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Relativistische Gleichungen für Teilchen
mit beliebigem Spin

von Reinhard Giesen

Lydiastr. 6, D-43 Essen 1, Deutschland

(28. X. 74)

Abstract. Relativistic equations for particles with arbitrary spin are constructed, which admit the
introduction of interactions. The equations fulfil the conditions proposed by M. Fierz and W. Pauli in
1939.

1. Einleitung

Relativistische Gleichungen für kräftefreie Teilchen mit beliebigem Spin wurden
zuerst 1936 von Dirac [1] aufgestellt. Fierz [2] führte dann die Quantisierung dieser
Wellenfelder durch und bewies den Zusammenhang zwischen Spin und Statistik.
Gemäß der Formulierung in [2] kann ein freies Teilchen der Masse m mit ganzzahligem
Spinfdurch einen symmetrischen Tensor i/r'1,2"'/mit verschwindender Spur dargestellt
werden. Die Tensorindizes nehmen die Werte 0,1,2 oder 3 an. Dieser Tensor der Stufe
/genüge den Gleichungen

(\J+m2)il/>»'i->'=0, (1)

a/i^'i'2-'/ o. (2)

Dabei ist n di9' gik^^i mit 3,- =d/dx> und dem metrischen Tensor gik. Es ist
goo -£fu —g22 —g33 1 und gik 0 sonst für i,k 0,1, 2, 3. Wie üblich soll über
gleichnamige obere und untere Indizes summiert werden.

Ein freies Teilchen der Masse m mit halbzahligem Spin/= (2« — l)/2 für n 1, 2,
wird beschriebendurch die symmetrischen Spinoren a^V.'.'^-1 und bCyj^mit p,v 1,2.

Diese genügen den Gleichungen

" mavt...vn Pv,Hn,Dv2...vn ¦¦¦ Pvni,n°v,...vn-.i -u» w
n-mh^-^° — ni'»v" a^2-^" — — nA»"» flAi-A»-i fj (3b)

D\i ai^i-iht-i =o (4a)

njifeAi-/i» =o. (4b)

Der Spinor pv-v ist mit Hilfe des Differentialoperators 3, und der Pauli'schen
Spinmatrizen erklärt. Näheres dazu findet sich unten im Abschnitt 5.
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Fierz und Pauli [3] zeigten schon 1939, daß die Gleichungen (1) und (2) bzw. (3)
und (4) nach Einführung einer Wechselwirkung im allgemeinen nicht mehr miteinander
verträglich sind. Diese Schwierigkeit tritt schon beim Spin^ auf, wenn man eine
elektromagnetische Wechselwirkung durch die Ersetzungsvorschrift 3,- ->di+ieAt mit
dem Viererpotential Ai einführt. Als Ausweg schlugen sie dann vor, alle Gleichungen
aus einem Variationsprinzip folgen zu lassen. Dazu muß man vorübergehend gewisse
Hilfsfelder von niedrigerem Rang als dem des betrachteten Teilchenfeldes zulassen.
Aus den Eulerschen Gleichungen sollen sich dann im kräftefreien Fall die Gleichungen
(1) und (2) bzw. (3) und (4) und das Verschwinden der Hilfsfelder ableiten lassen.
Für Spin § und Spin 2 konnten solche Gleichungen mit Lagrange-Dichte angegeben
werden, und für Spin/> 2 wurde bewiesen, daß die Aufgabe lösbar sei. Anscheinend
konnten diese Gleichungen für höheren Spin bisher nicht gefunden werden. Neuerdings
hat Minkowski [4] ausgehend von den Fierz-Pauli-Gleichungen eine Theorie eines

Spin-2-Mesons entwickelt.
In der vorliegenden Arbeit wird zunächst ein Konstruktionsverfahren für

Gleichungen der genannten Eigenschaften vorgeführt. Dann werden als Hauptergebnis die
Gleichungssysteme für beliebigen ganzzahligen und halbzahligen Spin bewiesen. Es

zeigt sich, daß verschiedene Formen des Gleichungssystems möglich sind.

2. Konstruktionsverfahren und Spin-2-Gleichung

Gesucht wird für das symmetrische Tensorfeld \j/ik mit i\if 0 ein
Differentialgleichungssystem, das aus einer Lorentz-invarianten Lagrange-Dichte ableitbar ist.
Dies Gleichungssystem soll die Eigenschaft besitzen, daß aus ihm + m2)i//'k 0
und 3; if/ik 0 folgt.

Wählt man als Ausgangsgleichung

(n + m2)ij/ik-didli]/lk 0, (1)

und wendet man darauf 3/ an, so erhält man

drif/rk 0. (a)

Damit folgt aus Gleichung (1) auch

(\3 + m2)i/,lk 0. (b)

Das Ziel ist nun, Gleichung (1) unter Erhaltung dieser Eigenschaft zu symmetrisieren
und auf eine aus einer Lagrange-Dichte ableitbare Form zu transformieren.

Dazu wird Gleichung (1) um —dkdnj/li + dkd,if,ii erweitert. Dann wird +dkdii//li
durch gikdidril/lr ersetzt. Dabei bleibt die gezeigte Eigenschaft von Gleichung (1)
erhalten, denn die beiden Ausdrücke sind äquivalent hinsichtlich der Operation 3,,
d.h. dt (dkdii//") di(gikdidr ij/'1), und (a) und (b) folgten ja erst nach Anwendung von
3,auf(l).

Damit ist die Symmetrie schon erreicht. Will man in der Lagrange-Dichte nur
Ableitungen des Feldes von höchstens 1. Ordnung zulassen, so gelangt man dazu durch
Einführung eines skalaren Hilfsfeldes q> :

dldrV m2cp. (2)

Gleichung (1) ist schließlich:

+ m2)i//ik-didlTi'k-dkd,\l/>i + m2gik(p 0. (1)
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Aus den Gleichungen (1) und (2) folgt nun außer (a) und (b) auch

q> 0. (c)

Um eine invariante Lagrange-Dichte zu dem Gleichungssystem bilden zu können,
formt man es weiter um durch die Substitution t/V'* i//ik' — gikq>. Aus dem neuen
System folgt wieder (a), (b) und (c). Zunächst folgt nämlich (a) und (b) für
(t/V'v — g'k(p) und wie bisher folgt (c), d.h. q> 0. Wegen q> 0 gilt dann (a) und (b)
auch für das neue Feld ipik'.

Durch diese Substitution entsteht in (1) auch der Ausdruck gTJcp, der durch den
hinsichtlich 3i äquivalenten Ausdruck d'dkq> ersetzt wird. Schließlich läßt man an der
neuen Größe i\iik' den Strich wieder weg, und das Gleichungssystem lautet nun

(D + m2)if.ik- did,ipIk - dkd,i/r" + d'dk(p 0, (A.l)

-dldrVr + (U + m2)(P 0. (A.2)

Für die Behandlung der Spurbedingung i/V/ 0 bieten sich 2 Möglichkeiten :

A. Man definiert ijij: cp. Dann folgt die Spurbedingung schon aus dem
Gleichungssystem.

Vergessen wir nun für einen Augenblick die Spurbedingung, und fassen wir cp

noch als unabhängig von i//ik auf! Dann läßt sich folgende Lagrange-Dichte
konstruieren :

L m2if.;kif.ik - drif.-kdrif,ik + 2dr\//*rkdsi//sk

-(drif.;kdkcp + dkcp'dril/rk)-m2(p'(p + dr(p'drcp. (A.3)

Aus ihr lassen sich die Gleichungen (A.l) und (A.2) herleiten. Beim Variieren ist als

Nebenbedingung nur die Symmetrie \jiik= ij/ki zu beachten. Ferner sind i/iik, ipa,, cp, cp*

unabhängig von einander zu variieren. Der Stern * bezeichnet das konjugiert-komplexe
Feld, bzw. in einer quantisierten Theorie den hermetisch adjungierten Feldoperator.

