXn+l +(f_ n)ynPZXn+2 - fjil : gSXn—H —’ynDXn-H
Va -
_ZyHgPan_}_z-{- m-g -S xn+2=0 (n*)

mit yp,=2/[n(2f — n+ 1)].

Das beweist man durch Induktion: Induktionsanfang ist Gleichung (1*). Es sei
nun Gleichung (n*) fiir ein bestimmtes #» schon bewiesen. Anwendung von S auf (n#)
gibt mit Hilfe von Gleichung (n + 1)

1

mgS21n+l)

—Q 1 X n1 — b s m? Xnt1 — Cpii (PSXnJrl -

-—mz(Px,,+2— ‘gSXn+2)+an+1DXn+1 + @1 PSY 1

1
f—-n—1

an
+2(f =) yaOPY w2 + (f = 1) yn P Stnrz — f_+; + PSY i1
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Ant1
f-n 8% X1 = YnPOXni2 — ¥n8SOXni2 — 2V nP* Sknsa
2 Vn 2
—2y,8008Xnt2 — 2V, 8PS* Y py2 + R  PgS? A nta
Yn 4 3
+ ——— g(PS? X nt2 + 85> ns2) =0.
f—n-1

Jetzt ersetzt man ¢ PSy, . und —[¢/(f — n — 1)1gS? y,,+1 mit Hilfe der Gleichung (n + 2).
Dabei ist

_f-n-1 3 _(f—n—l)(f—n+1)_a
T T on T O T NG — 2+ 1)

t

Dann sieht man nach einfachen Rechnungen unter Benutzung der Rekursionsformeln,

daB ein groBer Teil der Gleichung fortfallt. Nach Division durch b, erhilt man schlieB-
lich

14 t-b,ps t 14 t-busa
+______.P n +-—-'P2 i — = S n
T AR e T e Dby
t 2t

— . _ . oP
F—n=Dbm 2 = G g,y 8K
t
F—n—D(—n—2bm

Mit den Rekursionsformeln fiir a, und b, zeigt man leicht, daB

1 "828% Y py3 =0.

1+1b,, und B t
I = =1 bt

Also gilt auch Gleichung (n + 1%), und der Induktionsbeweis ist fertig.

Fiirn=f-3, f— 2, f— 1 tritt die Gleichung (n*) nicht mehr in voller Lange auf.
Aufgrund des Gleichungssystems und der Regeln fiir die Operation S kommen keine
Glieder gz 4 Syrund S?y,; darin vor. Insbesondere lautet Gleichung (f— 1%):
Xs—1+ arPy,= 0. Daraus und aus Gleichung (f) folgt schlieBlich y,= 0.

Wegen der Struktur der Gleichungen (n*) erhdlt man nuny, =0, xr2=0, ...,
=Sy =0. Q.E.D.

Apir =
b,
+1

Zusatz

Variiert man die angegebene Lagrange-Dichte nur unter der Nebenbedingung
der Symmetrie der Tensorfelder, 148t man also die Spurbedingung auBer Acht, so
erhilt man das Gleichungssystem

(O+m?)y —PSYy —4P*y, =0, ¢y)
Stpg + @ O+b,m) x, +¢cn PSSty +m2Py, =0 firn=2,3,...,f (n)

Hierbei ist y; = SY, x1=0, ¢r=0.
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Die Konstanten seien rekursiv gegeben durch

2
by=1, a,==-b, firn=2,3,....f,
n

_nr-1) 1

== . firn=3,4,...,/,
=2 b ur n £

1
Cn=—"b, firn=2,3,...,f—1.
n
Dann folgt aus diesem Gleichungssystem y;, =0 fiir k=1, 2, ,f
Um das einzusehen, beweist man dhnlich wie oben durch Induktion die Giiltigkeit
der Gleichungen (n*): '

1
x,,+a,,+,_Px,,+1 + ;PZXn+2 =0.

Nimmt man nun die Spurbedingung hinzu, etwa durch die Definition y%r= yjris-s,
so beschreibt das Gleichungssystem ein freies Teilchen mit dem Spin f. Es eignet sich
jedoch nicht zur Einfithrung einer Wechselwirkung, da hier nicht alles aus dem Varia-
tionsprinzip abgeleitet wird, die Spurbedingung namlich erst nach Ausfiihrung der
Variation hinzugenommen wird.

5. Spinoren

1. Allgemeines
0-1

1 0) verwendet mit «, f = 1,2. Sein Inverses ist

Es wird der metrische Spinor sap=(
gB= (—(I) (1)) Damit lassen sich die Spinorindizes herauf- und herunterziehen:
£«0aP = aa, e*Bag = a* Fiir das Skalarprodukt gilt

a%a, =a*e,gaf =—ep,a%*af =—agaf.

