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Are Bell’s Inequalities Concerning Hidden Variables Really
| Conclusive?

by M. Flato and C. Piron
Département de Physique Théorique, Université de Genéve, CH-1211 Geneve 4

J. Grea and D. Sternheimer
Physique Mathématique, Collége de France, F.75231 Paris 5

and J. P. Vigier
Institut Henri Poincaré, F.75231 Paris 5

(29. L. 75)

Abstract. We remark that the class of local hidden variable theories, introduced by J. S. Bell,
lacks a certain desired stability property.

We then draw some conclusions from this type of unstability and on that basis discuss the present
experimental situation.

1. Introduction

The present controversy on the interpretation of quantum mechanics (Q.M.)
covers a basic divergence on the meaning of probabilities in microphysics. For the
so-called ‘Copenhagen School’ of Bohr [1] and Von Neumann [2], quantum mechanical
probabilities are ‘complete’, i.e. no knowledge is ‘hidden’ behind the probability distri-
butions ||?> given by the wave function . For their opponents (Einstein [3], de
Broglie [4], Wiener, etc...) these probabilities should be interpreted in the sense
described later by Von Mises [5], i.e. they do not cover all possible knowledge but
reflect the physical limit of the distributions of the complex, uncorrelated stochastic
behaviour of a sort of local (at present unmeasured) hidden variables. Thus, as proposed
by Bohm and Vigier [6], the |¥|? distributions do not form a complete description,
but result from a deeper subquantal stochastic behaviour. The |y|? law can, in principle,
be explained along the lines proposed by Einstein and Smoluchowski to interpret the
laws of Brownian motion.

The new fact lies in the discovery of Bell [7] that one could turn the famous ‘ged-
anken experiment’ of Einstein, Podolski and Rosen [8] (E.P.R.) into realizable experi-
ments which would yield different results for both types of interpretations. Let us recall
its principle: one emits simultaneously two correlated particles @ and b in the singlet
statein a small domain. One then measures the spin of a (or ) once separated by a space-
like interval. The measurement of the spin of a(b) then predicts exactly the value of the
spin of b(a). This implies that if one produces two correlated photons y, and 7, in the
singlet state, one can, in principle, predict with certainty (probability 1) the helicity of
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v, Without any measurement on it, and there should exist a physical quantity (hidden
parameter) attached to it. Bohr [9] has later shown this ‘paradox’ did not apply to his
interpretation provided one accepted that no reality exists (in a microsystem) which is
not really detected in a concrete measurement. The merit of Bell is that he has shown in
the case of two fermions (the result has been later extended to bosons by Clauser et al.
[10]) that this implies different predictions for the final correlated measurements of the
angular correlated spin measurements, if the y’s have exchanged information only
locally during their emission period. This result is summarized in Bell’s inequalities, to
which we shall return in Section 2. 4

It should be stressed that the renewed interest in hidden variables (HV) is not purely
academic. Indeed, the hope of people believing in the necessity for introducing HV is
that these variables, in special types of phenomena, will have a direct experimental
manifestation. One should also mention that, as is completely clear from the works
of the Geneva School (see e.g. Ref. [11a]), there exists a unified formalism and interpret-
ation for classical and quantum mechanics. Moreover, HV can also be (and have been)
introduced in classical theories (see e.g. Ref. [11b]). Therefore, there is no need to ‘prove’
a priori their existence or non-existence, except perhaps for philosophical reasons.
Whether to utilize them or not should be related to what one can achieve with them as
mathematical entities and to their possible experimental manifestation.

At last one should mention that the physical assumptions, under which the
results of [7] were derived, have been recently criticized in an interesting paper [12] by
L. de Broglie.

2. Bell’s Inequalities and their Unstability

a) When we are dealing with physical theories in which only observed quantities
occur, we are always interested in stability properties. For obvious reasons we like to
have theories that can be ‘deformed’ to ‘close’ theories, giving predictions ‘close’
to those of the initial theory with respect to all notions and parameters appearing in the
theory. The initial theory should then become a well-defined limiting case of the
‘neighbouring’ theories.