Erinnern wir uns jetzt wieder an die Definition if,\: cp und berücksichtigen dies
beim Variieren von (A.3), so erhalten wir die Gleichung

?i>*- didril/rk - dkdri//ri +gikdrd, i//rl

+ didk(p-gik\Jcp + m2(i//ik-gikcp) 0. (A.4)

Dies ist die Form des Gleichungssystems, die z.B. in der Theorie des Spin-2-Mesons
von Minkowski [4] verwendet wird. Es lassen sich durch Verjüngen und Differenzieren
die gewünschten Eigenschaften für (A.4) nachweisen.

Der Übergang von (A.l) und (A.2) nach (A.4) ist überraschend, aber wohl nicht
rein zufällig. Systematisch gelangt man zu (A.4) indem man L mit unbestimmten
Koeffizienten ansetzt und daraus (A.4) ableitet. Hieraus erhält man durch Verjüngung
eine Gleichung (A.5). Man kann dann mit ähnlichen Schritten wie oben von (A.4) und
(A.5) zur Ausgangsgleichung (1) zurückkehren. Dadurch werden die Koeffizienten
bestimmt.

B. Man setzt i/V/ 0 von Anfang an voraus. Dann muß dies als Nebenbedingung
bei der Variation der Lagrange-Dichte berücksichtigt werden. Das führt zu etwas
komplizierteren Gleichungen. Dazu formt man (A.l) und (A.2) weiter um. Der
Ausdruck d'dkcp in (A.l) ist hinsichtlich 3,- äquivalent zu id'dkcp + igikLJ(p. Ersetzt man
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hier Dç> aus (A.2), so erhält man für (A.l)

(D + m2)i]/ik - (d'dnl/lk + dkd,xl/li -igikdrd,ipr') + id'dk(p -igikm2(P 0.

Nun substituiert man i//ik ipik' + ig'k(p. Das führt zu

(n + m2)ir.ik'-(d<dtii/'kA dkd, ii/"'-igikdldrip'r')-ididk(p-^gikncp o,(i)
-d,drxl,"A(in + m2)cp 0. (2)

Setzt man jetzt in (1) für —id'dkcp + %gik[Jcp den hinsichtlich 3/ äquivalenten Ausdruck
+id'dkq> —-r\g'k\J]cp ein, substituiert (p —\q>' und läßt zum Schluß den Strich an den
neuen Feldern wieder fort, dann hat man das neue Gleichungssystem

(D + m2)xl/ik - (dld,ip'k + dkdril/ri-igikdrd,il/rl) -ididk(P + igik\Jcp 0,

(B.l)
dldripl' + Ì(iU+m2)(P 0. (B.2)

Dies kann man durch Variation unter den Nebenbedingungen \p\ 0 und ip'k i//k' aus
der folgenden Lagrange-Dichte herleiten :

L m2ilr;kip'k-drii,îkdrip'k + 2drrricdsilisk

+ i(drip;kdk(p + dk(p'drir.rk)-ìm2(p'(P + id,(P'd'(P. (B.3)

Das ist die Form der Gleichungen für Spin-2-Teilchen, die von Fierz und Pauli 1939 [3]
aufgestellt wurde.

Bemerkung. Das Konstruktionsverfahren, das hier an den bekannten Spin-2-
Gleichungen demonstriert wurde, läßt sich nun anwenden zur Gewinnung von
Gleichungen für beliebigen ganzzahligen Spin. Für beliebigen Spin /wählt man als
Ausgangsgleichung + m2)^'1'2-''- d'»di, \f,'rVa-'r 0.

3. Gleichungen zum Spin 3

ij/'k' ist nun ein symmetrischer Tensor 3. Stufe. Wieder hat man für die Behandlung
der Spurbedingung 2 Möglichkeiten :

A. Man definiert ip? : (pl, wobei q>' das in den Gleichungen auftretende vektorielle
Hilfsfeld ist. Dann kann das Verschwinden der Spuren aus dem Gleichungssystem
gefolgert werden. Die Feldgleichungen lassen sich aus der Lagrange-Dichte

L m2riki»i>>k'-âr^hdrrk,A3d^;k,dsrkl

-3(d'VrklSk(pì + dk(p'ldrrkl)

-3(m2(p](pl - dr (pl 3V - id'qJr dsq>s) - im2((pm,dl X + 3,xV)
+ im2(Am2x*X-drX*drx)

herleiten. Beim Variieren muß als Nebenbedingung die Symmetrie des Tensorfeldes
\j,ikl berücksichtigt werden. Ferner ist zu beachten, daß q>> durch if/f definiert ist,
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während x ein unabhängiges skalares Hilfsfeld ist. Die Gleichungen lauten

(D + m2Wkl- (d'ds ipskl + dkdsipsil + d'dsif,sik) + 3'3V + dkd'q>i

+ d'di(Pk + gik{drdsil/rs'-(D + m2)(pl-id,ds(ps-im2d1x}

+ gk'{drdsrsi--..} + g"{3rdsrsk-...} 0, (A.l)

dicp'+(n+4m2)x 0. (A.3)

Verjüngen der Gleichung (A.l) gibt

-drds<l/rs' + (\J + îm2)(p' +id'ds(ps + im2d'x 0. (A.2)

Wendet man 3,- auf Gleichung (A.l) an und substituiert aus (A.2), so erhält man

drill*' - (dk(pl + d'(pk) - idkd'x + gk'(idrcpr + tV.Dx) 0- (*)

Hieraufwendet man 3* an, und man bekommt mit Hilfe von (A.2) und (A.3)

(p' + dlx 0. (**)

Mit (**) folgt aus (A.3) x 0. Wegen (**), (*) und (A.l) gilt dann ipf's q>' 0,
dril/rk'= 0 und (D + m2)i//ikl 0.

B. Man setzt ijif=0 von Anfangan voraus. Zur Konstruktion des Gleichungssystems
geht man aus von der Gleichung

(n+m2)ipM-didril/rk'=0. (1)

Man erweitert sie um

-dkdr»pri'-d'drip"k+igikdrdsip", + ig'ldrdsil/rsk+igkldrdsil/rsi

-igikdrds\j/rs'-ig''drdsilirsk-igkldrdsil/rsAdkdripriAdldr\l/rik.

Die Glieder igikdrdsifir!'l+ igildrdsilirsk+ igkldrdsi}irsimüssen in diesem Fall wegen des

komplizierteren Variationsverfahrens (Spurbedingung) eingeführt werden. Die
letzten 5 Glieder der Erweiterung sind hinsichtlich 3, äquivalent zu

igikdrds\l>"1 + igildrdsiprsk -igkldrds^si.
Man führt nun das Hilfsfeld (pl ein durch

drdsiprs'=m2(f>'. (2)

Damit wird Gleichung (1) zu

(D + m2Wkl - d'dril/rk' - dkdril/r"-dldril/"k +igikdrdsi/jrs' + ig"ârds^rsk

+ igk'drdsilirsi + im2gik(pl + im2g"(pk-Wgk'cp' 0.

Für den das Feld xpikl enthaltenden Teil dieser Gleichung kann man die Abkürzung
(Hil/)ikl einfuhren. Sie sieht dann so aus:

(Fty)'*' + | m2g'k(p' + f m2g"(pk - im2gk'(p' 0.
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Die Substitution

^ikl ^ilcl- _ ^gikrpl _ §gll(pk + igkl(p'

führt dan zu den Gleichungen

drdsrsl (ìn + m2)(pl + id'dr(p\ (2)

(H\l/)ikl + f 3''3V + |3''3V - f 3*3V + g'*(-f D<7>' + |3'3,<pr)

+ g"(-%Ucpk + %dkdrq>r) + gkl(+%Ucpl - ididrq>') 0. (1)

Das Verhältnis von d'dkcpl zu gik[Jcf>1 soll wegen der Nebenbedingungen beim
Variationsverfahren —6, das Verhältnis von g'kC\cp' zu gikdldr(pr soll i betragen. Darum
ersetzt man

||3'3V'+ f! didl(pk-gdkd<cpi

durch den hinsichtlich 3,- äquivalenten Ausdruck

^gikUcf>' + 3j)g"Ucpk - 2£gikd>dr(p' - ggi>dkdrcp7

Beachtet man ferner, daß (fD<j»' — $ d'drcpr) hinsichtlich 3; äquivalent ist zu (— -^Ocp' —

isdidr(pr), so erhält man

(Hip)*1 + 2±(didk(P> + did>(pk + dkd,q>i) + g>k(-^ncpl--h^drcPr)