Jedem Vierervektor 1aBt sich mit Hilfe der Matrizen agﬁ ein Spinor zuordnen. k lauft
von 0 bis 3.
Diese Matrizen sind folgendermaBen definiert:

o (10 L (01 , [0 —i , (1o
%8=\o 1]° %#7\1 o) T#7\; o) ¥ \o )

Man hat dann die Zuordnung X:g= xx0%s.
Insbesondere kann man anstelle des Vierervektors auch den Ableitungsoperator
dxeinsetzen. Es gilt dann 23 = 0, 0%3.
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Definiert man p,g = (1/i) 9sp, so folgt:

’ la 1 ao+ aa al =t iaz 1 ail aiz
Psp= <08 =+ . =
1 1 31 ~} Iaz ao - a3 1 ail aéz

3'*B=86"53,35=( 031 32’2)’ aﬁa,:(an —311),
—0i; —0i, 052 —0iz

. 8, —a;
aﬁa — aﬂpaa - 22 12 ,
? (—321 0i,

o pPY = (-1
paﬁp ( )(al +iaz 30_33 —31 _iaz ao"*'aa

Oo+0; 0 ——iaz)( 0o—0; —0,+ iaz) =—6ZD
mit
[ =9,0% = (30)* — (31)* — (32)* — (25)*-
Also ist
pigp® =—pfp}=-s.00.
Ferner gilt

pappg = 84 L, P&ppﬁa =-201.

2. Eine wichtige Relation

Gesucht wird eine Beziehung zwischen den Ausdriicken pﬁacg‘,, und p“"“c.é,,. cé‘y sei
ein beliebiger Spinor. Man bildet

esgpPoct, =picl,
und

€4 do ﬁ  _pOaT

P Coy =—PiCoy.

Dann folgt

S&B(pﬂ"cfy —p"""cfy) =2plcl,.
Setzt man

g# =(phoct —p=ch),
so hat man fiir die Komponenten

git= g.}i,i =0 (1)
und

—gy +83 =2picq,.
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Die letzte Gleichung besagt aber

(p'oct, —p*ecl,) =piel, = g7 =g} @
Die Komponentengleichungen (1) und (2) kann man zusammenfassen zu
gif=—eibpgcs,
oder
poch —phock —gbpret (R)
Eine wichtige Folgerung erhélt man durch die Anwendung von pggauf (R):
Pg; P* Coy+ LI, =PgPics,. ®)

Diese Gleichung gilt natiirlich fiir Spinoren beliebiger Stufe.
Auch gilt die zu (R) gespiegelte Gleichung

Paidy —pg,dY =e,gpid7.

6. Allgemeines Gleichungssystem zu halbzahligem Spin f

Firk=1,..,n—1undnrn=1,2,... seien

g Pt -Pn-y g#k+1---ﬂ»u—1 ~ Pkt 100fin—1

VieWp 2 O kiwpiq..Vy, ? gk;vk“...v,,

p i hﬂkﬂ"-ﬂn Eﬁkﬂ---ﬂn
Vi---Vp_1? KiVig1.oVn-1? kivggqe-Vn—1

Spinorfelder, die beziiglich Vertauschung punktierter Indizes unter sich und unpunk-
tierter Indizes unter sich symmetrisch sind. Diese Indizes p;, vs nehmen die Werte 1

oder2anfiirs = 1,...,n. Mit * werden die konjugiert-komplexen Felder gekennzeichnet.
Aus der Lagrange- Dichte

— . ‘vl...v,, p'l'"pll-l *vl,..v,l_l ’11...#"
L=m (b Pereefin_q a"l""’n + aﬂ'l'-'ﬂn b Vl-“vn-l)

b 179N 7 . Pi-ofibn *P1eeVpo1 p'n”n lj'l"'aa'n—l
- (b p,l...ﬂ.:_l pv,,p.,, b Vi-wVpo1 + ap.l...p" P avl...v,, )

.. iy 5 Pzeeefin-y *V1eVnot By T, h2eefim
- (n - 1)(b ﬂl...ﬂ:_lpv:gl;vz...v" + a,u.l...,l: p vy hl;vz...v,,_]

"'"vz...v,, Vi "."1"','."!!—1 N‘Vz...l/n._]_ Vi '.1.1...'&"
+ hl;fj"z---[.lm_lpﬂ-l avl...v,, + gl;ﬂz---ﬂu p’ll bvl...v,,_l

+ "f n—12n—-27%...n—k+1)2(m—k)-{—n-a, -mh;, g +grh«)
k=1

(11— k) (i Py i + M Doy i+ B i + 82 PP 81 + i PR
+&x g+ ne By m(ﬁ,’: 25+ §i5k) +(n—k) ﬁk(ﬁzl’u,,a,, by
+ZipP g + (= k) (n—k — D) (R p gy + R B