In many theories such a property is generally guaranteed by the stability with
respect to a family of parameters or functions of certain types of differential equations.
The non-existence of such a stability (as in certain perturbation expansions around some
free solutions) always indicates that we should change our initial concepts and methods
of calculation.

In the framework of the so-called hidden variable (HV) theories, one has to be
even more prudent: these hidden variables (the non-existence of which has been ‘demon-
strated’ by many physicists since the work of Von Neumann) are not directly measure-
able quantities by definition. At the present time we can at best measure some indirect
consequences of the existence (or non-existence) of a certain type of HV theories. To
impose restrictions on the HV is already quite a strong and ad hoc assumption. If, in
addition, HV theories are classified according to some criterion in such a way that this
criterion is answered by yes or no, with no possibility of having intermediate situations
(as far as predictions are concerned) between yes and no, then the criterion does not
seem to be tenable. Such a criterion will also not be tenable if (as many of those interested
in HV believe), at some later date, HV have a direct experimental manifestation.

This is, indeed, what happens with local HV. As we shall see later, we have to deal
with a continuous hidden variable, 4, a continuous density, p, which in the local case is
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a function of A only, and an observable (spin or helicity direction), A, taking only the
values +1, which in the local case depends only on 4 and on the orientation of the corre-
sponding measuring apparatus. Now the measured quantities, and also the inequalities
they satisfy in the local case (Bell’s inequalities), can be made stable with respect to p.
This means, as can be easily seen, that small non-localities in p (dependence on other
parameters than A for suitably regular p’s) will cause only small changes in Bell’s
inequalities. ' _

However, since the quantity 4 takes only the discrete values +1, there is no sense
in which stability under non-local deformations of 4 can be guaranteed: one cannot
have, in this connection, any ‘almost local’ theory ‘close’ to the local one. Now, as we
explained before, 4 is not even a measured quantity. Locality is already quite a strong
assumption, but since stability does not exist here, even if one will be able to measure
quantities like A(Z) in the future, how can one ensure no experimental contamination
of locality which would make our ‘local predictions’ completely useless 7

Moreover, if we choose our models at random, for any type of non-locality,
almost every model will give predictions different from the local case, and we can choose
models of p(4), A(4,a,b) (which depends a priori at random on b), etc.. ., such that we
can have a maximal deviation from the local case.

The deviations from Bell’s inequalities in the non-local case will be presented later.
These new inequalities are rather trivial mathematically and cannot be used (un-
fortunately) to distinguish between HV theories and quantum mechanics as in the local
case. The point is, whenever we do not have a local HV theory, we cannot, a priori
(without going to a very specific ad hoc HV model), obtain better inequalities, due to the
lack of stability discussed above.

It should be mentioned, as a matter of fact, that Bell’s result indicates more of a
conflict between quantum mechanics and locality (here imposed on unmeasurable
quantities) than a conflict between HV theories and quantum mechanics.

We shall also try to draw conclusions from the lack of stability and compare them
with the recent conflicting experimental results. But let us now pass to the non-local
version of Bell’s inequalities. '

b) Following Bell’s arguments [7], we consider two polarization measure apparatus
A and B, characterized by the directions of their polarization axes, denoted respectively
by a and b. The result of the measurement by A of a system, with hidden variable 4, is
denoted by A(a, 4, f((a,b),a)) = +1, where f expresses the non-locality, i.e. the influence
of B on the measure by A4, « denoting all parameters (e.g. the distance) associated with
the couple (4, B) other than their relative direction (a,b). A theory is said to have local
measurement if A(a, A, f) = A(a, A) for all b and «.