+ gi'ir-h^9k--hSkdrCpr)+gkX-hUcpi-^d'dr(P') 0. (1)

Führt man nun das skalare Hilfsfeld x ein durch

drA m2x, (3)

erweitert man Gleichung (1) um

-%gikd'dr(pr - -£rg"dkdr(pr+ iggk,dldrCpr

+ £m2gikdlx+£m2g''dkx-fsm2gkldix

und substituiert schließlich

,/,<*< ,/,*<'_ ^g*3<z- &gildkx+ tVg"d>x,

so erhält man

(Hip)*' +|f (didkcp' + did>(Pk + dkd'cP>)+g'k(- &\3cpl- &d'drq>r)

+ gH-&ncpk-£dkdrCPr)+gk'(-±ncpi-iïdidripr)

+ £didkd'x-isglkLjdlX-isgi'\3dkX-Agk'ndiX 0, (1)

drdsiprs' (in + m2)(pl + id'dr(pr + indlx, (2)

dr(pr=m2x- (3)
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Die Substitution cp' (/>'' — \d'x läßt x aus Gleichung (1) ganz verschwinden.
Gleichungen (2) und (3) werden zu

SrSsilirs' (iD+m2)(Pl + éd'dr(pr-^m2dlx, (2)

drCpr=(iD + m2)x. (3)

Durch die Substitution q> —%cp' und x $x' können etwas bequemere Koeffizienten
erhalten werden, und man hat endlich

(D + m2)ijiikl - (d>drilirk' + dkdrilir" + d'dri/irik - igikdrdsilirsl

- ig"drds\lirsk - igkldrdsi/irsi) - $(d'dk(p' + d'd'(pk + dkdlq>>)

+ ìgÌk(iUCf>1 + d'dr(pr) + %gUdUcpk + dkdr<p')

+ %gkl(iUcf>i + didr(P') o, (B.i)

drds4>rs' + Uia+m2)(p' + idldr(p'+ìm2d'x 0, (B.2)

drq>'+2(in+m2)x 0. (B.3)

Die zugehörige Lagrange-Dichte ist

L m2iplclij,*'-drili:kldrili<k> + 3d'il,r-kldsili>k>

+ A(drrrkiSk(PAdk(P;driliM)-10-m2(p'l(pl + ^-drCp'd'(p'

+ 4id'cprds(pS-m2((p'ldlx + dlx'cpl) + 2-m4x'x-im2drx'd'x. (B.4)

Bei der Variation muß die Symmetrie von ijiikl und das Verschwinden der Spur als

Nebenbedingung berücksichtigt werden.
Von den Eigenschaften des Gleichungssystems kann man sich nachträglich noch

einmal überzeugen :

Anwendung von 3,- auf (B.I) gibt

m23r iliM- f3*3r3s»>»' -$d'drdsilirsk + igkl3,3,3,i>"'

- %dkd'dT(pr - ^-udk(pl - *$¦ ad'cpk + Ukladrcpr o.

Man ersetzt 3r3si^"'aus Gleichung (B.2) und erhält

drijiM + jdkq,' + fdV - A,gk'dr<pr + idkd'x- ^gklnx o. (*)

Dann wendet man 3* auf Gleichung (*) an, ersetzt drdsi/irk'und dr(pr durch Gleichung
(B.2) und (B.3) und gelangt schließlich zu

(p' + id'x 0. (**)

Anwendung von 3; auf Gleichung (**) gibt drcpr= —iOx- Damit folgt nun aus (B.3),
daß x 0.

Wegen (**) ist dann auch cpl 0, wegen (*) ist drTirkl=0, und (B.I) wird zur
Klein-Gordon-Gleichung.
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4. Allgemeines Gleichungssystem zu ganzzahligem Spin/

Sei/eine ganze Zahl größer als 1 und i/i'^-'/em symmetrischer Tensor der Stufe

/. Die Hilfsfelder ^Vn'«+2-'/ seien symmetrische Tensoren der Stufe (/— n) für n 2,
3, ...,/. Die Spuren aller betrachteten Felder seien gleich Null. Die Tensorindizes i*
nehmen die Werte 0,1,2 und 3 an für k 1,2,...,/. Dann lassen sich aus der Lagrange-
Dichte

L m2rh ...i, «A '*"'' - h K-if d '' * '1-'/ +fd'r * W..i, h * V*"1'

+ i2(-i)"-m^-2>-ni lf) -{(x ;_,,„...,, d'-xfr1™'' + Mlw.j/*fc,/)

+ a-hX;,„+1..,>9''Zi"+1"'> -bnm2x:in+1...if XIT1"''

+ (f-n)cndirx\irin+2...ifâi,X^n+2-if)

Gleichungen für ein freies Teilchen mit der Mass m und dem Spin/ableiten. Beim Variieren

müssen als Nebenbedingungen das Verschwinden aller Spuren und die Symmetrie
der Tensorfelder berücksichtigt werden. Die Gleichungen lauten

/ /
(\A + m2)ili'»-'r - J 3'*3,- ^vi-k-ik+i-h _ £ 9'*3'iZ'i-'*-i'*+i-'i-i'i+i-'/

/fc=l ' l>k=l

1 '
l>k-\

9 3- iv Wi-'*-i'*+i—'i-i'i+i—'/ + +DXÌ1'"'*-i'*+i—'i-'''+i—'/

/
+ y s'»3i z''1'"»-«+i—'k-A+i—'i-i'i+i—•/

u l
u*k,l

1 /
2g'»'i>g. a. »Wi»'»-i'»+i--'i'-i'i+i-'*-i'*+i--'i-i'!+i—'/[ o' * 2 j2(/

r>M-l

0)

und

/
3».Z**f,"J/ + (ö„ D + *„m2)x'„"+1 -'> + c„ 2 3/*3,,x^"+1-'t-,'»+1-i/

k-n+l

Cn A f
-— > J?'*''3 3; y WA+1—'*-l'*+l—'l-l'l+l—'/ -4- /JJ2 V g'ty'n+l—'*-l'*+l—'/

"~ " *-"+l

2#Vi s x W.+i-'*-i'*+i-'i-i'i+i•¦•'/ o für « 2, 3,...,/. («)

Dabei ist *j»-'/ s d^hb-J/ und Z/+J o.



Vol. 48,1975 Relativistische Gleichungen für Teilchen mit beliebigem Spin 269

Die Konstanten sind rekursiv gegeben durch

2/-1 n(f-n + 2)(2f-n+l)
°2 2(/-l)' *"

(2f-2n + 2)(2f-2n + 3)'an'

(/-«)
C" os o ^ ' a» fÜr " 2, 3,

(2/- 2n + 3)

2(«-l)(2/-2n + 3)(2/-« + 2) 1

a„ • fur n > 2.
(n - 2) (2/- 2« + 2) (2/- n + 3) b„_t

Insbesondere ist c/= 0.
Es ist zu beachten,daß Ausdrücke wie dirx'f" und dlr disx'f!l'{' sinnlos sind und in den

Gleichungen nicht auftreten. So kommt z.B. Gleichung (1) erst für Spin/> 3 in voller
Länge vor.

Beweis

Zuerst wird eine kürzere Schreibweise eingeführt. Sei ip: i//'i-'/= (p'r)"'f. Sei

allgemein q>k'- <p'kk+»-'r ein beliebiger symmetrischer Tensor der Stufe (f—k) für
k 0,1,...,/. Dann definiert man die Operatoren P, S und g durch

P(pk:= 2 d'xpk"''-1'»1-'',
l-k

Scpk — Bi^cpt1'"2--'' (k<f),

f
gm ; 'K g'rh (n'k-l—h-l'r+1— 's-l's+1— '/_

j>r-fc-l

Da die Operationen wieder symmetrische Tensoren ergeben, können sie beliebig
hintereinander ausgeführt werden. Dafür gelten offensichtlich die Regeln Pgcpk gPcpk,

SP(Pk D(Pk + {PS(Pk),

SP2(Pk 2[JPcpk + {P2S(pk},

SgcPk P(pk + {gSq>k}.