+ §1:P&,f:fhk+1 + g-'i:Pf,T Rirr + Rir1Ppett &r + zl:+1p;’{;ill gk

+ &1 Pt e+ & PR i)}
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lassen sich Feldgleichungen fiir ein freies Elementarteilchen mit Spin f= (2n — 1)/2
und Masse m durch Variation unter Symmetriebedingung ableiten:

n-m-a— pb—pg, =0, )]
n-m-b— pa—ph, =0, , (ID)
—pia+ py(phy +n-m-§) + pg, + pg, =0, (1.1)
—pgb + By(Bg, + n-m-hy) + phy + ph, =0 (1.2)
und fiirk=2,3,...,n—1: |
PSEi 1+ arPhy + ax(Phy —n-mgy) =0, (k.1)
PEhyo1 + kBt ax(Ppgr — n-mhy) =0, | | (k.2)
P2 &x1 + i phi + Be(Bhy + n-mgy) + pgiss + pErs1 =0, (k.3)
PLhiot + Py + Bu(Bgx +n-mhy) + phis1 + phis1 =0. (k.4)

In der Lagrange-Dichte wurden nach dem Summenzeichen nur noch die wichtigsten
Indizes hingeschrieben. Fiir die Gleichungen wurde die weiter unten definierte Schreib-
weise gewahlt.

Wie iiblich gilt die Summationsvorschrift, daB iiber gleiche obere und untere
Indizes zu summieren ist.

Zum Glelchungssystem ist noch zu bemerken, daB es fiir n =1, 2, ... keine Hilfs-
felder g,, &., h. und A, enthilt. Das ist auch aus der Lagrange- chhte erswhtlich.

Die Zahlenfaktoren oy, fx hingen auBer von k auch von n ab:

ﬁ0=1: a1=03.
1 _ m—k+1PQ2n-k)k
ﬁk=Xk'm mit x, = =R firk=1,2,...,
(n—k+1)?
o =————+B;,, fir k=2,3,..
¥ n—haap (E2 AU

Ferner ist zu bemerken, dabB fiir £ > 1 jeweils 2 Hilfsfelder gleichen Transformations-
verhaltens auftreten, die durch ~ unterschieden werden. Fiir k£ = 1 tritt nur je ein Hilfs-
feld auf, nimlich &, und #,, wahrend g, und A, nicht vorkommen. Fiir n = 2 ist g, das
Feld c, &, das Feld d der Fierz-Pauli-Gleichung [3]. '

Vor der Durchfiihrung des Beweises fiir das Gleichungssystem sei noch eine
abkiirzende Schreibweise eingefiihrt durch

a: _aﬂ’l .p'n— b _b‘“l F’H

Vis-¥g 2 VieVp—1?

gl = gf"k-i-l"'f"n-—l hk h Eri1---ftn

kViyeVp 2 KVitpe-¥n-1?

T TS L A 4 ST
gk gk Wkt1reeVn hk'_hk;Vk+1---:n_1’ k

=1,2,...
fiir die Felder.
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Seien ferner

Pkt 10+ Pn—1 o — f ki1t vs _
eri=eiy oy und frr=fiotn o firk=0,1,...

beliebige symmetrische Spinorfelder, dann sei der Operator pg definiert durch

o, . Vi1 o B+ 10Pn—1
p"" ek' p"‘k'i-l ek Vt+1.--v,| ’

G . Vit1 £ fk1eefin
P»rfk-_pp.k“ kiVey1---Vn—1?

der Operator p durch
s=n,r=n—1
pei= 3 plrefttribmiiai hierflirk=1,2,,
s,r=k
s=n,r=n—1
pf;‘: = Zk p Vx '?;11’:::::’:21’
5,r=

der Operator p sei schlieBlich definiert durch

pek z pp-m P 1eeefor—1fb41-- Pn

ki1 Vn
I=k+1
< fos 0o f
. k+ 1+~ fn
Z pvl#t fkwk+1---1’t—1v1+1---"n :
I=k+1
Wie man leicht sieht, gelten fiir diese Operatoren folgende Regeln:

p kommutiert mit p und mit pg. ) (A.1)

Bei zusammengesetzten Operationen ist zu beachten, daB pey, pe;, p?e; der Reihe nach
dasselbe Transformationsverhalten haben wie £, ¢_,, €., Also operiert p auf pe,
wie auf £, auf pe, wie auf e, usw.

Es gilt

piper=0Qn—2k+1)ey+pple, firk<n—1
und
pPipe,_1=30e,, | (A.2)

und dasselbe mit f; statt e;.