Let us note (supposing that the sets of A’s where 4(aq, 4, f) =+1 and —1 are measur-
able)

Py(a,b) = f p(A) A(a, 4,f((a, b),a)) B(b, A,/ ((a, b), »)) dA, (D)

where p(4) is the (local) density of the hidden variable 4, and by Py(a,b) the same ex-
pression in the local case. Bell’s inequality can then be written:

| Po(a, b) — Po(a, b")| + | Po(@’, b) + Po(@’, b")| <2 (2)

for all directions a,a’ of 4 and b,b" of B. We shall show that this inequality does not
hold in the non-local case, namely that to the right-hand side of (2) we must then add a
term which is almost always strictly positive.
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Indeed, if we follow the same lines of calculation in the non-local case, we obtain
the following inequality (which may be an equality, as in Bell’s case):

|Ps(a,b) — Py(a,b')| +.|Pya’,b)+ Psa,b)| <2+ A(a,a’;b,b") 3)

where, writing to simplify notations A(a, 4,f((a,b),o) = A(ab), and so on,
Ag(a,a’;b,b") = I fdlp(/l) [A(ab) B(ba) A(a’b') B(b' a’)
— A(ab’) B(b' d) A(a’ b) B(ba')] |

- |fd,1p(,1)N(a.,a';b,b';1)|. | 4)

Obviously, the correction 4 ;, due tc non-locality, is zero in the local case. It is also zero
ifa=a' or b= &', in which case, however, inequalities (2) and (3) are trivially satisfied,
and therefore cannot be used to prove or disprove anything. In the non-local case, 4,
is, a priori, bounded by 2, and the correction can be significant from the very moment
that there exists some non-locality in the hidden variables.

Let us write

A(ab") = A(ab) +J,4, B(ba')= B(ba)+Jg
and, similarly,
A@b')=A(@b)y+ J;, B@®'a)=B(b a)+J3,

where J,, J{, Jg, J4 are functions of 1 also and express the jumps due to non-locality
between the corresponding measurements. They have values 0 or +2. We can then de-
compose N= N, + Ny + N g, where

N, = B(ba) B(b'a)(A(ab)J; — A(a’' b)J ,)
Ny = A(ab) A(a’ b) (B(ba)Jg — B(b’ a)Jg) 5
N g = A(ab) B(ba)J  ;J5 — A(a’' b) B(b’ a)J 4 J.

N, (respectively Ng) expresses the pure contribution from non-locality for A (respec-
tively B) to the integrand, while N 5 is the mixed contribution. It is clear from relations
(4) and (5) that 4, can vanish only in very special cases. For example, even if we have
A(ab)J 4 = A(a’' b)J, we shall still have N = A(ab) A(a’b")(B(ba)Js — B(b'a)Jy) which,
in general, will not give zero when integrated with weight p.

Let us now express 4, in experimental situations such as those described in Refs.
[13], [14] or [15]. We assume that, like Py(a,b), f depends only on the angle 0 = (a,b).
One considers the configurations for which the quantum analogue to the left-hand side
of (2) predicts a maximal violation (equality to 24/2) to Bell’s inequality, namely
cos(a,b) = cos(a’,b’) = cos(a’,b) = cos(n/8) or cos(3n/8), and cos(a,b’) = cos(3n/8) or
cos(97/8) (respectively). Expression (2) can then be written as:

|Po(m/8) — Po(3n/8)| < 1. (6)
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_ In the non-local case, with the obvious notations where the angles are expressed in
units of n/8, the integrand N will be given, in the first configuration, by

N=A(a,1)B(b,1)[A(a, 1) B(b', 1) — A(a,3) B}, 3)].

Hence 4, < 2|P/(1)|, and similarly 4,< 2|P,(3)| in the second configuration. We have
equality if the deviation from locality has maximal effect on the measurements for almost
all A when comparing the cases with angles n/8 and 3#/8. Thus (6) becomes

|P,(1) — P,(3)| < 2. ()

The correction to Bell’s inequality that we obtain is of course compatible with all
experiments.