Die eingeklammerten Ausdrücke sind fortzulassen falls k =/, also für skalares q>.

Der Beweis für das Gleichungssystem besteht darin, daß man zeigt, daß alle
Hilfsfelder verschwinden und Xi Si//=0. Mit Gleichung 1 erhält man dann fj + m2) iji=0.

Zunächst wendet man den Operator S auf Gleichung (1) an:

1 1

+ m2)Siji - nSili-PS2i/i- UPX2-ÌP2SX2 + jPS2ili + -gS3iji

+ YfUPt2 + jfgDS^ + jp2s%2 + ygD Sx2 + jsps2x2

PgS2X2-„,l ,APS2X2-„,, -g2S3X2 0.
2/(/-l) 2/(/-l) 2/(/-l)
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Mit Hilfe der Gleichung (2) ersetzt man

-{lAllpS2ill + jgS3ili
durch

~}1 -(a2U+ b2 m2)Px2 + ^y^ • c2(P2 SXi - JZ^gPS2 &)

+ (^^-m2ip2X3-j^gPSx3)-jg\(a2a + b2m2)Sx2

+ c2luSx2+ PS2X2- j^z-PS2X2- j^rzgS3X2\

+ m2i D/3+PSX3 - -rr2psX3 - iA^gS2x3

Beachtet man, daß c2 (/- 2)/[2(f- 1)] und b2 [f(2f- l)]/[2(/- l)2], so sieht
man leicht, daß von der Gleichung ein großer Teil wegfällt. Es bleibt

(/-1) "2 1

Sip + a2PX2 + ~A ¦p2X3-j—,- gSX2 - j ' gü/3

-)««*+Tubi •«¦*«.-•¦ o.)

Allgemein gilt

X„ + a„+iFz„+i +(f-n)y„P2Xn+2 - -~ ' gSx„+i -y*OXn+2f-n
-2yngPSXn+2+

y"
-g2-S2Xn+2 0 (»*)

f-n-1
mity„=2/[n(2f-n+l)].

Das beweist man durch Induktion: Induktionsanfang ist Gleichung (1*). Es sei

nun Gleichung («*) für ein bestimmtes n schon bewiesen. Anwendung von S auf (n*)
gibt mit Hilfe von Gleichung (n + 1)

-«„+1 OXn+i - b„+im2x„+i -c„+iIPSx„+i - fn_, gS2Xn+iJ

m2 | PXn+2 - ._
¦ gSXn+2 I + «»+1 OXn+l +"»+1 ^Zn+1

+ 2(/- «)j„ DFZn+2 + (/- n)yn P2SXn+2 - ¦—- • FSZn+1/-"
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Oa+i

f-n gS2Xn+l-ynPDXn+2-yngSDXn+2-2y„P2Sx„+2

- 2yngUSx„+2 - 2y„gPS2 x„+2 + — : ¦ PgS2 Xn+2f-n-1
+

y"
: • g(PS2 Xn+2 + gS3 Xn+2) 0.

/— n - 1

Jetzt ersetzt man t-PSx„+iund -[//(/- n - l)]g5'2z„+1mit Hilfe der Gleichung (n + 2).
Dabei ist

f-n-1 (f-n- !)(/•-n+1)
/_^^~a"+1~C"+1~ (/-«)(2/-2n + l) 'ö"+1-

Dann sieht man nach einfachen Rechnungen unter Benutzung der Rekursionsformeln,
daß ein großer Teil der Gleichung fortfällt. Nach Division durch b„+i erhält man schließlich

l + f*„+2 ' „, __L±^±i_.„5yZn+l^ 7 ^Xn+2 + 7 ^ X«+3 77 777 S^Xn+a
on+i on+i (J-n-l)o„+\
t 2t

~ ff 7, ÎTÂ gOXn+3 - 77 - TTÄ ' gPSXn+3
(J-n-l)bn+x (f-n-l)b„+i

t
77 7777 ^77 ' S S X «+3 "•(f-n-l)(f-n-2)bn+i

Mit den Rekursionsformeln für a„ und b„ zeigt man leicht, daß

1 + t-bn+2 t
a"+2 1 und y»+l 77 TTT—•bn+i (f-n-l)-bn+1

Also gilt auch Gleichung (n + 1*), und der Induktionsbeweis ist fertig.
Für n =/— 3,/— 2,/— 1 tritt die Gleichung («*) nicht mehr in voller Länge auf.

Aufgrund des Gleichungssystems und der Regeln für die Operation S kommen keine
Glieder X/+i> ^X/und S2x/-i darin vor. Insbesondere lautet Gleichung (/-1*):
Xf-i + afPX/= 0. Daraus und aus Gleichung (/) folgt schließlich x/= 0.

Wegen der Struktur der Gleichungen («*) erhält man nunx/_i=0, X/-2=0,
Xi Sili 0. Q.E.D.

Zusatz

Variiert man die angegebene Lagrange-Dichte nur unter der Nebenbedingung
der Symmetrie der Tensorfelder, läßt man also die Spurbedingung außer Acht, so
erhält man das Gleichungssystem

([J + m2)i/i-PSili-iP2X2=0, (1)

Sxn-1+(ann + b„m2)xn+cnPSx„+m2Pxn+i=0 für n 2, 3,...,/. (n)

Hierbei ist Xi Sip, xf+i 0, cf= 0.
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Die Konstanten seien rekursiv gegeben durch

2
b2 l, a„ --b„

n
für n 2, 3,. ..,/,

n(n - 1) 1

bn~
(n-2) ò„_,

für n 3, 4,. ..,/,

1

n
für n 2, 3,. •-,/-

Dann folgt aus diesem Gleichungssystem x* 0 für k 1, 2,...,/.
Um das einzusehen, beweist man ähnlich wie oben durch Induktion die Gültigkeit

der Gleichungen (n*):

X„ + a„+1Px„+i + -F2x„+2 0.
n

Nimmt man nun die Spurbedingung hinzu, etwa durch die Definition xì'"'f= 'fil?3'"'1,
so beschreibt das Gleichungssystem ein freies Teilchen mit dem Spin/. Es eignet sich
jedoch nicht zur Einführung einer Wechselwirkung, da hier nicht alles aus dem
Variationsprinzip abgeleitet wird, die Spurbedingung nämlich erst nach Ausführung der
Variation hinzugenommen wird.

5. Spinoren

/. Allgemeines

Es wird der metrische Spinor e«/3 ~7.) verwendet mit ct,ß 1,2. Sein Inverses ist

eaß= (_jq). Damit lassen sich die Spinorindizes herauf- und herunterziehen:

eaßaß= aa, erfaß aa. Für das Skalarprodukt gilt

aaaa =aaeaßaß -Eßaaaaß -aßaß.

Jedem Vierervektor läßt sich mit Hilfe der Matrizen ctL ein Spinor zuordnen, k läuft
von 0 bis 3.

Diese Matrizen sind folgendermaßen definiert:

o /1 0\ i /0 1\ 2 /0 -A 3 Z1 °
^^[o ij' a*ß [i oj' °*ß [i oj" a«f*-[o -l

Man hat dann die Zuordnung Xaß XkaJUß.

Insbesondere kann man anstelle des Vierervektors auch den Ableitungsoperator
dkeinsetzen. Es gilt dann däß dka^ß.
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Definiert manpà;g (l/j)3àj8, so folgt:

1, l(d0 + d3 dx-id2\ l(dii %\2
Paß — r^äß -

/ \3t + /32 30 - 33 / i \321 322

3ii â22\ i /32i _9ii
-3i! -3i2/

° \d22 -3j2
a-*.-«*a-- T Tl V

\-321 3ii

piß^ (-i)(9o + a3 8l~*aW d°~di ~dl + id2\=-ôlu
aß '\di + id2 d0-d3]\-di-id2 30 + 33/

mit

a dkdk (do)2 - (di)2 - (d2y - (33)2.

Also ist

p«ßpß*=-pipl~-otu.
Ferner gilt

PißPy=E*yO, p^pPa -2U.