Mit der im Abschnitt iiber Spinorrechnung hergeleiteten Gleichung (R) erhilt
man

pper=—(n—k)* ey +pprie. firk<n—1
und

pPhen_1=—eny (A.3)
und dasselbe mit f; statt e;.
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Beim Beweis fiir das Gleichungssystem wird folgende Gleichung gebraucht:

(ﬁk - k)
‘m

(-(n=k)*0O+pr)és
firk<n-—1

° o7 1
—oy Phy — BrPh = n—PP(hk+: + hk+1) +

und

] . o7 ( n—1— an— i
'"O!n—lphn—l — But Phpy=— B—l—l) UIg 1. (B)
nm:

Sie entsteht durch Subtraktion der Gleichung (k.2) von (k.4) und Anwendung von p
unter Beriicksichtigung von (A.2). Eine entsprcchende Gleichung 148t sich aus (k.1) und
(k.3) herleiten.

Beweis fiir das Gleichungssystem

Es wird gezeigt, daB Hilfsfelder g,, &, A, hx verschwinden.
, Anwendung von p? auf Gleichung (I) gibt n-mpZa — ppZb — p2g, =0. pia und
p3b werden hieraus mit Gleichung (1.1) und (1.2) eliminiert:

n-m-B,(ph; +n-mg,) + n-mpg, + n-mpg,
— B(PPg: + n'mpozl) —pph, — Pﬁilz —pipg=0.
Nun unterscheidet man die Fillen =2 und n > 2.

1. Fall:n=2

In diesem Fall kommt in der letzten Gleichung g,, &,, #,, h, garnicht vor, ist
Bpg, =—0&,, pIpg, =3[1g, und B, = 3. So folgt g, =0. Entsprechend folgert man,
ausgehend von Gleichung (II), daB #, = 0. Damit ist der Beweis fiir n = 2, d.h. fiir die
Gleichung zum Spin $ (Fierz-Pauli-Gleichung), fertig.

2. Fall: n> 2
Dann wird die obige Gleichung mittels (A.2) und (A.3) zu
nt-m?-By g1 +n-m-pgy — (B, + 1)pp3 gy — pp(hy + h;) + n-m-pg, =0.

Nunist f; + 1 = 1/a,, und wegen Gleichung (2.1) ist die Summe der vier letzten Glieder
gleich Null. Daher folgt

n-m-p, & +pg,=0. (1%)
Allgemein gilt flirk <n—1
n-m-By gx + pgs1=0. (k%)

Das 148t sich durch Induktion beweisen. Induktionsanfang ist Gleichung (1.*). Sei also
(k — 1*) schon bewiesen, es gelte also

nm-B;_1-8x_1+pg=0.
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Hierauf wendet man p? an:
5 1 o ~
peg  +————([2n—2k+1]-00+ppi) & =0.
nm-fi_y

Mit Gleichung (k.3) wird pZg, _,ersetzt:
—ay Phy — B Py —n-m- Bi &k — Pgit1 — PErs
2m—k)+1 _ _ 1 .
+ ————— &+ ——— pri&r=0.
nm-Bi_ n-m-Bi_y

Die beiden ersten Glieder der letzten Gleichung werden durch Gleichung (B)
ersetzt:

1 - 1 on (n—k) .
—pPhir + b))+ — B — ) ppi i — By — o) Lg
nm nm nm

8. _ a§+2(n—k)+1D~_0
nm-pr8&x —P8k+1 — P8k+1 P - PP+ Ek " g .
'Man berechnet nun '
(n—k+1)>? 2—k)+1

Bi1(Bi — ax) = xx — By ) = X3 — m R _(”_—k)z_

Damit entfallt [Jg, aus der letzten Gleichung. Ferner berechnet man

1 1 (n—k+1)2_ 1
Bi-1 Bt (n—k)? ak+l.

Damit wird obige Gleichung schlieBlich zu

Br —ax) +

° 3 1 ~ ~ o~
PP(pyr + hyyq) —n-m-pgyiq + a—Pngk —n?m? B8k —n-mpgii =0.
K+l

Die Summe der ersten vier Glieder ist Null wegen Gleichung (k 4+ 1.1). Damit hat man
dann n-m- fi gy + pg,,,= 0 gezeigt, und der Induktionsbeweis fiir Gleichung (k) mit
k <n—1 ist fertig.

Jetzt beweist man, daB g, _,=0. Man wendet pZ auf Gleichung (» — 2*) an und
erhalt

ngn—z'i' '3D§,,ﬁ1=0.

nm-B,,
Mit Gleichung (n — 1.3) wird pgg,_, ersetzt:

3

—(0£,-1=0.
n'm'ﬂn-—ZDgn :

—0py Phpy — ﬁn-lﬁﬁn—l —nmf, 18,1+
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Hier werden nun die ersten beiden Glieder durch Gleichung (B) ersetzt:

1 . 3 .
- —(ﬁn—l = an—l) Clgs i == n'mﬁn_lgn—x o [1g.—1 =0.
n-m

n-m: ﬂ n—2
Nun ist 8, _5(By—1 — %,—y) = 3, und 1§, fillt aus der Gleichung heraus. Damit folgt
g~ n—-1 = 0.

Wegen (k*) sind dann alle g, =0 fiir k = 1, 2, .... Ganz entsprechend erhilt man
hy = 0 fiir alle k, wenn man von Gleichung (II) ausgeht.