3. Experimental Results

The interesting point of this discussion on the unstability of Bell’s inequalities is
that it might provide a theoretical basis to discuss conflicting results in recent experi-
ments performed to test local hidden variables. These experiments — closely related to
the E.P.R. paradox [8] — will now be briefly discussed.

a) Two experiments, using correlated y pairs emitted in cascade process, have yielded
conflicting results. Freedman and Clauser [13] used a cascade

4p*1S, — v, — 4pdsiP, — y, — 4s*1S,

in atomic calcium to produce a photon pair (7,,7,), and measured the coincidence rates
R(0) after passing through two polarizers at angle 6, and R, when both polarizers are
removed. Whilst Bell’s inequality gives in this case

5= |R(3n/8) — R(/8)|R5* — 4 < 0

they found 6 = 0.050 + 0.008, in agreement with the quantum prediction dgy = 0.051,
and with the ‘non-local’ inequality which gives é < }.

On the other hand, Holt [14] and Holt and Pipkin [15], using a 9'P, — 73§, —
63P, cascade in °®Hg, found § = —0.034 + 0.013, in agreement with Bell’s inequality
but four mean deviations away from gy = 0.016. Though these authors remain cautious
about their results, systematic errors sufficient to account for the discrepancy were not
found.

It is interesting to note that the former experiment might provide an example of
the unstability of Bell’s inequalities. One can also argue that, in the former experiment,
the density of calcium atoms provides the possibility that y, would excite a second cal-
cium atom which re-emits it, thus lengthening, as observed by Barrat [16], the lifetime of
the 41P, intermediate state. The latter experiment does not seem to correspond to such a
situation [17].

It should be mentioned that the radiation-trapping discussed above, which could
have existed only in the first experiment, would have pushed the quantum prediction
towards the local HV predictions. Thus, if the experimental result of Ref. [13] is con-
firmed, it would indicate that if radiation trapping exists at all in such an experiment, it is
cancelled by an additional (non-local) effect which accompanies it, and thus makes the
naive quantum-mechanical prediction work in this experiment. The observed lengthen-
ing of the intermediate state lifetime might be a manifestation of such an effect, which
would increase the correlation and make the HV non-local.
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b) Other experiments have used positron—electron pair annihilation to provide the
y pair in the singlet state. They also yield conflicting results. A first experiment by
Langhoff [18], using a *>Na source of positrons annihilating on %*Cu, is in agreement
with the quantum prediction, while a second experiment by Faraci et al. [19], using a
different source of photons (the 22Na positrons annihilating on a plexiglass envelope),
falls exactly on Bell’s limit.

Here also a radiation-trapping effect of the type mentioned above might occur:
one, or both, of the y’s in the first experiment could be absorbed and re-emitted by elec-
trons in the metal.

¢) Experiments are being performed with non-relativistic fermions: preliminary
results by Lamehi-Rachti and Mittig [20], using proton—proton scattering, seem to
favour the quantum-mechanical prediction.

It is significant that we repeat the Holt type of measurement with non-relativistic
neutrons, or with a completely controllable source of photons similar to the particular
cascade recently suggested by Alfred Kastler: the excitation of the 73S, level of '*®*Hg
by the 4047 A laser line, producing a pair, 7, (4358 A) and y, (2537 A).

It should be mentioned that experiments with non-relativistic fermions, however
more difficult, are in a way more decisive. Believing in non-relativistic Q.M., we think
that there is a good chance they will favour the quantum predictions. Indeed, for non-
relativistic heavy fermions, Schrodinger Q.M. is more directly applicable and the notion
of spinis clear. For photons, we have to consider helicities and, as a matter of fact, should
apply quantum electrodynamics. Relativistic invariance is also then involved, and
confirmation of Bell’s prediction might also lead to problems with it.

4. Conclusion

There are therefore two main possibilities. Either experimental results completely
favour Bell’s local hidden variables — in which case, for such experiments, Q.M. (and
possibly Poincaré invariance) are in trouble (we shall thus have, in general, non-local
HV theories which under some particular situations become local and violate Q.M.
predictions); or, an eventuality in which we believe, experimental results will coincide
with the quantum-mechanical predictions. In such a case, we have shown that many
theories of non-local hidden variables, of the type discussed in Section 2, can still exist
and cannot be easily rejected.

Evidently, physical models showing contamination of locality can be produced.
However, more experimentation is needed before we can suggest a realistic model of
this type.
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