2. Eine wichtige Relation

Gesucht wird eine Beziehung zwischen den Ausdrücken p^ac%y und pàoc§y. Cßy sei
ein beliebiger Spinor. Man bildet

e*ßPßociy=P°cly
und

Dann folgt

Z'4^C%-P*°cÌy) 2p\cly.

Setzt man

g°f=(peaciY-p™ctY),

so hat man für die Komponenten

und

-^2 + g^=2p?c^.
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Die letzte Gleichung besagt aber

(pi'ciy -p^c^) =p%ciy g'2} -g\2. (2)

Die Komponentengleichungen (1) und (2) kann man zusammenfassen zu

oder

piociv-pß-cSY erfparciY. (R)

Eine wichtige Folgerung erhält man durch die Anwendung von pßß auf (R):

Pß+P*°ciy+nC%=paßPT-ciy- (R)

Diese Gleichung gilt natürlich für Spinoren beliebiger Stufe.
Auch gilt die zu (R) gespiegelte Gleichung

P^d7-p^ z^p%d7.

6. Allgemeines Gleichungssystem zu halbzahligem Spin/
Für k 1,..., n — 1 und n 1,2,... seien

„Al—An-1 „At+l—An-1 gPk+l—ßn-l
"k,...v„ > 5k;vk+1...v„ > %k;vk+,...v„

/,Ai-A" f.ftti-/', zjAt+i—A»
uv,...v„_,, "i;»M1...v,.ii "fc;vt+i...x„_i

Spinorfelder, die bezüglich Vertauschung punktierter Indizes unter sich und unpunktierter

Indizes unter sich symmetrisch sind. Diese Indizes ps, vs nehmen die Werte 1

oder 2 an für s 1,..., n. Mit * werden die konjugiert-komplexen Felder gekennzeichnet.
Aus der Lagrange-Dichte

T =m.(U,Vl-Vn Al-A-1 Ayi-'Y-l A Al"A»

_(h*yi.v* D ¦ fcAi-A« i .VvijAAjiii-fc-i)cP^,...p..1Pvnii.„0Vl...Vn_l-i-all,l„^n y uv....v„ >

-(n - lKbAA* „AiaA2-A»-i +a*"i...v„_1 Ai ^Aî-A»V' l'^uIH-ihi-i^vi Sl;i/2...v„ ^"^...^„ /'vj "1;k2...v„_i

+ nUiJ.2...ftn.lP(L1av,...vn + g \;p.2...jxn PP,°v,...v^,)

+ "2 (n - l)2(n - 2)2-... (n - k + l)2(n -k)-{-n-<xk-m(h'kgk + glhk)
k=l

+ (n-k) a.k(hlpVnij,n hk + h'kpVnfj.n hk + h\pv^,nhk + gtp^'gk + gÌP^'gk

AglP^-gk) + n-ßk -mOilgk + gfhk) + (n- k)ßk(h*kpVitAhk

+ gkP^-gk) + (n-k)(n-k-l) (hip*;1, Sk+i + hkPt,gk+i

+ gkPfc,hk+i + êiP^hk+i + hk+ip^gk + hl+iPvC\gk

Agl+iPl\\h+gUiPlZ\hk))
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lassen sich Feldgleichungen für ein freies Elementarteilchen mit Spin /= (2n — l)/2
und Masse m durch Variation unter Symmetriebedingung ableiten :

n-m-a- pb-pgi 0, (I)

n-m-b- pa—phi 0, (II)

-p%a + ßi(phi + n-m-gi) + pg2+ pg2 0, (1.1)

-p%b + ßx(pgx + n-m-hi) +ph2 +ph2 0 (1.2)

und für k 2, 3,..., n — 1 :

P°gk-\ + cikphk + ctk(phk-n-mgk)=0, (k.l)

p°Thk-i + n-kPgkA- <*-k(pgk - n-mhk) 0, (k.2)

p% gk-i + a-kPhk + ßk(phk + n-mgk) + pgk+i + PSk+i =0, (k.3)

pT hk-i + cckpgk + ßk(Pek + n-mhk) +phk+l +phk+x 0. (k.A)

In der Lagrange-Dichte wurden nach dem Summenzeichen nur noch die wichtigsten
Indizes hingeschrieben. Für die Gleichungen wurde die weiter unten definierte Schreibweise

gewählt.
Wie üblich gilt die Summationsvorschrift, daß über gleiche obere und untere

Indizes zu summieren ist.
Zum Gleichungssystem ist noch zu bemerken, daß es für n 1, 2, keine

Hilfsfelder g„, g„, h„ und fin enthält. Das ist auch aus der Lagrange-Dichte ersichtlich.
Die Zahlenfaktoren a.k, ßk hängen außer von k auch von n ab :

ßo-U otx=0,

1 (n-k+l)2(2n-k)-k
ßk xk-lt— mit xk —— für*-1,2,...,

Pk-i (n-k)2-n2

(n-k + l)2
"k=7 TAAA2^k-2 für * 2'3'--"

(n — k + 27)

Ferner ist zu bemerken, daß für k > 1 jeweils 2 Hilfsfelder gleichen Transformationsverhaltens

auftreten, die durch ~ unterschieden werden. Für k 1 tritt nur je ein Hilfsfeld

auf, nämlich gi und fix, während gt und hi nicht vorkommen. Für n 2 ist gi das
Feld c, fii das Feld d der Fierz-Pauli-Gleichung [3].

Vor der Durchführung des Beweises für das Gleichungssystem sei noch eine
abkürzende Schreibweise eingeführt durch

aAi-A»-i a. _ aAi-A»
Vl—Vn ' "' uV,...vn_,,

a ¦ p-A»+i—A»-i L ._lAi+i-A«
5fc- sk;vk+1...v„ > "k- "k;vk+1...»•„_)'

_ ÄAt+l-An-l £ tH*+l-rh> Ir—1 1
°k;vk+1...vn ' "k- nk;vk+1...v„_,, "- x> Ä> • • •>gk

für die Felder,
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Seien ferner

«*—«terÀ* und fk-=ftki:tA fmk=o,i,...
beliebige symmetrische Spinorfelder, dann sei der Operator/»? definiert durch

„"p.. _ „"*+i pAi+i-A—iPTek.-Ppk+iek;vt+1...v. >

„a f _ _"»+l fßk+l—ßnPtJ k- — Ppk+17 k;vk+,. ..v,-!'

der Operator p durch

s=n,r—n—1

„p,. _ V „Ar„A*-Ar-iAr+i-A»-i hier für/V 1 2F^/c- — Z Fv, e/t;vt .v3_1vs+i...vn mcr iur /c — l, z,
s,r-k

j=«/i,r-n—1
Df ¦ y „As /-An-As-iAs+i-A»«/*• Z, /'v,//c;i/j...vp_1v,+ 1...><„_,>

der Operator p sei schließlich definiert durch

*„,._ v „A^ipAt+i-Ai-iAi+i-AnFe*- ~AP ek;vk+,...v,
I-k+l

n

hf • 'S n fhk+i—P*P7k- Z Pv,ii,J k;rt+l...vl_1vl+l...vm-
l=k+l

Wie man leicht sieht, gelten für diese Operatoren folgende Regeln :

p kommutiert mit p und mit p%. (A. 1)

Bei zusammengesetzten Operationen ist zu beachten, daS>pek, pek,p°ek der Reihe nach
dasselbe Transformationsverhalten haben wiej£, %_l3 ek+x. Also operiert p auf pek
wie a.uffk, aufpek wie auf et_jusw.

Es gilt

p°pek (2n-2k+ l)De* +PP%ek für/c<«- 1

und

F?F«n-i 3DeB-i (A.2)

und dasselbe mitfk statt ek.
Mit der im Abschnitt über Spinorrechnung hergeleiteten Gleichung (R) erhält

man

ppek -(n-k)2n}ek+PP°ek fürk<n-l
und

Ppe„-i - Ge»-i (A.3)

und dasselbe mitfk statt e*.
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Beim Beweis für das Gleichungssystem wird folgende Gleichung gebraucht:

-otkPhk - ßkph —pp(hk+x + hk+1) + (ßk~"k\-(n _ k)2 +pp%)gk
nm n-m fur k < n — 1

und

•>, o ° T \Pn—l ß»—l) .—. ~ /nx-aB_ipAH_! - /3„_, ph„_i Dg„_i. (B)
n-m

Sie entsteht durch Subtraktion der Gleichung (k.2) von (k.A) und Anwendung von p
unter Berücksichtigung von (A.2). Eine entsprechende Gleichung läßt sich aus (k.l) und
(k.3) herleiten.