Nun folgt aus Gleichung (n — 1.3) ph,_;=0, und damit aus Gleichung (n —1.1)
gn—1=0, damit aus Gleichung (n — 2.3) ph,_,= 0, und damit aus (n — 2.1) g,_,= 0 usw.
Man hat also gi = O fiir alle k. Gleichung (k.2) liefert dann A, = O fiir alle k. Q.E.D.

7. Andere Formen des Gleichungssystems zu halbzahligem Spin f

Das bewiesene Gleichungssystem 148t sich leicht auf andere Formen transformieren,
die sich durch die Art der Verkniipfung der Felder zu invarianten Ausdriicken der
Lagrange-Dichte unterscheiden. Bei den unten verwendeten Transformationen bleiben
offensichtlich die bewiesenen Eigenschaften des Gleichungssystems bestehen.

Die a-B-Form

Ausgangspunkt ist also das oben bewiesene Gleichungssystem zum Spin f=
(2n —1)/2, wobein =1, 2, ..., das hier nach seinen Zahlenfaktoren ‘a-f-Form’ genannt
werden moge. Es sei hier noch einmal in Kurzform dargestellt:

n'm-a— pb—pg =0, | @D
. 2n—1 - . .

—pia+ (n_l)z(phl+n-m-gl)+pgz+pg2=0, (1.1)

pgfk_l+akﬁl~zk+ak(ﬁhk—n-m-gk)=0, (kD)

PI&xo1 + oxPhy+ Bu(Phi + n-mgy) + pgriy + pErs1 =0 - (k.3)

firk=2,3,....,.n—1.Esistg,=gn=hp=hn=0.
Die Gleichungen (II), (1.2), (k.2) und (k.4) sind hieraus zu erhalten, wenn man
iiberall die Rollen von @ und b, 4, und g, g und %; miteinander vertauscht. Es war

_(n—k+1) _
= m—k+2) Br—2
(n—k +1)2Q2n—k)k

mit x, = Bl = |y 2 o5
Br—1 “ (n — k)*-n?

Bo=1, o,=0, o furk=2,3,...,

by =xx-

Das Transformationspaket

Mit dieser Bezeichnung sei die Summe der folgenden Transformationsschritte
gemeint.

1. Transformation:

gk=gé—§k,hk=h,;—ﬁk,4k>2



~
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Damit verschwindet g, aus (k — 1.3), bzw. aus (1.1) fiir k = 2. & verschwindet aus
(k — 1.4), bzw. aus (1.2) fiir £ = 2. Nach Ausfiihrung der Transformation ergibt (k.1) —

cxk/ﬁk-(k.3):

nm-ag P ok

g — axphy — (Pgr+1+ P8rt+1) =0,

a~ o
&x_1+ g phy —
Di8k—1 1 &Pl Br— ax | Br—

und (k.3) — (k.1):

(B — ax) Pl + n-m(By — ax) & + n-m-ar gy + (Pgar1 + PErt1) =0.

Entsprechendes gilt fiir die Gleichungen (k.2) und (k.4). An den transformierten GréBen
g und A, wurde der Strich ' wieder fortgelassen. Das gilt auch fiir die folgenden Trans-
formationen.

2. Transformation: §x = &r — zx* g«, Ax = i — zi* by mit 2y = o/ (Br — o)

AuBer Veranderungen in den Gleichungen (k.1) bis (k.4) kommt nun in (k + 1.1)
und (k + 1.3) der Ausdruck —z;p2g:, und in (k + 1.2) und (k + 1.4) der Ausdruck
—z,. p3hy hinein.

3. Transformation: gy = —zx" Zx, Ax = —zi Ay
Es folgen weitere Verdnderungen in (k.1) bis (k.4).

(k + 1.1) und (k + 1.3) beginnen nun mit —z, pJ (gx + £x)»
(k + 1.2) und (k + 1.4) beginnen nun mit —z, p%(hx + hi).
Weitere Transformationen:

1 :
gk-{-iz—'_"g;‘_;.i mlti=l,3,5,...undk+i€n—1.
Zk

Ebenso werden auch gy, Ay, M., transformiert.

8rij =—Zk'8kyy Mitj=2,46,...undk+j<n—1

Ebenso werden &,,;, Ak, hxt; transformiert.

Neues Gleichungssystem

Nach Anwendung eines solchen Transformationspaketes auf die Ausgangs-
gleichung fiir ein fest gewéhltes k erhilt man das neue Gleichungssystem

n-m-a— pb—pg, =0, @

2n—1
(n—1)

—pia+ (f’ill‘f‘"'m'gl)'{"sz +pg,=0 (1.1
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usw. wie bisher. Erst Gleichung (k — 1.3) dndert sich:

P38k + %us Bhiy + Biot(Bhiy + nom-giy) + pgi =0, (k- 1.3)
P28y + ok zi - Phic+ B zi(Bhi — n-m-g) + pgis1 + Péry1 =0, (k.1)
oy 2z Bh + apze(Bhy + nom ) + pgrs1 + P& =0, (k.3)
P&+ &)+ thr1 Bhirs + @iyt (Bhips —n-m-gyi1) =0, (k+1.1)
P78+ 8i)+ thr1 Phiys + ﬁl'c+l(f75k+l +n-m-gryy) +PEit2 + PEri2 =0,
(k+1.3)
Pigin+ “;c+2ﬁ’~’k+2 + 0py2 (Phryz —n-m-gpi2)=0 (k+2.1)

usw. wie bisher, aber nun mit neuen Konstanten.
Die neuen Konstanten sind

O gri , - .
a}c+,-=k—+;, ﬁk+,=(ﬁzk—;; firi=1,3,5...undk+i<n—1,
k

(z&

d;ﬁ_j =Z]25‘dk+j, ﬂ;c+j=zl%'ﬁk+j ful’1=2,4, ; — undk-l-JSn—l

Anzahl der Formen

Man hat durch das Transformationsverfahren nun eine Anzahl verschiedener
Formen des Gleichungssystems gefunden (und bewiesen!), die sich durch die verschie-
den moglichen Verkniipfungen der Hilfsfelder untereinander unterscheiden. Neben
der Ausgangsleichung hat man also (# — 2) verschiedene Formen, die man nach An-

wendung des Transformationspaketes fiir nur ein k (k =2, 3, ..., n — 1) erhilt, (n ; 2)

verschiedene Formen, die man nach Anwendung des Transformationspaketes fiir je

n—2
: . ; -2
zwei verschiedene k erhilt, usw. Insgesamt hat man also Z (n ] ) = 2”2 Formen.
=0

Die y-6-Form
Dabei zeichnen sich das Ausgangsgleichungssystem und das letzte Gleichungs-
system, das man nach Anwendung der Transformationen fiir alle k=2,3, ..., n—1

bekommt, durch eine besonders gleichformige Struktur aus. Dieses letzte Gleichungs-
system lautet:

n'm-a— pb—pg, =0, | D
-1 . |

—pia+ (Bh1 + n-m-§,)+ pg, =0, (1.1)
(n—1)>

PI(gron +Er1)+ Vs - Phy + i (Phy —n-m-g}) + P81 =0, (k.1)

'Ykﬁhk'i')?k'(ﬁi’k +nm-gy)+pgii1 =0 : (k.3)
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fir k=2,3,..,n—1. Ferner ist g, =h, =g, =g, =h,= h,=0. Die Koeffizienten
Yk, Ok ergeben sich aus dem Transformationsverfahren als

Bx
Y2 = Uyt 23, 5k=—'7k,
ok
) A zZF'zZps...22 s =2, t = 3 fiir gerades k
ke S 2

zy z2 .-z} 5...z% | t=2,s=23fiir ungerades k.
Dazu berechnet man

oy _ xk_l'(n—k-}- 1)2
ﬁk—cxk —xk'(n—k+2)2—xk_1(n—k+1)2
_ xa(n—k+ 1) (n—k)? _(n—k)z-(2n—k+ DkE-1)
C@n—2k+1)(n—k+2? n2-(2n— 2k + 1) '
Man definiert

z} -kt —k+1Q2n—k+1Dk-1)
X me(n—k+22?Q2n—2k + 1) '

Zp =

Yri=

Damit erhilt man fiir die Konstanten

A Xg—1"Xkg3.-- Yk'Yk—2..- 2(n—k)+1 Ye'Vk—2 ...
’yk:—. . — = .
Z Xk2'Xgk4a4.-+ Yik—1"YVk-3-.-- (n—k) Yk—1"Yk=3 ...

(die Produktreihen gehen hier abwirts bis x; bzw. y,) und

_Bk‘y Xy (m—k+2)7? QCn—k)k-(n—k+1)?
=-L.y, = .

5 g A .
k= Xe i—k+12 ¥ Gn—k+0)Gk—1)-(—k2 '*

Natiirlich 148t sich diese ‘p-6-Form’ des Gleichungssystems auch direkt beweisen.
Man hat dann im wesentlich durch Induktion zu zeigen, daB folgende Gleichung gilt:

k-(2n —k) (g +&1) =1 Yir1 P(€rt1+ Ex41) =0 (k*)
firk=1,2,...,.n—1.