Beweisfur das Gleichungssystem

Es wird gezeigt, daß Hilfsfelder gk, gk, hk, fik verschwinden.
Anwendung von p% auf Gleichung (I) gibt n-mp%a — pp°b -pigi 0. p%a und

p%b werden hieraus mit Gleichung (1.1) und (1.2) eliminiert:

n-m-ßi(phx+n-mgi) + n-mpg2 + n-mpg2

-ßi(PPgiA-n-mphx)-pph2-pph2-p?pgi=0.

Nun unterscheidet man die Fälle n 2 und n > 2.

1. Fall: n 2

In diesem Fall kommt in der letzten Gleichung g2, g2, h2, fi2 garnicht vor, ist
ppgi -Dgi, P°pgi 3Dgi und ßt 3. So folgt g, 0. Entsprechend folgert man,
ausgehend von Gleichung (II), daß fix 0. Damit ist der Beweis für n 2, d.h. für die
Gleichung zum Spin \ (Fierz-Pauli-Gleichung), fertig.

2. Fall:n>2
Dann wird die obige Gleichung mittels (A.2) und (A.3) zu

n2-m2-ßx-gx+n-m-pg2-(ßx + l)pp%gx-pp(h2 + h2) + n-m-pg2 0.

Nun ist ßx + 1 l/a2, und wegen Gleichung (2.1) ist die Summe der vier letzten Glieder
gleich Null. Daher folgt

n-m-ßxgx+pg2 0. (1*)

Allgemein gilt für k < n — 1

n-m-ßkgk+pgk+i^O. (k*)

Das läßt sich durch Induktion beweisen. Induktionsanfang ist Gleichung (1.*). Sei also
(k — 1 *) schon bewiesen, es gelte also

n™-ßk_x-gk_x+pgk 0.
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Hierauf wendet man p% an :

P°ëk-i + T—([2n-2k+l]-n+PP°f)gk 0.
n-m-ßk-i

Mit Gleichung (k.3) wirdp%gk-iersetzt:

-cCkPhk - ßkpfik -n-m-ßkgk -pgk+i - Pgk+i

2(n-k)+l 1 „. „+ - 77 Dgk+ r—PPfgk 0.
nmßk-i n-m-ßk-i

Die beiden ersten Glieder der letzten Gleichung werden durch Gleichung (B)
ersetzt:

1 - 1 „- (n-k)2 N

PP(hk+i + hk+i) + (ßk - ^k)PPrSk (ßk - *k) Bgk
n-m n-m n-m

1 „ 2(n - k) + 1

-n-m-ßkgk -Pgk+i -Pgk+A —PPrgk+ Dg 0.
nm-ßk-i n-m-ßk-i

Man berechnet nun

o (fi s R (n-k+1)2 2(n-k)+l
ßk-l(ßk - 0Ck) Xk- ßk-1 «k Xk- ; ..- • Xk-l —, T7T— ¦

(n-k + 2)2 (n - k)2

Damit entfallt Ugk aus der letzten Gleichung. Ferner berechnet man

1 1 (n-k+1)2 1

(Pk - c~k)+ -z— — ttz—ßk-i ßk-i (n-k)2 ctk+i

Damit wird obige Gleichung schließlich zu

PP(hk+i + hk+i) -n-m-pgk+l + PP%gk -n2m2ßkgk -n-mpgk+i 0.
C-k+l

Die Summe der ersten vier Glieder ist Null wegen Gleichung (k + 1.1). Damit hat man
dann n-m-ßkgk +P§k+i= ® Eezeigt> und der Induktionsbeweis für Gleichung (k*) mit
k < n — 1 ist fertig

erhält

n — i ist ierug.
Jetzt beweist man, daß g„_x= 0. Man wendet p% auf Gleichung (n — 2*) an und
u

Pfgn-2 + 7— ¦ 3DJV-1 =0.
n-m-/3„_2

Mit Gleichung (n — 1.3) wirdp?g„_2 ersetzt:

3
-o-n-ipK-i-ßn-\phn-i -n-mß„_xg„_1 + —Og„_i 0

n-m-ß„_2
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Hier werden nun die ersten beiden Glieder durch Gleichung (B) ersetzt :

1 3
¦(ß„-i-an_i)ng„-i -n-mßn-ign-.\ + —Dg„_i =0.

n-m n-m- ßn-%

Nun ist ßn-2(ßn-i - «n-i) 3, und Dg„-i fällt aus der Gleichung heraus. Damit folgt
g»-i 0.

Wegen (k*) sind dann alle gk 0 für k 1, 2,.... Ganz entsprechend erhält man
fik 0 für alle k, wenn man von Gleichung (II) ausgeht.

Nun folgt aus Gleichung (n - 1.3) ph„_x= 0, und damit aus Gleichung (n - 1.1)
g„_i=0, damit aus Gleichung (n - 2.3) p7z„_2= 0, und damit aus (n — 2.1) g„_2= 0 usw.
Man hat also gk 0 für alle k. Gleichung (k.2) liefert dann hk 0 für alle k. Q.E.D.

7. Andere Formen des Gleichungssystems zu halbzahligem Spin/
Das bewiesene Gleichungssystem läßt sich leicht aufandere Formen transformieren,

die sich durch die Art der Verknüpfung der Felder zu invarianten Ausdrücken der
Lagrange-Dichte unterscheiden. Bei den unten verwendeten Transformationen bleiben
offensichtlich die bewiesenen Eigenschaften des Gleichungssystems bestehen.
Die ct-ß-Form

Ausgangspunkt ist also das oben bewiesene Gleichungssystem zum Spin /=
(2n — l)/2, wobei « 1,2,..., das hier nach seinen Zahlenfaktoren 'a-/?-Form' genannt
werden möge. Es sei hier noch einmal in Kurzform dargestellt:

n-m-a- pb-pg,=0, (I)

2n-l
(«-1)2

P+a+ 7- 7rn(phi + n-m-gi)+pg2 + pg2 0, (1.1)

p\gk-\ + akphk + ctk(phk - n-m-gk) 0, (k.l)

P%gk-i + ctkPhk + ßk(phkA-n-mgk)+pgk+x+pgk+x=0 (k.3)

für k 2, 3,..., n - 1. Es istg„ g„ h„ fi„ 0.
Die Gleichungen (II), (1.2), (k.2) und (k.A) sind hieraus zu erhalten, wenn man

überall die Rollen von a und b, hk und gk, gk und fik miteinander vertauscht. Es war

(n-k+ l)2

(n-k + 2)2
/30=1, at=0, cLk=-—- ; -ßk-i für/c 2,3,...,

1 (n-k+l)2(2n-k)-k
bk xk- mit xk= für k= 1,2,

ßk-i (n-k)2-n2

Das Transformationspaket

Mit dieser Bezeichnung sei die Summe der folgenden Transformationsschritte
gemeint.

1. Transformation:

gk gk - gk, hk h'k-fik,k>2
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Damit verschwindet gk aus (k — 1.3), bzw. aus (1.1) für k 2. fik verschwindet aus
(k — 1.4), bzw. aus (1.2) für k 2. Nach Ausführung der Transformation ergibt (k.l) -
otklßk-(k.3):

c~ o; n-m-ctk'ßk „r a*
PTgk-\ + <*kPfik -0 gk - a.kphk (Pgk+i +Pgk+i) 0>

ßk - a* ßk- <*k

und(k.3)-(k.l):

(ßk - Xk)phk + n-m(ßk - <xk)gk +n-m-cckgk + (pgk+i +pgk+i) 0.

Entsprechendes gilt für die Gleichungen (k.2) und (k.A). An den transformierten Größen
gk und hk wurde der Strich ' wieder fortgelassen. Das gilt auch für die folgenden
Transformationen.

2. Transformation:gk gk-zk-gk, fik h~k-Zk-hk mit zk a.k/(ßk - cck)

Außer Veränderungen in den Gleichungen (k.l) bis (k.A) kommt nun in (k + 1.1)
und (k+ 1.3) der Ausdruck -zkp°gk, und in (k+ 1.2) und (k + 1.4) der Ausdruck
—ZkPthk hinein.

3. Transformation: gk -zk-gL fik -zjik
Es folgen weitere Veränderungen in (k.l) bis (k.A).

(k + 1.1) und (k + 1.3) beginnen nun mit —zkP%(gk + gk),

(k + 1.2) und (k + 1.4) beginnen nun mit —zkp%(hk + hk)-

Weitere Transformationen :

1

gk+i " g'k+i mit i 1, 3, 5,... und k + i^n—1.
Zk

Ebenso werden auch gk+t, hk+l, fik+t transformiert.

gk+j ~zk -g'k+j mitj 2,4, 6,... und k + j < n - 1.

Ebenso werden gk+J, hk+j, h~k+j transformiert.

Neues Gleichungssystem

Nach Anwendung eines solchen Transformationspaketes auf die Ausgangsgleichung

für ein fest gewähltes k erhält man das neue Gleichungssystem

n-m-a- pb-pgx 0, (I)

2«-l
-Pra+ 7 775 (Phl +n-m-gi) +pg2 +pg2 0 (1.1)

(n - l)2
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usw. wie bisher. Erst Gleichung (k - 1.3) ändert sich:

PUk-2 + "k-iPhk-i+ßk-Aßfik-i + n-m-gk-i)+pgk =0, (k- 1.3)

P°gk-i +<*k'zk-phk + ßk¦ zk(phk -n-m-gk) + pgk+i +Pgk+i 0> (*•!)

iXk-Zk-phk + ctk-Zk(phk+n-m-gk)+pgk+i +F£*+i=0> (k.3)

P%(gk + gk) + cc'k+iphk+i + oi'k+i(phk+i - n-m-gk+i) 0, (k + 1.1)

P°(gk + gk) + a-'k+iPh'k+i + ß'k+\(phk+i +n-m-gk+i) + pgk+2+pgk+2 0,

(/c + 1.3)

P°êk+i + <*'k+iPhk+2 + *'k+2(phk+2 -n-m-gk+2) 0 (k + 2.1)

usw. wie bisher, aber nun mit neuen Konstanten.
Die neuen Konstanten sind

ak+i 7^r2, ß'k+i T^-n für i l, 3, 5,... und* + /<«-1,
(zk) (zk)

x'k+j z\ ¦ ctk+j, ßk+i z\ -ßk+j für / 2,4, 6,... und k +j < n - 1.

Anzahl der Formen

Man hat durch das Transformationsverfahren nun eine Anzahl verschiedener
Formen des Gleichungssystems gefunden (und bewiesen die sich durch die verschieden

möglichen Verknüpfungen der Hilfsfelder untereinander unterscheiden. Neben
der Ausgangsleichung hat man also (n — 2) verschiedene Formen, die man nach

Anwendung des Transformationspaketes für nur ein k (k 2, 3,..., n — 1) erhält, I ~

verschiedene Formen, die man nach Anwendung des Transformationspaketes für je

zwei verschiedene k erhält, usw. Insgesamt hat man also 2 /
I 2 "~2 Formen.

Die y-ô-Form

Dabei zeichnen sich das Ausgangsgleichungssystem und das letzte Gleichungssystem,

das man nach Anwendung der Transformationen für alle k 2, 3, ...,« — 1

bekommt, durch eine besonders gleichförmige Struktur aus. Dieses letzte Gleichungssystem

lautet:

n-m-a- pb-pgi 0, (I)

2n-l
("-1)2

-P°* + 77.—7ü(Mi + n-m-gi)+pg2 0, (1.1)

P°(gk-i + ëk-i) + 7 k ' Phk + ök-(Phk -nm-gk) +pgk+i 0, (k.l)

ykphk + yk -(phk + n-m-gk)+pgk+i 0 (fc-3)



282 Reinhard Giesen H. P. A.

für k — 2, 3, « — 1. Ferner ist gi hi=g„ g„ h„ h„ 0. Die Koeffizienten
7k, ôk ergeben sich aus dem Transformationsverfahren als

ßk
y2 a2-z2, ôk yk,

a.k

lk
V-k z2k-zk^2...z2

zk Zk_x -Zk_i Z t

s 2,t 3 für gerades k
t 2, s 3 für ungerades k.

Dazu berechnet man

ak
Zk

xk_x-(n-k + l)2

ßk-«k xk-(n-k + 2)2-xk_x(n-k+l)2

xk_x(n-k+l)2-(n-k)2 (n-k)2-(2n-k+l)(k-l)
~ (2n-2k+l)-(n-k + 2)2

~ n2-(2n-2k+l)
Man definiert

(n -k)4(n-k+ l)2(2n -k+l)(k-l)
yk'-

zl
xk-i n2-(n-k + 2)2(2n-2k+l)2

Damit erhält man für die Konstanten

o-k Xk-i-xk_3... yk-yk-2-.. 2(n-k) + l yk-yk-i...
7k

Zk Xk-2-Xk-A... yk-iAk-3..- (n-k)2 yk-vyk-3..

(die Produktreihen gehen hier abwärts bis xx bzw. y2) und

(2n-k)-k-(n-k+l)2s =ßk. _ xk (n-k + 2)2

°ck xk_x (n-k+ l)2
yk- (2n-k+l)(k-l)-(n-k): ¦yk-

Natürlich läßt sich diese 'y-<5-Form' des Gleichungssystems auch direkt beweisen.
Man hat dann im wesentlich durch Induktion zu zeigen, daß folgende Gleichung gilt :

k-(2n - k)(gk + gk) - n-yk+x -p(gk+x + gk+i) 0 (k*)

für k= 1, 2,..., n — 1.

Verknüpfungsschema

Die Strukturen der verschiedenen Gleichungstypen lassen sich graphisch
veranschaulichen: Dicke Punkte stellen die einzelnen Spinorfelder dar. Verbindungslinien
bedeuten, daß die durch sie verbundenen Felder in der Lagrange-Dichte zu invarianten
Gliedern zusammengefaßt sind, und zwar das eine mit dem raumgespiegelten, kon-
jugiert-komplexen des anderen und umgekehrt. (Um der Eineindeutigkeit willen muß
man noch jedem Punkt den aus dem betreffenden Feld und seinem raumgespiegelten
gebildeten invarianten Ausdruck zuordnen.)



Vol. 48,1975 Relativistische Gleichungen für Teilchen mit beliebigem Spin 283

Die Strukturen der Gleichungen sind dann leicht abzulesen : In der Gleichung, in
der ein bestimmtes Feld mit dem Faktor m vorkommen soll, treten die mit ihm durch
gestrichelte Linien verbundenen Felder nur in Verbindung mit dem Operator p, die mit
ihm durch ausgezogene Linien verbundenen Felder nur in Verbindung mit den Operatoren

p oder p% auf.

oc-ß-Form Zwischentorm

-»b

\ \ — r —/ ^\ \
Ax-A/
\ v ' — -~ ~"

-V:\ \ / ———

l^JC__

/ —-;

c

-6-Form

a -

AA;^^.: Z

K-
9„TA--.-t---~-hn-

9n-

Figur 1

Verknüpfungsstrukturen spezieller Gleichungssysteme. In der Gleichung, die ein bestimmtes Feld
ohne Ableitungsoperator enthält, kommen die im Diagramm mit ihm verbundenen Felder ebenfalls vor.

In Figur 1 sind aufdiese Weise die a-ß-Form, die y-d-Form und eine Zwischenform
(nach einmaliger Anwendung des Transformationspaketes auf die oi-ß-Form) dargestellt.

In der Gleichung, die ein bestimmtes Feld ohne Ableitungsoperator enthält,
kommen die im Diagramm mit ihm verbundenen Felder ebenfalls vor.