Verkniipfungsschema

Die Strukturen der verschiedenen Gleichungstypen lassen sich graphisch veran-
schaulichen: Dicke Punkte stellen die einzelnen Spinorfelder dar. Verbindungslinien
bedeuten, daB3 die durch sie verbundenen Felder in der Lagrange-Dichte zu invarianten
Gliedern zusammengefaBt sind, und zwar das eine mit dem raumgespiegelten, kon-
jugiert-komplexen des anderen und umgekehrt. (Um der Eineindeutigkeit willen muf3
man noch jedem Punkt den aus dem betreffenden Feld und seinem raumgespiegelten
gebildeten invarianten Ausdruck zuordnen.)
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Die Strukturen der Gleichungen sind dann leicht abzulesen: In der Gleichung, in
der ein bestimmtes Feld mit dem Faktor m vorkommen soll, treten die mit ihm durch
gestrichelte Linien verbundenen Felder nur in Verbindung mit dem Operator p, die mit

ithm durch ausgezogene Linien verbundenen Felder nur in Verbindung mit den Opera-
toren p oder p? auf.

Zwischenform y-b-Form
g ———m———— b
51 _______ H"I
2 - -
92 /_/_ = h2
e
/ —

N \
N

Verkniipfungsstrukturen spezieller Gleichungssysteme. In der Gleichung, die ein bestimmtes Feld
ohne Ableitungsoperator enthilt, kommen die im Diagramm mit ihm verbundenen Felder ebenfalls vor.

In Figur 1 sind auf diese Weise die a-f-Form, die y-6-Form und eine Zwischenform
(nach einmaliger Anwendung des Transformationspaketes auf die a-f-Form) darge-
stellt.

In der Gleichung, die ein bestimmtes Feld ohne Ableitungsoperator enthilt,
kommen die im Diagramm mit ihm verbundenen Felder ebenfalls vor.

8. Allgemeinere Form des Gleichungssystems fiir halbzahligen Spin

Auf das Gleichungssystem von Kap. 6, die ‘a-f-Form’, werden folgende Trans-
formationen ausgeiibt:

1. Transf.
=8k —Ar8r, hi=hi— Akhy;
2. Transf.
S =8k — Mi&k» 7’k =hi — prhi.
fiir k=2, 3, ..., n— 1 und beliebige komplexe A, und u,. Dabei bleiben offensichtlich
die bewiesenen Eigenschaften des Systems erhalten. Im Hinblick auf die Lagrange-

Dichte bilde man die Linearkombinationen (k.3") = (k.3) — Ax(k.1) und (k.1") = (k.1) —
ux(k.3") aus den transformierten Gleichungen. Entsprechendes gilt fiir die Gleichungen
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(k.2) und (k.4). LiBt man nun an allen neuen. GroBen die Striche wieder fort, dann
lautet die 2(n — 2)-parametrige Form des Gleichungssystems:

n-m-a— pb— pg =0, o
2n—1
(—1)?

(I —pe+ e A)(P78k1 — Br1 PI8x1)

—pia+ (Phl +nmg)+ (1 —pu+pa ) pga + (1 —A2)pg. =0, (1.1)

+ [k Br + (1= 2+ 204 Aie — 2pk A + i M) e P

+ (i Be — (U4 2up Ai + i AR) awl momgy + [k + pa AR) oax — pic Bidn-m- g,

+ [(1 = Ao + 204 Ak — paA3) o — i Bicd B

= B P(L = s + Hoapr Aag18iesr + [1 = A1) &a1) = 0, (k.1)
(L =2 (PF 8kt — Bic1 PI8k—1) + [Br — QAx — A% )“k]Phk+ [Bi — Ak ax]n: mg

(0= Ak + 2ph Ak — e AR) otx — s Bi Bhuc+ [(Ak + Bic AR) ek — pi Brln-mgy

+ (0 = a1 + a1 Ae118p1 + [1 — Apg118141) = 0. (k.3)

Dabei ist g, = Ay = g» = hn= gn = ko= 0. Die Gleichungen (II), (1.2), (k.2), und (k.4)
entstechen aus den oben angegebenen, wenn man der Reihe nach die Buchstaben
a, b, g, hdurch b, a, h, g ersetzt.

In diesem Gleichungssystem sind im allgemeinen alle moglichen Verkniipfungen
zwischen den einzelnen Gleichungen hergestellt. Diese Form des Systems sei hier
kurz ‘Maximalform’ genannt. Sie wird fiir unendlich viele Werte von A und u; angenom-
men und laBt sich weiter etwa durch das Verhiltnis der Koeffizienten von ph; und
n-m- g, sowie ph; und n-m- g, in (k.1) klassifizieren.

Man kann nun Bedingungen stellen, daB verschiedene dieser Verkniipfungen
aufgebrochen werden sollen. Verlangt man z.B., daB in Gleichung (k.1) kein pg;,; und
DPEr+1 mehr vorkommt, so folgt u,=0.

Fordert man, daB in (k.3) kein p(gi—1 — tx—18x_1) auftritt, gelangt man zu A, = 1.