8. Allgemeinere Form des Gleichungssystems für halbzahligen Spin

Auf das Gleichungssystem von Kap. 6, die 'a-/?-Form', werden folgende
Transformationen ausgeübt :

1. Transf.

gk=gk -Xk§k, hk=h'k -Xkhk;

2. Transf.

gk=g'k -Hkg'k, hk=hk-pkh'k.

für k 2, 3,...,« — 1 und beliebige komplexe Xk und pk. Dabei bleiben offensichtlich
die bewiesenen Eigenschaften des Systems erhalten. Im Hinblick auf die Lagrange-
Dichte bilde man die Linearkombinationen (k.3') (k.3) - Xk(k.l) und (k.V) (k.l) —

Pk(k.3') aus den transformierten Gleichungen. Entsprechendes gilt für die Gleichungen
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(k.2) und (k.A). Läßt man nun an allen neuen Größen die Striche wieder fort, dann
lautet die 2(« — 2)-parametrige Form des Gleichungssystems :

n-m-a- pb- pgx=0, (I)

2« - 1 .-~p* a +
(n - 1)2(jP * + n'm'êù + (1 - H2 + rC2X2)pg2 + (1 - X2)pg2 0, (1.1)

(1 - pk + HkXk)(p°jgk_x- pk_xplgk_x)

A\PkßkA(l -2pk + 2pkXk-2p2kXk +pìxl)<xk]phk

+ \ßlßk -(1 +2pkXk + plXk)ak]n-mgk + [(Xk + pkXk)ctk -Pkßk]n-m-gk

+ [(1-Xk +2pkXk-pkX2k)ctk-pkßk]pnk

- PkP([l - Pk+i + Pk+iXk+i]gk+i + [1 - Xk+X]gk+X) 0, (k.l)

(i-Xk)(p%gk_x -pk-iPfgk-i) + [ßk -(2Xk-Xl)<xk]phk+[ßk -Xl<xk]n-mgk

+ [(1 -Xk + 2pkXk-PkX2k)(Xk -Pkßk\phkA[(Xk +7tkXk)<xk-pkßk]n-mgk

Vp([l-pk+x +fik+iXk+l]gk+x+[l-Xk+l]gk+x) 0. (k.3)

Dabei ist gx ht= g„ h„ g„ hn 0. Die Gleichungen (II), (1.2), (k.2), und (k.A)
entstehen aus den oben angegebenen, wenn man der Reihe nach die Buchstaben
a, b, g, h durch b, a, h, g ersetzt.

In diesem Gleichungssystem sind im allgemeinen alle möglichen Verknüpfungen
zwischen den einzelnen Gleichungen hergestellt. Diese Form des Systems sei hier
kurz 'Maximalform' genannt. Sie wird für unendlich viele Werte von X^und pk angenommen

und läßt sich weiter etwa durch das Verhältnis der Koeffizienten von phk und
n-m-gk sowie pfikund n-m-gk in (k.l) klassifizieren.

Man kann nun Bedingungen stellen, daß verschiedene dieser Verknüpfungen
aufgebrochen werden sollen. Verlangt man z.B., daß in Gleichung (k.l) keinpgk+i und
pgk+i mehr vorkommt, so folgt pk 0.

Fordert man, daß in (k.3) kein p"Agk-i — Pk-igk-i) auftritt, gelangt man zu Xk 1.

Stellt man beide Bedingungen zugleich, so gilt pk 0 undA*= 1, und es
verschwindet außerdem phk in (k.3). Hier hat man also durch zwei Bedingungen sogar drei
Verknüpfungen aufbrechen können. Die Form des Gleichungssystems, bei der für alle
k pk Ö und Xk 1 gewählt werden, sei hier 'Minimalform' genannt. Sie hat die relativ
einfachen Zahlenfaktoren ctk und (ßk — <xk).

Mit diesen drei Fällen hat man schon alle Möglichkeiten der Auflockerung der
Verknüpfungen, soweit von Xk und pk abhängig, zwischen den Gleichungen (k) und
(k — 1) sowie (k + 1) erfaßt, wenn man von den Fällen absieht, die aus den betrachteten
durch Vertauschung der Bezeichnung der Felder gk und gk sowie hk und fik hervorgehen,
und wenn man bemerkt, daß der Fall pk 0 zusammen mit der Bedingung
1 u*(l -Xk) (d.h. keinp?(gVi - pk-igk-i) in (k.l)) nicht möglich ist.

Nimmt man in den beiden ersten Fällen für alle k die Bedingung hinzu, daß in
(k.3) kein gk mehr auftreten soll, so führt das im ersten Fall zur 'a-/?-Form', im zweiten
bis auf Normierung zur 'y-(5-Form' mit Xk 1 und pk <xk/(ßk - xk).
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Auf verschiedene Weise kann auch die Verknüpfung der Gleichungen (k.l) bis
(k.A) unter sich aufgelockert werden. Das soll jedoch hier nicht weiter ausgeführt
werden.

Zum Schluß seien noch die Verhältnisse bei der 'Minimalform' und der
'Maximalform' graphisch dargestellt (Figur 2).

Minimalform

-tb

y —
"n-l

*h

Maximalform

ar-

9n-l

9n-l

-tb

9n- -••>*'--
9n-l

Figur 2
Formen minimaler und maximaler Verknüpfung. Die einzelnen Felder sind durch dicke Punkte
dargestellt. Die mit einem bestimmten Felde durch eine Linie verbundenen Felder treten alle in
derjenigen Gleichung auf, die durch Variation des betreffenden raumgespiegelten, konjugiert-komplexen
Feldes entsteht. Ein durch eine gepunktete Linie verbundenes Feld tritt in der Gleichung ohne
Differentialoperator auf.

Die einzelnen Felder sind durch dicke Punkte dargestellt. Die mit einem bestimmten
Felde durch eine Linie verbundenen Felder treten alle in derjenigen Gleichung auf, die
durch Variation des betreffenden raumgespiegelten, konjugiert-komplexen Feldes
entsteht. Ein durch eine gepunkte Linie verbundenes Feld tritt in der Gleichung ohne
Differentialoperator auf.

9. Schlussbemerkungen

Es wurde in dieser Arbeit das Einheiten-System mit c h 1 benutzt, wobei c
die Lichtgeschwindigkeit und h das Planck'sche Wirkungsquantum bedeutet.

Die hier hergeleiteten Gleichungen sind zunächst nur für Teilchen mit nicht
verschwindender Ruhmasse gedacht. Man kann allerdings nachträglich auch m 0
zulassen und die Gleichungen, die auf diese Weise entstehen, weiter untersuchen.
Das wurde in [3] für die Spinwerte § und 2 durchgeführt. Dort wurde gezeigt, daß man
im letzteren Fall die Einstein'schen Gleichungen für ein schwaches Gravitationsfeld
erhält.

Es sind durchaus Gleichungen der hier betrachteten Art mit einer größeren Anzahl
an Hilfsfeldern möglich, aber es scheint, daß die angegebenen Gleichungssysteme die
minimale Anzahl an Hilfsfeldern besitzen, solange man nicht zu Differentialgleichungen
höherer Ordnung übergehen will. Das läßt sich wohl mit dem Konstruktionsverfahren
streng beweisen.
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Die Hilfsfelder sind unbeobachtbar. Aus den Gleichungen folgt ja, daß sie
verschwinden. Nach Einführung einer Wechselwirkung sollten aber Gleichungen, die zum
gleichen Spin gehören und je verschiedene Anzahlen an Hilfsfeldern enthalten, zu je
verschiedenen beobachtbaren Effekten führen.

Die vorliegende Arbeit ist gewissermaßen 'ad usum avorum' verfaßt und stützt
sich auf die gruppentheoretischen Aussagen von [1] und [2]. Ein Brückenschlag, der
direkt von den angegebenen Gleichungen zu der heutigen Darstellungstheorie der
inhomogenen Lorentzgruppe hinüberführt, sollte möglich und gewiß auch lohnend
sein.

Schließlich möchte der Verfasser an dieser Stelle all denen, die es angeht, seinen
Dank aussprechen für einige Studienjahre, die er in der Schweiz verbringen durfte.
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