Stelit man beide Bedingungen zugleich, so gilt u, =0 und A, =1, und es ver-
schwindet auBerdem ph, in (k.3). Hier hat man also durch zwei Bedingungen sogar drei
Verkniipfungen aufbrechen kénnen. Die Form des Gleichungssystems, bei der fiir alle
k pr=0und A, = 1 gewdhlt werden, sei hier ‘Minimalform’ genannt. Sie hat die relativ
einfachen Zahlenfaktoren o und (8, — o).

Mit diesen drei Féllen hat man schon alle Mdéglichkeiten der Auﬂockerung der
Verkniipfungen, soweit von 4, und u, abhangig, zwischen den Gleichungen (k) und
(k — 1) sowie (k + 1) erfaBBt, wenn man von den Fillen absieht, die aus den betrachteten
durch Vertauschung der Bezeichnung der Felder g, und g, sowie /; und /; hervorgehen,
und wenn man bemerkt, daB der Fall u, =0 zusammen mit der Bedingung
1 = (1 =A%) (d.h. kein p§(gx_1 — pr_18x—1) in (k.1)) nicht moglich ist.

Nimmt man in den beiden ersten Fillen fiir alle £ die Bedingung hinzu, daB in
(k.3) kein g, mehr auftreten soll, so fiihrt das im ersten Fall zur ‘a--Form’, im zweiten
bis auf Normierung zur ‘y-6-Form’ mit 4, = 1 und u, = ax/(Bx — o).
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Auf verschiedene Weise kann auch die Verkniipfung der Gleichungen (k.1) bis
(k.4) unter sich aufgelockert werden. Das soll jedoch hier nicht weiter ausgefiihrt
werden.

Zum SchluB seien noch die Verhiltnisse bei der ‘Minimalform’ und der ‘Maxi-
malform’ graphisch dargestellt (Figur 2).

Minimalform Maximalform

Formen minimaler und maximaler Verknipfung. Die einzelnen Felder sind durch dicke Punkte
dargestellt. Die mit einem bestimmten Felde durch eine Linie verbundenen Felder treten alle in der-
jenigen Gleichung auf, die durch Variation des betreffenden raumgespiegelten, konjugiert-komplexen
Feldes entsteht. Ein durch eine gepunktete Linie verbundenes Feld tritt in der Gleichung ohne Differen-
tialoperator auf,

Die einzelnen Felder sind durch dicke Punkte dargestellt. Die mit einem bestimmten
Felde durch eine Linie verbundenen Felder treten alle in derjenigen Gleichung auf, die
durch Variation des betreffenden raumgespiegelten, konjugiert-komplexen Feldes
entsteht. Ein durch eine gepunkte Linie verbundenes Feld tritt in der Gleichung ohne
Differentialoperator auf.

9. Schlussbemerkungen

Es wurde in dieser Arbeit das Einheiten-System mit ¢ =7 = 1 benutzt, wobei ¢
die Lichtgeschwindigkeit und # das Planck’sche Wirkungsquantum bedeutet.

Die hier hergeleiteten Gleichungen sind zunachst nur fiir Teilchen mit nicht ver-
schwindender Ruhmasse gedacht. Man kann allerdings nachtriglich auch m=0
zulassen und die Gleichungen, die auf diese Weise entstehen, weiter untersuchen.
Das wurde in [3] fiir die Spinwerte 3 und 2 durchgefiihrt. Dort wurde gezeigt, dal man
im letzteren Fall die Einstein’schen Gleichungen fiir ein schwaches Gravitationsfeld
erhilt.

Es sind durchaus Gleichungen der hier betrachteten Art mit einer groBeren Anzahl
an Hilfsfeldern moglich, aber es scheint, daBl die angegebenen Gleichungssysteme die
minimale Anzahl an Hilfsfeldern besitzen, solange man nicht zu Differentialgleichungen
hoéherer Ordnung iibergehen will. Das 148t sich wohl mit dem Konstruktionsverfahren
streng beweisen.



286 Reinhard Giesen H.P. A.

Die Hilfsfelder sind unbeobachtbar. Aus den Gleichungen folgt ja, daB} sie ver-
schwinden. Nach Einfiihrung einer Wechselwirkung sollten aber Gleichungen, die zum
gleichen Spin gehdren und je verschiedene Anzahlen an Hilfsfeldern enthalten, zu je
verschiedenen beobachtbaren Effekten fiihren.

Die vorliegende Arbeit ist gewissermaBen ‘ad usum avorum’ verfaBt und stiitzt
sich auf die gruppentheoretischen Aussagen von [1] und [2]. Ein Briickenschlag, der
direkt von den angegebenen Gleichungen zu der heutigen Darstellungstheorie der
inhomogenen Lorentzgruppe hiniiberfiihrt, sollte moglich und gewiBl auch lohnend
sein.

SchlieBlich méchte der Verfasser an dieser Stelle all denen, die es angeht, seinen
Dank aussprechen fiir einige Studienjahre, die er in der Schweiz verbringen durfte.
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